WARNING Any malpractice or any attempt to commit any kind of malpractice the Examination will DISQUALIFY THE CANDIDATE.						
	PAPER	- I	PHYSICS & CHEMIST	ГRY - 2021		
Version Code	A3		uestion Booklet erial Number :	6323745		
Time: 150 Minutes			Number of Questions : 120	Maximum Marks : 480		
Name of th	e Candidate					
Roll Numb	er					
Signature o	of the Candid	ate				
		IN	STRUCTIONS TO CANDIDATI	ES		
Bookle	et is same as	tha	e VERSION CODE shown at t shown in the OMR Answer S ion Booklet with a different V	Sheet issued to you. If you		

Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
 Please fill the items such as Name, Roll Number and Signature in the columns given above. Please also write Question Booklet Serial Number given at the top of this page against item 3 in the OMR Answer Sheet.

replaced with a Question Booklet with the same Version Code as that of OMR

- 3. This Question Booklet contains 120 questions. For each question five answers are suggested and given against (A), (B), (C), (D) and (E) of which only one will be the 'Most Appropriate Answer'. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black Ball Point Pen only.
- 4. Negative Marking: In order to discourage wild guessing the score will be subjected to penalization formula based on the number of right answers actually marked and the number of wrong answer marked. Each correct answer will be awarded FOUR marks. ONE mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.
- 5. Please read the instructions in the OMR Answer Sheet for marking the answers. Candidates are advised to strictly follow the instruction contained in the OMR Answer Sheet.

IMMEDIATELY AFTER OPENING THE QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 PRINTED PAGES 32

1. When two sound waves of slightly different frequencies f_1 and f_2 are sounded together, then the time interval between successive maxima is

(A)
$$\frac{1}{f_1 + f_2}$$
 (B) $\frac{1}{f_1} + \frac{1}{f_2}$ (C) $\frac{1}{f_1 - f_2}$ (D) $\frac{1}{f_1 f_2}$ (E) $\frac{1}{f_1} - \frac{1}{f_2}$

2. The electric potential at a point at a distance r due to an electric dipole is proportional to

(A)
$$r^2$$
 (B) r (C) r^{-1} (D) r^{-2}

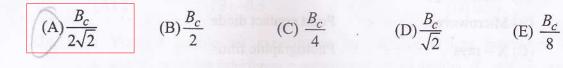
3. An air capacitor and identical capacitor filled with dielectric medium of dielectric constant 5 are connected in series to a voltage source of 12V. The fall of potential across C_1 and C_2 are respectively

(E) r^{-3}

The ratio of the magnitudes of electrostatic force between two protons at a distance 4. r apart to that between two electrons at the same distance of separation is (A) 1:1 (B) 2:1 (C) 1:2 (D) 4:1 (E) 1:4 When two charges are kept in air medium, at certain distance d apart, the force 5. between them is F. When they are kept in a dielectric medium at the same distance of separation, the force between them becomes F/2. Then the dielectric constant of the medium is (A) 5 (B) 2 (C) 4 (D) 3 (E) 8 The magnitude of the drift velocity per unit electric field is defined as 6. (A) mobility (B) resistivity (C) conductivity (D) current density (E) impedance Space for rough work

Fay-055-1-A.1/2021

(D) $20\Omega \operatorname{across} P$ (E) $10\Omega \operatorname{across} Q$ If one cell is connected wrongly in a series combination 1.5 V and internal resistance of 0.5 Ω , then the equivalent combination is	of four cells each of <i>e.m.f.</i> it internal resistance of the
1.5 V and internal resistance of 0.5 Ω , then the equivalent	of four cells each of <i>e.m.f.</i> it internal resistance of the
(A) 0.5Ω (B) 1Ω (C) 1.5Ω (D)) 2 Ω (E) 2.5 Ω
A carbon resistor is marked with the rings coloured blue resistance in ohm is	e, black, red and silver. Its
(A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$	(C) $1 \times 10^6 \pm 5\%$
(D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$	
A conductor of length 20 cm carrying a current of 5A is p the external magnetic field of 0.5 T. The force acting on it is	placed at an angle of 30° to s
(A) 0.5 N (B) 5 N (C) 0.25 N (D)) 2.5 N (E) 0.125 N
Space for rough work	


5

Phy-Chy-I-A3/2021

11. A current carrying coil placed in a magnetic field B experiences a torque τ . If θ is the angle between the normal to the plane of the coil and field B and ϕ is the flux linked with the coil, then

	(A) τ is minimum for $\theta = 90^{\circ}$	(B) τ an	d φ are maximun	n for $\theta = 0^{\circ}$	
	(C) φ is maximum for $\theta = 90^{\circ}$	(D) τ ar	(D) τ and ϕ are zero for $\theta = 90^{\circ}$		
	(E) τ is zero and φ is maximum for	$\theta = 0^{\circ}$			
12.	In Cyclotron, the frequency of revo independent of	olution of the charge	ed particle in a ma	agnetic field is	
	(A) its mass (B) it	s energy	(C) oscillatory	frequency	
	(D) magnetic field (E) it.	s charge			
				1943	
13.	The hard ferromagnetic material an	ong the following i	S		
63.10	(A) gadolinium (B) iron	(C) cobalt	(D) Alnico	(E) nickel	
	Space	for rough work	al bibee are ferre	1755 - 168.	

