# **4.4 Increasing and Decreasing Function**

# 4.4.1 Definition

(1) **Strictly increasing function :** A function f(x) is said to be a strictly increasing function on (a, b), if  $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$  for all  $x_1$ ,  $x_2 \in (a, b)$ .

Thus, f(x) is strictly increasing on (*a*, *b*), if the values of f(x) increase with the increase in the values of *x*.

(2)**Strictly decreasing function :** A function f(x) is said to be a strictly decreasing function on (a,b), if  $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$  for all

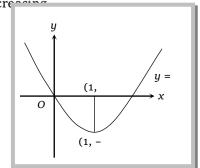
 $x_1, x_2 \in (a, b)$ . Thus, f(x) is strictly decreasing on (a, b), if the values of f(x) decrease with the increase in the values of x.

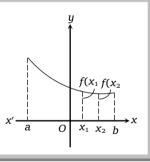
**Example: 1** On the interval (1,3) the function 
$$f(x) = 3x + \frac{2}{x}$$
 is [AMU 1999]  
(a) Strictly decreasing (b) Strictly increasing (c) Decreasing in (2, 3) only (d) Neither increasing nor decreasing  
**Solution:** (b)  $f(x) = 3x + \frac{2}{x} \Rightarrow f'(x) = 3 - \frac{2}{x^2}$   
Clearly  $f'(x) > 0$  on the interval (1, 3)  
 $\therefore f(x)$  is strictly increasing.

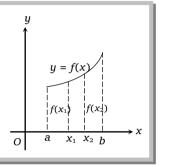
**Example: 2** For which value of *x*, the function  $f(x) = x^2 - 2x$  is decreasing

(a) x > 1 (b) x > 2(c) x < 1 (d) x < 2

**Solution:** (c)  $f(x) = (x-1)^2 - 1$ Hence decreasing in x < 1







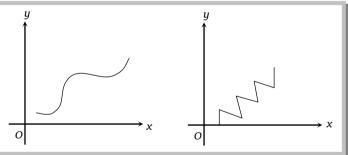
**Alternative method:** f'(x) = 2x - 2 = 2(x - 1)To be decreasing,  $2(x-1) < 0 \implies (x-1) < 0 \implies x < 1$ .  $2x^{3} + 18x^{2} - 96x + 45 = 0$  is an increasing function when Example: 3 (b)  $x < -2, x \ge 8$ (c)  $x \le -2, x \ge 8$ (a)  $x \le -8, x \ge 2$ (d)  $0 < x \le -2$  $f'(x) = 6x^2 + 36x - 96 > 0$ , for increasing Solution: (a)  $\Rightarrow f'(x) = 6(x+8)(x-2) \ge 0 \Rightarrow x \ge 2, x \le -8.$ Example: 4 The function  $x^x$  is increasing, when [MP PET 2003] (a)  $x > \frac{1}{a}$  (b)  $x < \frac{1}{a}$ (c) x < 0(d) For all real x **Solution:** (a) Let  $y = x^x \Rightarrow \frac{dy}{dx} = x^x(1 + \log x)$ ; For  $\frac{dy}{dx} > 0$  $x^{x}(1 + \log x) > 0 \implies 1 + \log x > 0 \implies \log_{e} x > \log_{e} \frac{1}{e}$ For this to be positive, x should be greater than  $\frac{1}{a}$ .

# **4.4.2 Monotonic Function**

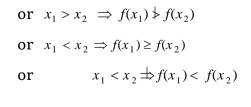
A function f(x) is said to be monotonic on an interval (a, b) if it is either increasing or decreasing on (a, b).

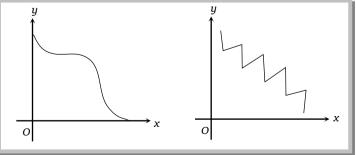
(1) **Monotonic increasing function :** A function is said to be a monotonic increasing function in defined interval if, u

 $x_1 > x_2 \implies f(x_1) \ge f(x_2)$ or  $x_1 > x_2 \Longrightarrow f(x_1) \le f(x_2)$ or  $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$ or  $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$ 



(2) **Monotonic decreasing function:** A function is said to be a monotonic decreasing function in defined interval, if  $x_1 > x_2 \Rightarrow f(x_1)$  *y y* 





**Example: 5** The function  $f(x) = \cos x - 2px$  is monotonically decreasing for

[MP PET 2002]