14. If B_c is the magnetic induction at the centre of a circular coil carrying current, then the magnetic induction at a point on the axis of the coil at a distance equal to the radius of the coil is

15. If air core is replaced by an iron core in an inductor, its self-inductance is increased from 0.02 mH to 40 mH. The relative permeability of iron is

(A) 5000 (B) 2000 (C) 200 (D) 500 (E) 400

16. Among various circuits constructed with resistor R, inductor L and capacitor C, the circuit that gives maximum power dissipation is

(A) purely inductive circuit (B) purely capacitive circuit

- (C) purely resistive circuit (D) L-C series circuit
 - (E) C-R series circuit
- 17. Eddy currents are not used in the application of
 - (A) induction furnace
- (B) thermal generators
- (C) electromagnetic damping
 - g (D) electric power meters
- (E) magnetic braking in trains
- **18.** The total intensity of earth's magnetic field at the poles is 7 units. Its value at the equator is

(A)
$$7\sqrt{2}$$
 units (B) 3.5 units (C) 7 units (D) $\frac{7}{\sqrt{2}}$ units (E) 14 units

Space for rough work

7

Phy-Chy-I-A3/2021

19. Electromagnetic waves against their detection devices are matched below. The mismatch is

(A) Gamma rays	:	Ionization chamber
(B) Microwaves	:	Point contact diode
(C) X – rays		Photographic film
(D) Ultraviolet rays	: 0	Thermopiles
(E) Infrared rays	:-	Bolometer

20.

In an electromagnetic wave, the oscillating electric and magnetic field vectors are oriented in

(A) mutually perpendicular directions with a phase difference of $\pi/2$

(B) the same direction and in the same phase

- (C) mutually perpendicular directions with a phase difference of π
- (D) the same direction with a phase difference of $\pi/2$
- (E) mutually perpendicular directions and are in phase

21. Fresnel distance for an aperture of size *a* illuminated by a parallel beam of light of wavelength λ , deciding the validity of ray optics is

(A) $\frac{\lambda}{a^2}$ (B) λa (C) $a^2 \lambda$ (D) $\frac{a^2}{\lambda}$ (E) $a^2 \lambda^2$

22. The apparent depth of a needle lying in a water beaker is found to be 9 cm. If water is replaced by a liquid of refractive index 1.5, then the apparent depth of needle will be (μ of water is 4/3)

(A) 10 cm	(B) 9 cm	(C) 12 cm	(D) 7 cm	(E) 8 cm
	Spa	ace for rough work		

23. An object is placed at 10 cm in front of a concave mirror. If the image is at 20 cm from the mirror on the same side of the object, then the magnification produced by the mirror is

(B) -0.5

(A) 3

(C) -2 (D) 0.33 (E) -1

24. In Young's double-slit experiment, two different light beams of wavelengths λ_1 and λ_2 produce interference pattern with band widths β_1 and β_2 respectively. If the ratio between β_1 and β_2 is 3 : 2, then the ratio between λ_1 and λ_2 is (A) 3 : 1 (B) 1 : 3 (C) 2 : 3 (D) 3 : 2 (E) 4 : 5

25. If θ_p is the polarizing angle for a glass plate of refractive index μ and critical angle θ_c , then

$(A) \theta_p = \theta_c$	(B) $\tan \theta_p \cdot \sin \theta_c = 1$	(C) $\theta_p \theta_c = 1$
(D) $tan \theta_p = sin \theta_c$	(E) $tan \theta_p sin \theta_c = \mu$	

26. Two materials A and B having respective work functions 3 eV and 4 eV are emitting photoelectrons of same maximum kinetic energy of 1eV. If the wavelength of incident light on A is 500 nm, then that of light incident on B is

(A) 400 nm	(B) 300 nm	(C) 350 nm	(D) 600 nm	(E) 250 nm
CT SS THE REAL SS	Spac	e for rough work		

27. If the momentum of an α -particle is half that of a proton, then the ratio between the wavelengths of their de-Broglie waves is

(A) 1 : 2 (B) 4 : 1 (C) 1 : 4	(D) 1 : 1	
-------------------------------	-----------	--

(E) 2 : 1

28. During β^- decay of a radioactive element there is an increase in its

(A) mass number	(B) neutron number	(C) electron number
(D) proton number	(E) atomic weight	

29. 10¹⁸ fissions per second is required for producing power of 300 MW in a nuclear power station. To increase the power output to 360 MW the additional number of fissions required per second is

(A) 2×10^{18} (B) 5×10^{18} (C) 5×10^{17} (D) 6×10^{17}

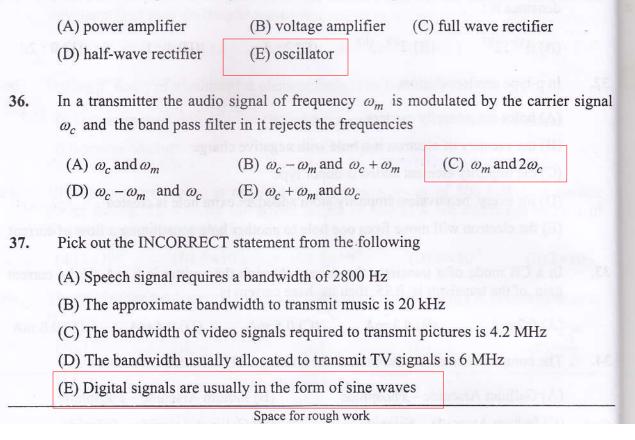
(E) 2×10^{17}

30. The ratio of the total energy E of the electron to its kinetic energy K in hydrogen atom is

(A) 1	(B) $\frac{1}{2}$	(C) 2	(D) -1	(E) $-\frac{1}{2}$
SOL LO MULLES IN	Spa	ce for rough work	102 and the 102 and	honor table

31. If the mass numbers of two nuclei are in the ratio 3 : 2, then the ratio of their nuclear densities is :

	(A) $3^{1/3}: 2^{1/3}$	(B) $2^{1/3}$: $3^{1/3}$	(C) 2 : 3	(D) 1 : 1	(E) 3 : 2			
32.	In p-type semico	onductors	in an all the second second	A Long the and times				
	(A) holes are mi	nority carriers						
	(B) the vacancy	of electron is a hol	e with negative c	charge				
	(C) the impurity	element added is a	lonor type					
	(D) for every pe	entavalent impurity	atom added an e	extra hole is created				
	(E) the electron	will move from on	e hole to another	hole constituting a	flow of current			
33.		In a CB mode of a transistor the current through the emitter is 6 mA. If the current gain of the transistor is 0.95 then its base current is						
	(A) 0.2 mA	(B) 0.3 mA	(C) 0.5 mA	(D) 0.4 mA	(E) 0.8 mA			
34.	The compound s	semiconductor used	l for making LEI	Ds of different color	urs is			
	(A) Gallium Ars	senide – Phosphide	(B) Inc	lium Arsenide – Ph	osphide			
	(C) Indium Arse	enide – Selenide	(D) Ga	llium Arsenide – S	elenide			
	(E) Scandium A	rsenide – Phosphic	le					


Space for rough work

Phy-Chy-I-A3/2021

[P.T.O.