(a) 
$$p < \frac{1}{2}$$
 (b)  $p > \frac{1}{2}$  (c)  $p < 2$  (d)  $p > 2$   
Solution: (b)  $f(x)$  will be monotonically decreasing, if  $f'(x) < 0$ .  
 $\Rightarrow f'(x) = -\sin x - 2p < 0 \Rightarrow \frac{1}{2}\sin x + p > 0 \Rightarrow p > \frac{1}{2}$  [:  $-1 \le \sin x \le 1$ ]  
Example: 6 If  $f(x) = x^5 - 20x^3 + 240x$ , then  $f(x)$  satisfies which of the following [Kurukshetra CEE 1996]  
(a) It is monotonically decreasing everywhere (b) It is monotonically decreasing only in  $(0,\infty)$   
(c) It is monotonically increasing everywhere (d) It is monotonically increasing only in  $(-\infty, 0)$   
Solution: (c)  $f'(x) = 5x^4 - 60x^2 + 240 = 5(x^4 - 12x^2 + 48) = 5[(x^2 - 6)^2 + 12]$   
 $\Rightarrow f'(x) > 0 \lor x \in R$   
i.e.,  $f(x)$  is monotonically increasing everywhere.  
Example: 7 The value of a for which the function  $(a + 2)x^3 - 3ax^2 + 9ax - 1$  decrease monotonically throughout for all real x, are  
[Kurukshetra CEE 2002]  
(a)  $a < -2$  (b)  $a > -2$  (c)  $-3 < a < 0$  (d)  $-\infty < a \le -3$   
Solution: (d) If  $f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1$  decreases monotonically throughout for all  $x \in R$   
 $\Rightarrow 3(a + 2)x^2 - 6ax + 9a \le 0$  for all  $x \in R \Rightarrow (a + 2)x^2 - 2ax + 3a \le 0$  for all  $x \in R$   
 $\Rightarrow a + 2 < 0$  and discriminant  $\le 0$   $\Rightarrow a < -2$  and  $-8a^2 - 24a \le 0$   
 $\Rightarrow a < -2$  and  $a(a + 3) \ge 0 \Rightarrow a < -2$  and  $a \le -3 \Rightarrow -\infty < a \le -3$   
Example: 8 Function  $f(x) = \frac{\lambda \sin x + 6 \cos x}{2 \sin x + 3 \cos x}$  is monotonic increasing if  
(a)  $\lambda > 1$  (b)  $\lambda < 1$  (c)  $\lambda < 4$  (d)  $\lambda > 4$   
Solution: (d) The function is monotonic increasing if,  $f(x) > 0$   
 $\Rightarrow \frac{(2\sin x + 3\cos x)^2}{(2\sin x + 3\cos x)^2} - \frac{(4\sin x + 6\cos x)(2\cos x - 3\sin x)}{(2\sin x + 3\cos x)^2} > 0$   
 $\Rightarrow 3\lambda(\sin^2 x + \cos^2 x) - 12(\sin^2 x + \cos^2 x) > 0 \Rightarrow 3\lambda - 12 > 0 \Rightarrow \lambda > 4$ .

# 4.4.3 Necessary and Sufficient Condition for Monotonic Function

In this section we intend to see how we can use derivative of a function to determine where it is increasing and where it is decreasing

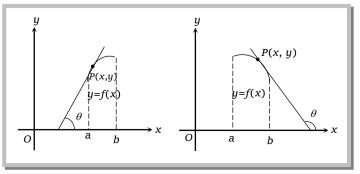
(1) **Necessary condition :** From figure we observe that if f(x) is an increasing function on (*a*,

*b*), then tangent at every point on the curve y = f(x) makes an acute angle  $\theta$  with the positive direction of *x*-axis.

$$\therefore \quad \tan \theta > 0 \Rightarrow \frac{dy}{dx} > 0 \text{ or } f'(x) > 0 \quad \text{for all}$$

 $x \in (a, \ b)$ 

It is evident from figure that if f(x) is a



decreasing function on (*a*, *b*), then tangent at every point on the curve y = f(x) makes an obtuse angle  $\theta$  with the positive direction of *x*-axis.

$$\therefore \quad \tan \theta < 0 \Rightarrow \frac{dy}{dx} < 0 \text{ or } f'(x) < 0 \text{ for all } x \in (a, b).$$

Thus, f'(x) > 0 < 0 for all  $x \in (a, b)$  is the necessary condition for a function f(x) to be increasing (decreasing) on a given interval (a, b). In other words, if it is given that f(x) is increasing (decreasing) on (a, b), then we can say that f'(x) > 0 < 0.

(2) **Sufficient condition : Theorem :** Let *f* be a differentiable real function defined on an open interval (*a*, *b*).

(a) If f'(x) > 0 for all  $x \in (a, b)$ , then f(x) is increasing on (a, b).

(b) If f'(x) < 0 for all  $x \in (a, b)$ , then f(x) is decreasing on (a, b).

**Corollary :** Let f(x) be a function defined on (a, b).

(a) If f'(x) > 0 for all  $x \in (a, b)$ , except for a finite number of points, where f'(x) = 0, then f(x) is increasing on (a, b).

(b) If f'(x) < 0 for all  $x \in (a, b)$ , except for a finite number of points, where f'(x) = 0, then f(x) is decreasing on (a, b).

Example: 9 The function 
$$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$$
 is  
(a) Increasing on  $[0, \infty)$  (b) Decreasing on  $[0, \infty)$   
(c) Decreasing on  $\left[0, \frac{\pi}{e}\right]$  and increasing on  $\left[\frac{\pi}{e}, \infty\right]$  (d) Increasing on  $\left[0, \frac{\pi}{e}\right]$  and  
decreasing on  $\left[\frac{\pi}{e}, \infty\right]$   
Solution: (b) Let  $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$   
 $\therefore f'(x) = \frac{\ln(e + x) \times \frac{1}{\pi + x} - \ln(\pi + x) \frac{1}{e + x}}{(\ln(e + x))^2} = \frac{(e + x)\ln(e + x) - (\pi + x)\ln(\pi + x)}{(\ln(e + x))^2 \times (e + x)(\pi + x)}$   
 $\Rightarrow f'(x) < 0$  for all  $x \ge 0$  {::  $\pi > e$ }. Hence,  $f(x)$  is decreasing in  $[0, \infty)$ .  
Example: 10 Which of the following is not a decreasing function on the interval  $\left(0, \frac{\pi}{2}\right)$   
(a)  $\cos x$  (b)  $\cos 2x$  (c)  $\cos 3x$  (d)  $\cot x$   
Solution: (c) Obviously, here  $\cos 3x$  in not decreasing in  $\left(0, \frac{\pi}{2}\right)$  because  $\frac{d}{dx} \cos 3x = -3 \sin 3x$ .  
But at  $x = 75^{\circ}$ ,  $-3 \sin 3x > 0$ . Hence the result.  
Example: 11 The interval of increase of the function  $f(x) = x - e^x + \tan\left(\frac{2\pi}{7}\right)$  is  
(a)  $(0, \infty)$  (b)  $(-\infty, 0)$  (c)  $(1, \infty)$  (d)  $(-\infty, -1)$ 

[IIT Screening 2001]

**Solution:** (b, d) We have  $f(x) = x - e^x + \tan\left(\frac{2\pi}{7}\right) \Rightarrow f'(x) = 1 - e^x$ 

For f(x) to be increasing, we must have  $f'(x) > 0 \Rightarrow 1 - e^x > 0 \Rightarrow e^x < 1 \Rightarrow x < 0 \Rightarrow x \in (-\infty, 0) \Rightarrow (-\infty, -1) \subseteq (-\infty, 0)$ 

#### **4.4.4 Test for Monotonicity**

(1) At a point : (i) Function f(x) will be monotonic increasing in domain at a point if and only if, f'(a) > 0

(ii) Function f(x) will be monotonic decreasing in domain at a point if and only if, f'(a) < 0.

(2) In an interval : Function *f* (*x*), defined in [*a*, *b*] is

(i) Monotonic increasing in (a, b) if,  $f'(x) \ge 0$ , a < x < b

(ii) Monotonic increasing in [a, b] if,  $f'(x) \ge 0$ ,  $a \le x \le b$ 

(iii) Strictly increasing in [a, b], if, f'(x) > 0,  $a \le x \le b$ 

(iv) Monotonic decreasing in (a, b), if,  $f'(x) \le 0$ , a < x < b

(v) Monotonic decreasing in [a, b], if,  $f'(x) \le 0$ ,  $a \le x \le b$ 

(vi) Strictly decreasing in [a, b], if, f'(x) < 0,  $a \le x \le b$ 

**Example: 12**  $f(x) = xe^{x(1-x)}$  then f(x) is

(a) Increasing on  $\left[\frac{-1}{2}, 1\right]$  (b) Decreasing on R (c) Increasing on R (d) Decreasing on  $\left[\frac{-1}{2}, 1\right]$ 