33

35. A transistor amplifier along with a tank circuit with positive feedback will act as

38.	A physical qua	antity A on multiplica	tion with veloci	ty results in another	quantity B. If
	the quantity B	is energy, then the qu	antity A is		
	(A) mass	(B) momentum	(C) force	(D) acceleration	(E) power
39.	If the percentag	ge errors in the measu	rements of mass	s, length and time are	1%, 2% and
	3% respective acceleration of	ly, then the maximu a particle is	m permissible	error in the measure	ement of the
-	(A) 8%	(B) 9%	(C) 6%	(D) 10%	(E) 2%
40.	The radius of figures is	a circular plate is 1.	.05 m. Its area	(in m ²) up to correct	ct significant
	(A) 3.47	(B) 3.475	(C) 3.467	(D) 3.82	(E) 3.825
41.		f a moving particle at of the particle are	any instant is \hat{i}	\hat{j} . The magnitude :	and direction
	(A) 2 units and	145° with the x-axis			
	(B) 2 units and	1 30° with the z-axis	4	- in the second	
	(C) $\sqrt{2}$ units a	and 45° with the x-axi	S		
	(D) $\sqrt{2}$ units a	and 60° with the y-axi	s		
	(E) 2 units and	160° with the x-axis			

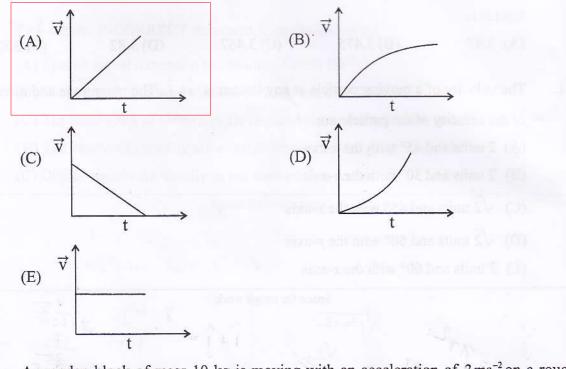
Space for rough work

1 ----

17

A hammer is dropped into a mine. Its velocities at depths d, 2d and 3d are in the ratio

(A) 1:2:3 (B) $1:\sqrt{2}:\sqrt{3}$ (C) 1:4:9 (D) 6:3:2 (E) 1:1:1


43. The stopping distance of a moving vehicle is proportional to the

(A) initial velocity

42.

X

- (B) cube of the initial velocity
- (C) square of the initial velocity
- (D) cube root of the initial velocity
- (E) square root of the initial velocity
 - he initial velocity
- 44./ When a body starts from rest and moves with a constant acceleration, the velocitytime graph for its motion is

45. A wooden block of mass 10 kg is moving with an acceleration of 3 ms^{-2} on a rough floor. If the coefficient of friction is 0.3, then the applied force on it is $(g=10 \text{ ms}^{-2})$ (A) 10 N (B) 30 N (C) 80 N (D) 60 N (E) 65 N

- 46. Which one of the following statement is INCORRECT?
 - (A) The state of rest or uniform linear motion both imply zero acceleration.
 - (B) A net force is needed to keep a body in uniform motion.
 - (C) Inertia means resistance to change.
 - (D) The rate of change of momentum is proportional to the applied force.
 - (E) Momentum is a vector quantity.
- 47. On a conveyor belt moving with a speed u, sand falls at a constant rate $\left(\frac{dm}{dt}\right)$, where m is the mass of sand. The extra force required to maintain the speed of the belt is

(A)
$$m\left(\frac{du}{dt}\right)$$
 (B) mu (C) $\left(\frac{dm}{dt}\right)/u$ (D) $u\left(\frac{dm}{dt}\right)$ (E) $\frac{1}{m}\left(\frac{du}{dt}\right)$

48.

(A) velocity

(B) acceleration

(D) angular momentum

(B) potential energy is stored in it

(D) its total energy remains constant

- (C) linear momentum
- (E) impulsive force
- lines of the thirty plants

49. When a metal spring is elongated within its elastic limit

Area under the force-time graph gives the change in

- (A) work is done by the spring
- (C) its potential energy is lost
- (E) its kinetic energy is increased

50. The instantaneous power in terms of force F and instantaneous velocity v is

(A) $P = F \cdot t$ (B) $P = F \cdot v$ (C) $P = F \cdot v^{-1}$ (D) $P = F \cdot v^{-2}$ (E) $P = F \cdot v \cdot t^{-1}$

Space for rough work

Phy-Chy-I-A3/2021

51. A ball with 10³J of kinetic energy collides with a horizontally mounted spring. If the maximum compression of the spring is 50 cm, then the spring constant of the spring is

(A) $2 \times 10^{3} \text{ Nm}^{-1}$ (B) $6 \times 10^{3} \text{ Nm}^{-1}$ (C) $8 \times 10^{3} \text{ Nm}^{-1}$ (D) $5 \times 10^{3} \text{ Nm}^{-1}$ (E) $3 \times 10^{3} \text{ Nm}^{-1}$