**Solution:** (a)  $f'(x) = e^{x(1-x)} + x \cdot e^{x(1-x)} \cdot (1-2x) = e^{x(1-x)} \{1 + x(1-2x)\} = e^{x(1-x)} \cdot (-2x^2 + x + 1)$ 

Now by the sign-scheme for  $-2x^2 + x + 1$ 

| _     | + | _        |
|-------|---|----------|
|       |   | $\vdash$ |
| - 1/2 |   | 1        |

 $f'(x) \ge 0$ , if  $x \in \left[-\frac{1}{2}, 1\right]$ , because  $e^{x(1-x)}$  is always positive. So, f(x) is increasing on  $\left[-\frac{1}{2}, 1\right]$ .

**Example: 13** *x* tends 0 to  $\pi$  then the given function  $f(x) = x \sin x + \cos^2 x$  is

(a) Increasing(b) Decreasing(c) Neither increasing nor decreasing(d) None of these

**Solution:** (b)  $f(x) = x \sin x + \cos^2 x$ 

 $\therefore f'(x) = \sin x + x \cos x - \sin x - 2 \cos x \sin x = \cos x (x - 2 \sin x)$ 

Hence  $x \to 0$  to  $\pi$ , then  $f'(x) \le 0$ , *i.e.*, f(x) is decreasing function.

### **4.4.5 Properties of Monotonic Function**

(1) If f(x) is strictly increasing function on an interval [*a*, *b*], then  $f^{-1}$  exists and it is also a strictly increasing function.

(2) If f(x) is strictly increasing function on an interval [*a*, *b*] such that it is continuous, then  $f^{-1}$  is continuous on [f(a), f(b)]

(3) If f(x) is continuous on [a, b] such that  $f'(c) \ge 0(f'(c) > 0)$  for each  $c \in (a,b)$ , then f(x) is monotonically (strictly) increasing function on [a, b].

(4) If f(x) is continuous on [a, b] such that  $f'(c) \le 0(f'(c) < 0)$  for each  $c \in (a,b)$ , then f(x) is monotonically (strictly) decreasing function on [a, b]

(5) If f(x) and g(x) are monotonically (or strictly) increasing (or decreasing) functions on [*a*, *b*], then gof(x) is a monotonically (or strictly) increasing function on [*a*, *b*]

(6) If one of the two functions f(x) and g(x) is strictly (or monotonically) increasing and other a strictly (monotonically) decreasing, then gof(x) is strictly (monotonically) decreasing on [a, b].

**Example: 14** The interval in which the function  $x^2 e^{-x}$  is non decreasing, is

(a)  $(-\infty, 2]$  (b) [0, 2] (c)  $[2, \infty)$  (d) None of these

**Solution:** (b) Let  $f(x) = x^2 e^{-x}$ 

$$\Rightarrow \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = e^{-x}(2x - x^2)$$

Hence  $f'(x) \ge 0$  for every  $x \in [0, 2]$ , therefore it is non-decreasing in [0, 2].

**Example: 15** The function  $\sin^4 x + \cos^4 x$  increase if

(a) 
$$0 < x < \frac{\pi}{8}$$
 (b)  $\frac{\pi}{4} < x < \frac{3\pi}{8}$  (c)  $\frac{3\pi}{8} < x < \frac{5\pi}{8}$  (d)  $\frac{5\pi}{8} < x < \frac{3\pi}{4}$ 

**Solution:** (b)  $f(x) = \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$ 

$$= 1 - \frac{4\sin^2 x \cos^2 x}{2} = 1 - \frac{\sin^2 2x}{2} = 1 - \frac{1}{4}(2\sin^2 2x)$$
$$= 1 - \left(\frac{1 - \cos 4x}{4}\right) = \frac{3}{4} + \frac{1}{4}\cos 4x$$

Hence function f(x) is increasing when f'(x) > 0

$$f'(x) = -\sin 4x > 0 \implies \sin 4x < 0$$

Hence  $\pi < 4x < \frac{3\pi}{2}$  or  $\frac{\pi}{4} < x < \frac{3\pi}{8}$ .

[IIT 1999]



Increasing and Decreasing Function

# Basic Level

The function  $x + \frac{1}{x}$  (  $x \neq 0$  ) is a non-increasing function in the interval 1. (a) [-1, 1] (b) [0, 1] (c) [-1,0] (d) [-1, 2] The interval for which the given function  $f(x) = 2x^3 - 3x^2 - 36x + 7$  is decreasing, is 2. (a) (- 2, 3) (b) (2, 3) (c) (2, -3) (d) None of these If  $f(x) = \sin x - \frac{x}{2}$  is increasing function, then [MP PET 1987] 3. (b)  $-\frac{\pi}{3} < x < 0$  (c)  $-\frac{\pi}{3} < x < \frac{\pi}{3}$  (d)  $x = \frac{\pi}{2}$ (a)  $0 < x < \frac{\pi}{3}$ 4. If the function  $f: R \to R$  be defined by  $f(x) = \tan x - x$ , then f(x)(c) Remains constant (d) Becomes zero (a) Increases (b) Decreases

| 5۰  | $2x^3 - 6x + 5$ is an incre                              | asing function if                                      |                               | [UPSEAT 2003]                          |
|-----|----------------------------------------------------------|--------------------------------------------------------|-------------------------------|----------------------------------------|
|     | (a) $0 < x < 1$                                          | (b) $-1 < x < 1$                                       | (c) $x < -1$ or $x > 1$       | (d) $-1 < x < -1/2$                    |
| 6.  | The function $f(x) = 1 - x$                              | $x^3 - x^5$ is decreasing for                          |                               | [Kerala (Engg.) 2002]                  |
|     | (a) $1 \le x \le 5$                                      | (b) $x \le 1$                                          | (c) $x \ge 1$                 | (d) All values of <i>x</i>             |
| 7.  | For which interval, th                                   | e given function $f(x) = -2x^3 - 9x^2$                 | $x^2 - 12x + 1$ is decreasing | [MP PET 1993]                          |
|     | (a) (−2,∞)                                               | <b>(b)</b> (-2,-1)                                     | (c) (−∞,−1)                   | (d) $(-\infty, -2)$ and $(-1, \infty)$ |
| 8.  | The function $f(x) = \tan x$                             | x - x                                                  |                               | [MNR 1995]                             |
|     | (a) Always increases                                     |                                                        | (b) Always decreases          |                                        |
|     | (c) Never decreases                                      |                                                        | (d) Sometimes increase        | es and sometimes decreases             |
| 9.  | If $f(x) = kx^3 - 9x^2 + 9x +$<br>Kurukshetra CEE 2002]  | 3 is monotonically increasing                          | ; in each interval, then      | [Rajasthan PET 1992;                   |
|     | (a) <i>k</i> < 3                                         | (b) $k \le 3$                                          | (c) $k > 3$                   | (d) None of these                      |
| 10. | The least value of <i>k</i> fo                           | r which the function $x^2 + kx + 1$                    | is an increasing function in  | the interval $1 < x < 2$ is            |
|     | (a) - 4                                                  | (b) - 3                                                | (c) - 1                       | (d) - 2                                |
| 11. | The function $f(x) = x + \frac{1}{2}$                    | $\cos x$ is                                            |                               |                                        |
|     | (a) Always increasing                                    |                                                        | (b) Always decreasing         |                                        |
|     | (c) Increasing for cer                                   | tain range of x                                        | (d)                           | None of these                          |
| 12. | The function $f(x) = x^2$                                | is increasing in the interval                          |                               |                                        |
|     | (a) (-1,1)                                               | <b>(b)</b> (−∞,∞)                                      | (C) (0,∞)                     | (d) (-∞,0)                             |
| 13. | Function $f(x) = x^4 - \frac{x^3}{3}$                    | is                                                     |                               |                                        |
|     | (a) Increasing for <i>x</i> >                            | $\frac{1}{4}$ and decreasing for $x < \frac{1}{4}$     | (b) Increasing for ever       | y value of <i>x</i>                    |
|     | (c) Decreasing for eve                                   | ery value of <i>x</i>                                  | (d)                           | None of these                          |
| 14. | The function $y = 2x^3 - 2x^3$<br>PET 1994; Rajasthan PE | $9x^2 + 12x - 6$ is monotonic decre<br><b>T 1996</b> ] | asing when                    | [MP                                    |
|     | (a) $1 < x < 2$                                          | (b) $x > 2$                                            | (c) <i>x</i> < 1              | (d) None of these                      |
| 15. | The interval in which                                    | the $x^2 e^{-x}$ is non-decreasing, is                 |                               |                                        |
|     | (a) (-∞,2]                                               | (b) [0, 2]                                             | (c) [2,∞)                     | (d) None of these                      |
| 16. | The function $\frac{1}{1+x^2}$ is                        | decreasing in the interval                             |                               |                                        |
|     | (a) (-∞,-1]                                              | (b) (-∞,0]                                             | <b>(c)</b> [1,∞)              | (d) (0,∞)                              |
| 17. | The function $\sin x - bx$                               | +c will be increasing in the int                       | erval $(-\infty,\infty)$ if   |                                        |
|     | (a) <i>b</i> ≤1                                          | (b) $b \le 0$                                          | (c) <i>b</i> < -1             | (d) $b \ge 0$                          |
| 18. | In the interval [0, 1],                                  | the function $x^2 - x + 1$ is                          |                               |                                        |
|     | (a) Increasing                                           |                                                        | (b) Decreasing                |                                        |
|     |                                                          |                                                        |                               |                                        |