52. An object released from certain height h from the ground rebounds to a height $\frac{h}{4}$ after striking the ground. The fraction of the energy lost by it is

(A)
$$\frac{1}{4}$$
 (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{8}$ (E) $\frac{3}{8}$

53. A solid metal ring and a disc of same radius and mass are rotating about their diameters with same angular frequency. The ratio of their respective rotational kinetic energy values is

54. The X and Y coordinates of the three particles of masses m, 2m and 3m are respectively (0,0), (1,0) and (-2,0). The X-coordinate of the centre of mass of the system is

(A)
$$\frac{1}{3}$$
 (B) $\frac{2}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2}{3}$ (E) $\frac{1}{6}$

55. Radius of gyration of a solid cylinder of radius R and length L about its long axis of symmetry is

(A) R (B)
$$\frac{R}{\sqrt{2}}$$
 (C) $\sqrt{2}R$ (D) $\frac{R}{2}$ (E) 2R

56. When no external torque acts on a rotating system, $\mathbf{56.}$

- (A) angular momentum of the system is not conserved
- (B) its rotational kinetic energy is conserved
- (C) its rotational kinetic energy is independent of moment of inertia
- (D) its rotational kinetic energy is directly proportional to moment of inertia
- (E) its rotational kinetic energy is inversely proportional to moment of inertia
- 57. If T be the time period of a planet around the Sun and d is its mean distance from the Sun, then according to Kepler's third law

(A) $T \propto d$ (B) $T \propto d^2$ (C) $T^2 \propto d^3$ (D) $T^2 \propto d$ (E) $T^2 \propto d^{-3}$

58. If the earth shrinks to half of its present size and its mass reduces to half of its actual mass, then the acceleration due to gravity(g) on its surface will be

(A) 4g	(B) g	(C) 2g	(D) $\frac{g}{2}$	(E) 3g
--------	-------	--------	-------------------	--------

59. When two identical spheres each of radius r are kept in contact with each other, then the force of attraction between the two spheres is proportional to

(A) r^2	(B) r ⁴	(C) r ⁶	(D) r^{-2}	(E) r^{-4}

60. With the increase of temperature

(A) surface tension of liquid increases

(B) viscosity of gases decreases

(C) viscosity of liquids increases

(D) both the surface tension and viscosity of liquids increase

(E) both the surface tension and viscosity of liquid decrease

- 61. The TRUE statement is
 - (A) Young's modulus of a wire depends on its length
 - (B) The unit of Young's modulus is Nm⁻¹
 - (C) Dimensional formula of stress is same as that of force
 - (D) The unit of strain is kgm^{-2}
 - (E) Compressibility is the reciprocal of bulk modulus

62. When a body is strained, energy stored per unit volume is (Y = Young's modulus)

ess

(A)
$$\frac{(stress)}{Y}$$
 (B) $\frac{Y \times strain}{2}$ (C) $\frac{(stress)}{Y}$
(D) $Y \times (strain)^2$ (E) $\frac{1}{2} \left(\frac{stress}{Y}\right)$

63. According to equation of continuity when a liquid flows through a tube of variable cross section a with variable velocity v, the quantity that remains constant is

(A) av^2 (B) a^2v (C) av (D) $\frac{a}{v}$ (E) $\frac{a^2}{v}$

64.

Two thermally insulated identical vessels A and B are connected through a stopcock. A contains a gas at STP and B is completely evacuated. If the stopcock is suddenly opened then

(A) temperature is halved

(B) internal energy of the gas is halved

(C) internal energy of the gas and pressure are halved

(D) temperature and internal energy of the gas remain the same

(E) pressure and internal energy of the gas remain the same

65. A process in which there is no flow of heat between the system and surroundings is

a/an (B) cyclic process (A) adiabatic process (D) isochoric process (C) isobaric process (E) isothermal process When the temperature of the source of a Carnot engine is at 400 K, its efficiency is 66. 25%. The required increase in temperature of the source to increase the efficiency to 50% is (C) 100 K (D) 400 K (E) 200 K (A) 800 K (B) 600 K When an ideal diatomic gas is heated at constant pressure, fraction of heat energy 67. supplied that increases the internal energy of the gas is

(A) $\frac{5}{7}$ (B) $\frac{7}{5}$ (C) $\frac{3}{5}$ (D) $\frac{5}{3}$ (E) $\frac{2}{3}$

68. The ratio of the kinetic energy values of 4g of hydrogen (H_2) to 7g of nitrogen (N_2) at room temperature is

(A) 4 : 1	(B) 1 : 4	(C) 4 : 7	(D) 7:4	(E) 1 : 1
-----------	-----------	-----------	---------	-----------

Space for rough work

Phy-Chy-I-A3/2021

69. A planet with radius R and acceleration due to gravity g, will have atmosphere only if r.m.s. speed of air molecules is less than

(A) $1.414\sqrt{gR}$ (B) $1.732\sqrt{gR}$ (C) $2\sqrt{gR}$ (D) $3.14\sqrt{gR}$ (E) $2.75\sqrt{gR}$

70. If the ratio of the acceleration due to gravity on the surface of earth to that on the surface of the moon is 6:1, then the ratio of the periods of a simple pendulum on their surfaces is

(A) 1:1 (B) 1:6 (C) 1:3 (D)
$$1:\sqrt{6}$$
 (E) $1:\sqrt{3}$

71. The velocity of a transverse wave propagating on a stretched string represented by the equation, $y = 0.5 \sin\left(\frac{\pi}{2}t + \frac{\pi}{3}x\right)$ is (where x and y are in metres and t in seconds)

(A) 0.5 ms^{-1} (B) 1.0 ms^{-1} (C) 2 ms^{-1} (D) 3 ms^{-1} (E) 1.5 ms^{-1}

72. The kinetic energy of a particle of mass *m* executing linear simple harmonic motion with angular velocity ω and amplitude *a* is $\frac{1}{4}ma^2\omega^2$ at a distance of ______ from the mean position.

(A)
$$\frac{a}{\sqrt{2}}$$
 (B) $\frac{a}{2}$ (C) $\frac{a}{4}$ (D) a (E) $\frac{a}{8}$

Space for rough work

73. The reagent that is used to convert but-2-yne to trans-but-2-ene is

(A) $H_2/Pd/C$	(B) NaBH ₄	(C) Sn/HCl
(D) Na/liquid NH ₃	(E) Zn-Hg/HC	

74. Compound 'A' is obtained by the reaction of benzyl chloride with magnesium metal in dry ether followed by treatment with water. What is the compound 'A'?

(A) Toluene	(B) Benzyl alcohol	(C) Phenol
(D) Benzene	(E) Benzaldehyde	

75. The correct increasing order of boiling points of the following compounds is

(A) $CH_2Br_2 < CH_3Br < CHBr_3 < CH_3Cl$

(B)
$$CH_2Br_2 < CHBr_3 < CH_3Br < CH_3Cl$$

(C) $CH_3Cl < CH_3Br < CH_2Br_2 < CHBr_3$

(D) $CH_3Cl < CHBr_3 < CH_3Br < CH_2Br_2$

(E) $CHBr_3 < CH_2Br_2 < CH_3Br < CH_3Cl$

76. Compounds 'A', 'B' and 'C' have the same molecular formula C_7H_8O . Compound 'A' and 'B' liberate hydrogen gas with sodium metal. When treated with sodium hydroxide, compound 'B' alone dissolves. Compound 'C' is inert towards both sodium metal and sodium hydroxide. Compounds 'A', 'B' and 'C' are respectively

(A) Cresol, benzyl alcohol and anisole

(B) Benzyl alcohol, cresol and anisole

(C) Benzyl alcohol, anisole and cresol

(D) Cresol, anisole and benzyl alcohol

(E) Anisole, cresol and benzyl alcohol

Phy-Chy-I-A3/2021

77.

78.

The suitable Grignard reagent used for the preparation of 2-methylpropan-1-ol using methanal is

(A) $CH_3-CH_2-CH_2MgBr$ (C) $CH_3-CH(CH_3)-CH_2MgBr$ (E) $CH_3-CH(CH_3)-MgBr$

(B) CH_3 - CH_2 - CH_2 - CH_2MgBr (D) $(CH_3)_3$ C - MgBr

Isopropylbenzene (cumene) is oxidized in the presence of air to give compound 'X' which on hydrolysis in the presence of acids gives compounds 'Y' and 'Z'. Compounds 'X', 'Y' and 'Z' are respectively

(A) benzyl alcohol, benzaldehyde, ethanol

(B) cumene hydroperoxide, phenol, acetaldehyde

(C) cumene hydroperoxide, benzaldehyde, acetone

(D) cumene hydroperoxide, phenol, acetone

(E) cumene hydroperoxide, benzaldehyde, acetaldehyde

79. A research scholar returned to the laboratory after the lock down due to Covid-19. He kept acetone, benzaldehyde, acetaldehyde and diethyl ketone in four different bottles. The bottles contained only the label as P, Q, R and S. He forgot which bottle contained which compound. Compounds P and R only underwent iodoform test. Compound R alone gave reddish brown precipitate with Fehling's reagent. Compounds Q and R alone underwent Tollen's test. Compound S did not answer any of the above tests.

Identify the compounds P, Q, R and S.

- (A) P-diethyl ketone; Q-benzaldehyde; R-acetaldehyde; S-acetone
- (B) *P*-acetone; *Q*-benzaldehyde; *R*-acetaldehyde; *S*-diethyl ketone
- (C) P-acetone; Q-acetaldehyde; R-benzaldehyde; S-diethyl ketone
- (D) P-acetaldehyde; Q-acetone; R-diethyl ketone; S-benzaldehyde
- (E) P-benzaldehyde; Q-diethyl ketone; R-acetone; S-acetaldehyde

80. The increasing order of acid strength of the following carboxylic acids is

(A) $ClCH_2-CH_2-COOH < ClCH_2COOH < NC - CH_2COOH < CHCl_2COOH$

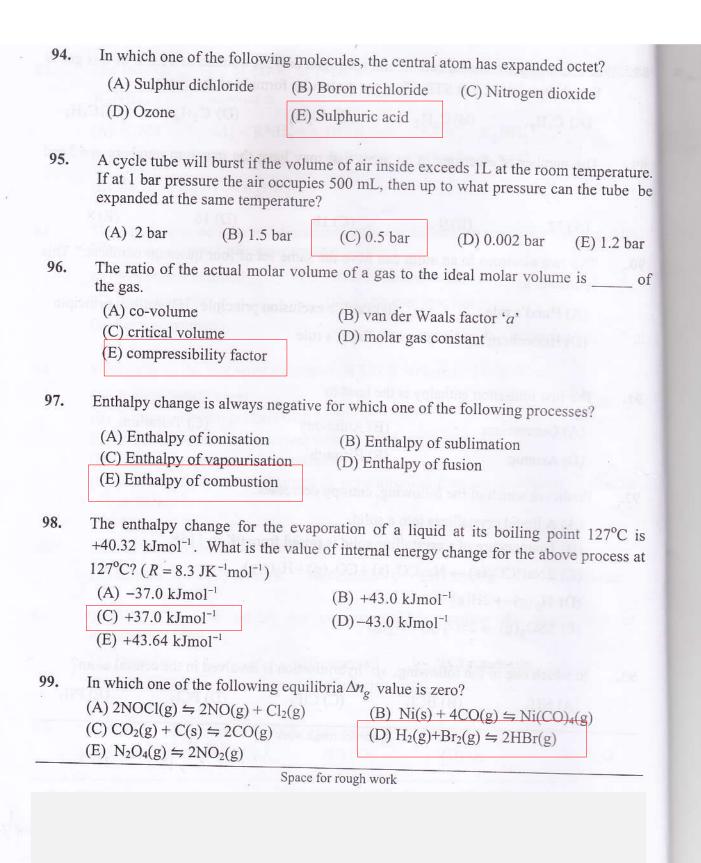
- (B) CICH₂-COOH < NC CH₂COOH < CICH₂CH₂COOH < CHCl₂COOH
- (C) $CICH_2 CH_2 COOH < CHCl_2 COOH < CICH_2 COOH < NC CH_2 COOH$
- (D) NC-CH₂-COOH < Cl-CH₂COOH < CH-Cl₂COOH < Cl-CH₂CH₂COOH
- (E) $CICH_2CH_2$ -COOH < $CHCl_2COOH$ < $CICH_2COOH$ < $NC-CH_2COOH$