(c) Neither increasing nor decreasing (d) None of these  $f(x) = x^3 - 27x + 5$  is an increasing function, when 19. [MP PET 1995] (a) x < -3(b) |x| > 3(c)  $x \le -3$ (d) |x| < 3For the every value of x the function  $f(x) = \frac{1}{5^x}$  is 20. (a) Decreasing (b) Increasing (c) Neither increasing nor decreasing (d) Increasing for x > 0 and decreasing for x < 0In which interval is the given function  $f(x) = 2x^3 - 15x^2 + 36x + 1$  is monotonically decreasing 21. (a) [2, 3] (b) (2, 3) (c) (-∞,2) (d) (3,∞) The interval of the decreasing function  $f(x) = x^3 - x^2 - x - 4$  is 22. (a)  $\left(\frac{1}{3}, 1\right)$ (b)  $\left(-\frac{1}{3},1\right)$ (c)  $\left(-\frac{1}{3},\frac{1}{3}\right)$ (d)  $\left(-1, -\frac{1}{3}\right)$ Let  $f(x) = x^3 + bx^2 + cx + d, 0 < b^2 < c$ . Then f 23. [IIT JEE Screening 2004] (b) Has a local maxima (a) Is bounded (c) Has a local minima (d) Is strictly increasing The function  $f(x) = x^3 - 3x^2 - 24x + 5$  is an increasing function in the interval given below 24. (c) (-2,4) (a)  $(-\infty, -2) \cup (4, \infty)$ (b) (−2,∞) (d) (-∞,4) Which one is the correct statement about the function  $f(x) = \sin 2x$ 25. (a) f(x) is increasing in  $\left(0, \frac{\pi}{2}\right)$  and decreasing in  $\left(\frac{\pi}{2}, \pi\right)$ (b) f(x) is decreasing in  $\left(0, \frac{\pi}{2}\right)$  and increasing in  $\left(\frac{\pi}{2}, \pi\right)$ (c) f(x) is increasing in  $\left(0, \frac{\pi}{4}\right)$  and decreasing in  $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (d) The statement (a), (b) and (c) are all correct If  $f(x) = x^3 - 10x^2 + 200x - 10$ , then 26. [Kurukshetra CEE 1998] (a) f(x) is decreasing in  $\left[-\infty, 10\right]$  and increasing in  $\left[10, \infty\right]$  (b) f(x) is increasing in  $\left[-\infty, 10\right]$  and decreasing in [10,∞[ (c) f(x) is increasing throughout real line (d) f(x) is decreasing throughout real line If *f* is a strictly increasing function, then  $\lim_{x\to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)}$  is equal to 27. (a) 0 (b) 1 (c) - 1 (d) 2 Function  $x^3 - 6x^2 + 9x + 1$  is monotonic decreasing when 28. [Rajasthan PET 1991] (a) 1 < x < 3(c) *x* > 1 (b) x < 3(d) x > 3 or x < 1The function  $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$  is decreasing in the interval 29. (b) x > 2(c) -3 < x < 2(a) x < -3(d) None of these