81. Which one of the following is not correct with respect to properties of amines?

(A) pK_b of aniline is more than that of methylamine.

- (B) Ethylamine is soluble in water whereas aniline is not.
- (C) Ethanamide on reaction with Br₂ and NaOH gives ethylamine.
- (D) Ethylamine reacts with nitrous acid to give ethanol.
- (E) Aniline does not undergo Friedel-Crafts reaction.

Space for rough work


Phy-Chy-I-A3/2021

C) $R_2 NH_2^+ < R$ E) $RNH_3^+ < R_3$ The conversion	2 2	+ (D) RNH	$H^{+} < RNH_{3}^{+} < R_{2}NH_{3}^{+} < R_{2}NH_{2}^{+} < R_{3}NH_{3}^{+} < R_{3}N$	4 -
	$\mathrm{NH}^+ < \mathrm{R}_2\mathrm{NH}$			
"he conversion		2		
IBr in the prese	of benzene d ence of copper	iazonium chlori powder is calle	de to bromobenzen d	e by treating with
A) Sandmeyer r	eaction	(B) Gatter	mann reaction	
C) Wurtz reaction	on	(D) Hoffn	nann reaction	
E) Gabriel synth	nesis			
 B) It forms addited C) Its pentaaceta D) It does not un E) β- form of gat 303K 	ition product v ate does not re ndergo mutarc lucose is obta	eact with NH ₂ OF otation ined by crystalli		olution of glucose
A) keratin	(B) albumin	(C) insulin	(D) myosin	(E) histidine
ne drug used pradrenaline is	to inhibit f	the enzymes v	vhich catalyse the	
a) phenelzine () terfenadine	entre ervier Hit Lotroite er	(B) prontosil(E) chloramphe		ne
e gas which is	the major con	tributor to globa	l warming is	
	-	0	- ····································	
	 C) Wurtz reaction E) Gabriel synth Z) Gabriel synth Z) Gabriel synth Z) It gives Schii B) It forms addii C) Its pentaacet D) It does not understand <l< td=""><td> A) It gives Schiff's test B) It forms addition product w C) Its pentaacetate does not resolute the second state of the</td><td> C) Wurtz reaction (D) Hoffm E) Gabriel synthesis (D) Hoffm E) Gabriel synthesis (D) Hoffm (E) Gabriel synthesis (D) Hoffm (E) Hoffm (E) Hoffm (E) Hoffm (E) Comparison of the following statements is TRU. (E) Comparison of the following statements is TRU. (E) Comparison of the following statements is TRU. (E) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (E) Hoffm (E) Chloramphene </td><td>C) Wurtz reaction (D) Hoffmann reaction (D) Hoffmann reaction (E) A) It gives Schiff's test (E) Its pentaacetate does not react with NH2OH (D) It does not undergo mutarotation (E) β- form of glucose is obtained by crystallisation from conc. s at 303K (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (E) Its pentaacetate does not react with NH2OH (D) It does not undergo mutarotation (E) β- form of glucose is obtained by crystallisation from conc. s at 303K (D) myosin (D) myosin (D) myosin (D) myosin (D) myosin (D) myosin (D) phenelzine (B) prontosil (C) cimetidin</td></l<>	 A) It gives Schiff's test B) It forms addition product w C) Its pentaacetate does not resolute the second state of the	 C) Wurtz reaction (D) Hoffm E) Gabriel synthesis (D) Hoffm E) Gabriel synthesis (D) Hoffm (E) Gabriel synthesis (D) Hoffm (E) Hoffm (E) Hoffm (E) Hoffm (E) Comparison of the following statements is TRU. (E) Comparison of the following statements is TRU. (E) Comparison of the following statements is TRU. (E) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (D) Hoffm (E) Hoffm (E) Chloramphene 	C) Wurtz reaction (D) Hoffmann reaction (D) Hoffmann reaction (E) A) It gives Schiff's test (E) Its pentaacetate does not react with NH2OH (D) It does not undergo mutarotation (E) β - form of glucose is obtained by crystallisation from conc. s at 303K (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (D) Hoffmann reaction (E) Its pentaacetate does not react with NH2OH (D) It does not undergo mutarotation (E) β - form of glucose is obtained by crystallisation from conc. s at 303K (D) myosin (D) myosin (D) myosin (D) myosin (D) myosin (D) myosin (D) phenelzine (B) prontosil (C) cimetidin

	(A) C ₃ H ₈	the second se	Then the molecular for $_2$ (C) C ₂ H ₄		
9.	The number o $m_s = +\frac{1}{2}$ is	17-U-000	an atom that may ha		
-	(A) 32	(B) 9	(C) 18	(D) 16	(E) 8
0.	"No two electr is known as	ons in an ato	m can have the same s	set of four quantum	m numbers." This
	(A) Hund's ru	ıle	(B) Pauli's exclusio	n principle (C) A	ufbau principle
	(D) Heisenber	rg's principle		ficture and the second	-
		10-120	(-)ju.c		
1.	The first ionisa (A) Germaniu	tion enthalpy		(C) Tellu	rium
1.		tion enthalpy	is the least in	(C) Tellu	rium
	 (A) Germaniu (D) Arsenic Predict in which (A) A liquid c (B) Temperatu 	tion enthalpy m h of the follow rystallizes int are of a crysta	is the least in (B) Antimony (E) Bismuth wing, entropy decrease o a solid. Illine solid is raised fro	s: m 0K to 115K.	rium
	 (A) Germaniu (D) Arsenic Predict in which (A) A liquid c (B) Temperatu (C) 2NaHCO 	tion enthalpy im h of the follow rystallizes int are of a crysta $_3(s) \rightarrow Na_2Co$	is the least in (B) Antimony (E) Bismuth wing, entropy decrease to a solid.	s: m 0K to 115K.	rium
	 (A) Germaniu (D) Arsenic Predict in which (A) A liquid c (B) Temperatu 	tion enthalpy tion enthalpy tim h of the follow rystallizes int ire of a crysta $a_3(s) \rightarrow Na_2Co 2H(g)$	is the least in (B) Antimony (E) Bismuth wing, entropy decrease to a solid. Illine solid is raised fro $O_3(s) + CO_2(g) + H_2O(g)$	s: m 0K to 115K.	rium
 2. 3. 	(A) Germaniu (D) Arsenic Predict in which (A) A liquid c (B) Temperatu (C) 2NaHCO (D) $H_2(g) \rightarrow$ (E) $2SO_3(g) -$	tion enthalpy im h of the follow rystallizes int ire of a crysta $a_3(s) \rightarrow Na_2Co$ 2H(g) $\rightarrow 2SO_2(g) + 0$	is the least in (B) Antimony (E) Bismuth wing, entropy decrease to a solid. Illine solid is raised fro $O_3(s) + CO_2(g) + H_2O(g)$	s: m 0K to 115K. (g)	

Space for rough work

-13 (E

100. The following concentrations were obtained for the formation of $NH_3(g)$ from $N_2(g)$ and $H_2(g)$ at equilibrium and at 500K: $[N_2]= 1 \times 10^{-2} M$, $[H_2] = 2 \times 10^{-2} M$ and $[NH_3]=2 \times 10^{-2} M$. The equilibrium constant, K_c , for the reaction

 $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500K is

(A) $5 \times 10^3 \text{mol}^{-2} \text{dm}^6$ (B) $1 \times 10^3 \text{mol}^{-2} \text{dm}^6$ (C) $5 \times 10^{-3} \text{mol}^{-2} \text{dm}^6$ (D) $2 \times 10^3 \text{mol}^{-2} \text{dm}^6$ (E) $2 \times 10^{-3} \text{mol}^{-2} \text{dm}^6$

- 101. The SI unit of molar conductivity is (A) S m³ mol⁻¹ (B) S m mol⁻¹ (C) S m mol⁻² (D) S m² mol⁻¹ (E) S m² mol⁻²
- 102. Which of the following is an example of disproportionation redox reaction? (A) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ (B) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ (C) $2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$ (D) $NaH(s) + H_2O(l) \rightarrow NaOH(aq) + H_2(g)$ (E) $2NO_2(g) + 2OH^- \rightarrow NO_2^- (aq) + NO_3^- (aq) + H_2O(l)$
- 103. A scientist wants to perform an experiment in aqueous solution in a hill station where the boiling point of water is 98.98°C. How much urea (mol.wt 60 g mol⁻¹) is to be added by him to 2 kg of water to get the boiling point 100°C at the same place? (K_b of water = 0.51K kg mol⁻¹)
 (A) 60 g (B) 120 g (C) 180 g (D) 240 g (E) 1.02 g
- 104. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non-volatile, non-electrolyte solid weighing 1.0 g when added to 39.0 g of benzene (molar mass 78 g mol⁻¹), vapour pressure of the solution is reduced to 0.845 bar. What is the molar mass of the solid substance?

(A) 340 g mol^{-1}	(B) 170 g mol ^{-1}	(C) 240 g mol ^{-1}
(D) 270 g mol ⁻¹	(E) 370 g mol^{-1}	

- 105. For the reaction $2P + Q \rightleftharpoons P_2Q$, the rate of formation of P_2Q is 0.24 mol dm⁻³s⁻¹. Then the rates of disappearance of P and Q respectively are
 - (A) $0.48 \text{ mol } \text{dm}^{-3}\text{s}^{-1} \text{ and } 0.48 \text{ mol } \text{dm}^{-3}\text{s}^{-1}$
 - (B) $0.24 \text{ mol } \text{dm}^{-3}\text{s}^{-1} \text{ and } 0.48 \text{ mol } \text{dm}^{-3}\text{s}^{-1}$
 - $(C) 0.48 \text{ mol } dm^{-3}s^{-1} \text{ and } 0.24 \text{ mol } dm^{-3}s^{-1}$
 - (D) $-0.12 \text{ mol } dm^{-3}s^{-1}$ and $-0.24 \text{ mol } dm^{-3}s^{-1}$
 - (E) $-0.24 \text{ mol } dm^{-3}s^{-1}$ and $-0.12 \text{ mol } dm^{-3}s^{-1}$
- 106. Choose the correct set of reactions which follow first order kinetics:
 - (i) Thermal decomposition of HI on gold surface.
 - (ii) Thermal decomposition of $N_2O_5(g)$ at constant volume.
 - (iii) Hydrogenation of ethene.
 - (iv) Decomposition of NH3 on a hot Pt surface.

(v) Thermal decomposition of $SO_2Cl_2(g)$ at constant volume.

(A) i, ii, iii (B) i, iii, iv (C) i, iv, v (D) ii, iv, v (E) ii, iii, v

- 107. Which one of the following is true?
 - (A) Chemisorption is not specific in nature
 - (B) Physisorption is irreversible
 - (C) Both physisorption and chemisorption depend on the nature of the gas
 - (D) Enthalpy of adsorption is high in physisorption
 - (E) Chemisorption increases with surface area of adsorbent while in physisorption it is not

Space for rough work

108.	When zinc metal	is reacted	with	aqueous	sodium	hydroxide,	the products	formed are
------	-----------------	------------	------	---------	--------	------------	--------------	------------

(A) zinc hydroxide and oxygen only

(B) sodium zincate and oxygen only

- (C) sodium zincate, hydrogen and oxygen
- (D) sodium zincate and hydrogen only
- (E) sodium zincate and hydrogen oxide only

'Syngas' produced from sewage is a gaseous mixture of 109.

- (A) CH₄ and C₂H₆
- (D) CS₂ and CO

(B) CO and H_2 (E) CS₂ and CH₄ (C) CO and CH₄

Choose the correct choice containing true statements regarding PCl₅. 110.

(i) PCl₅ is prepared by the reaction of white phosphorus with excess of dry chlorine.

- (ii) The complete hydrolysis of PCl₅ gives phosphoric acid.
- (iii) PC15 has square pyramidal structure in gaseous phase.
- (iv) All the five bonds in PCl5 molecule are equivalent.
- (A) ii and iii (B) i and iii (C) iii and iv (D) ii and iv

(E) i and ii

111. Match the substances and their uses.

- Silicones a) (i) Cracking of hydrocarbons
- b) Zeolites (ii) Light composite material for aircraft
- c) Quartz (iii) Flux for soldering metals
- d) Borax (iv) Waterproofing of fabrics
- e) Boron fibres (v) Piezoelectric material
- (A) a)-(iv); b)-(ii); c)-(i); d)-(v); e)-(iii)
- (B) a)-(i); b)-(ii); c)-(iv); d)-(iii); e)-(v)
- (C) a)-(iv); b)-(i); c)-(iii); d)-(ii); e)-(v)
- (D) a)-(iii); b)-(ii); c)-(i); d)-(iv); \underline{e})-(v)
- (E) a)-(iv); b)-(i); c)-(v); d)-(iii); e)-(ii)

- 112. Choose the wrong statement in the following with regard to orthoboric acid:
 - (A) It can be prepared by the hydrolysis of boron trihalide
 - (B) It is not a protonic acid but acts as a Lewis acid

(C) It has a layer structure

(D) It is freely soluble in cold water

(E) On heating above 370K it forms first metaboric acid which on further heating yields B₂O₃

113. The magnetic moment of a trivalent ion of a metal with Z = 24 in aqueous solution is (A) 3.87 BM (B) 2.84 BM (C) 1.73 BM (D) 4.90 BM (E) 5.92 BM

- 114.In the first row transition metals, the element that exhibits only +3 oxidation state is(A) zinc(B) scandium(C) nickel(D) titanium(E) iron
- 115. The metal that has the highest melting point in the first series of transition elements is (A) titanium (B) vanadium (C) chromium (D) iron (E) manganese
- **116.** In which one of the following complexes, the conductivity corresponds to 1:2 electrolyte in aqueous solution?
 - (A) Hexaamminecobalt(III) chloride
 - (B) Tetraamminedichlorocobalt(III) chloride
 - (C) Pentaamminechlorocobalt(III) chloride
 - (D) Triamminetriaquachromium(III) chloride
 - (E) Diamminesilver(I) dicyanoargentate(I)

Space for rough work

117.	The complex ion formed when th is washed with hypo solution is	e film developed in black and white photography
	(A) $[Ag_2(S_2O_3)_2]^{3^-}$	(B) $[Ag(S_2O_3)_2]^{3^-}$ (C) $[Ag(S_2O_3)_2]^{3^+}$
	(D) $[Ag_2(S_2O_3)_2]^{3^+}$	(E) $[Ag(S_2O_3)_3]^{3^-}$
118.	Which one of the following is an o	re of aluminium?
	(A) Kaolinite (B) Siderite	(C) Malachite (D) Calamine (E) Haematite
119.	In the estimation of nitrogen pres cannot be applied to	ent in an organic compound, Kjeldahl's method
	(A) aniline (B) toluidine	(C) urea (D) pyridine (E) benzylamine
120.	Among the following, the alkene th	at exhibits optical isomerism is
	(A) 3-methyl-2-pentene (B) 4-	-methyl-1-pentene (C) 3-methyl-1-pentene
110-14	(D) 2–methyl–2–pentene (E) 2,	3-dimethyl-2-butene

KEAM 2021 PAPER - I PHYSICS & CHEMISTRY ANSWER KEY

QUESTION NO.	OPTION
1	С
2	E
3	В
4	A
5	В
6	A
7	A
8	D
9	A
10	С
11	E
12	В
13	D
14	А
15	В
16	С
17	В
18	В
19	В
20	E
21	D
22	E
23	С
24	D

25	В
26	A
27	E
28	В
29	E
30	D
31	D
32	E
33	В
34	A
35	E
36	С
37	E
38	В
39	A
40	A
41	С
42	В
43	С
44	A
45	D
46	A
47	D
48	С
49	В
50	В
51	С
	k

B C D B E
D B E
B
E
0
С
С
D
E
E
С
С
D
А
В
А
В
А
D
E
А
D
А
С
C B
•

В
A
С
А
В
С
D
А
В
А
В
В
E
А
В
E
С
E
E
С
D
Α
D
E
D
Α
С
· · · · · · · · · · · · · · · · · · ·

106	E
107	С
108	D
109	В
110	E
111	E
112	D
113	A
114	В
115	C
116	C
117	В
118	A
119	D
120	C