Application of Derivatives 227

| 220         | inpplication of Derivativ                                      | 65                                              |                                                                   |                                 |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| 30.         | The function $f(x) = 2\log(x - x)$                             | 2) – $x^2$ + 4 $x$ + 1 increases in the         | interval                                                          |                                 |  |  |  |  |  |  |
|             | (a) (1, 2)                                                     | (b) (2, 3)                                      | (C) (−∞,−1)                                                       | (d) (2, 4)                      |  |  |  |  |  |  |
| 31.         | The function $f(x) = \frac{ x }{x} (x \neq x)$                 | 0), $x > 0$ is                                  |                                                                   |                                 |  |  |  |  |  |  |
|             | (a) Monotonically decreas                                      | ing (b)                                         | Monotonically increasing                                          | (c) Constant function (d)       |  |  |  |  |  |  |
| 32.         | In the following decreasin                                     | g function is                                   |                                                                   |                                 |  |  |  |  |  |  |
|             | (a) ln <i>x</i>                                                | (b) $\frac{1}{ x }$                             | (c) $e^{1/x}$                                                     | (d) None of these               |  |  |  |  |  |  |
| 33.         | If $f(x) = kx - \sin x$ is monoto                              | onically increasing, then                       |                                                                   |                                 |  |  |  |  |  |  |
|             | (a) <i>k</i> > 1                                               | (b) $k > -1$                                    | (c) <i>k</i> <1                                                   | (d) $k < -1$                    |  |  |  |  |  |  |
|             |                                                                | Advance L                                       | evel                                                              |                                 |  |  |  |  |  |  |
| 34.         | The function <i>f</i> defined by                               | $f(x) = (x+2)e^{-x}$ is                         |                                                                   | [IIT Screening 1994]            |  |  |  |  |  |  |
|             | (a) Decreasing for all <i>x</i>                                |                                                 | (b) Decreasing in $(-\infty, -1)$                                 | and increasing in $(-1,\infty)$ |  |  |  |  |  |  |
|             | (c) Increasing for all <i>x</i>                                |                                                 | (d) Decreasing in $(-1,\infty)$ and increasing in $(-\infty, -1)$ |                                 |  |  |  |  |  |  |
| 35∙         | The value of $a$ in order th                                   | at $f(x) = \sqrt{3} \sin x - \cos x - 2ax + $   | 2ax + b decreases for all real values of x, is given by           |                                 |  |  |  |  |  |  |
|             | (a) <i>a</i> < 1                                               | (b) $a \ge 1$                                   | (c) $a \ge \sqrt{2}$ (d) $a < \sqrt{2}$                           |                                 |  |  |  |  |  |  |
| 36.         | The interval in which the                                      | function $x^3$ increases less rap               | bidly then $6x^2 + 15x + 5$ , is                                  |                                 |  |  |  |  |  |  |
|             | (a) $(-\infty, -1)$                                            | (b) (-5,1)                                      | (c) (-1,5)                                                        | <b>(d)</b> (5,∞)                |  |  |  |  |  |  |
| 37.         | Let $f(x) = \int e^{x} (x-1)(x-2) dx$                          | . Then $f$ decreases in the inter               | val                                                               |                                 |  |  |  |  |  |  |
|             | (a) $(-\infty, -2)$                                            | (b) (-2,-1)                                     | (C) (1, 2)                                                        | (d) $(2, +\infty)$              |  |  |  |  |  |  |
| 38.         | If $f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 - 1})$              | $+x^2 - x$ ), then $f(x)$                       |                                                                   |                                 |  |  |  |  |  |  |
|             | (a) Increases in $[0,\infty)$                                  |                                                 | (b) Decreases in $[0,\infty)$                                     |                                 |  |  |  |  |  |  |
|             | (c) Neither increases nor                                      | decreases in $(0,\infty)$                       | (d) Increases in $(-\infty,\infty)$                               |                                 |  |  |  |  |  |  |
| 39.         | The function $\frac{(e^{2x}-1)}{(e^{2x}+1)}$ is                |                                                 |                                                                   | [Roorkee 1998]                  |  |  |  |  |  |  |
|             | (a) Increasing                                                 | (b) Decreasing                                  | (c) Even                                                          | (d) Odd                         |  |  |  |  |  |  |
| <b>10</b> . | The function $\frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ | is decreasing if                                |                                                                   | [Rajasthan PET 1999]            |  |  |  |  |  |  |
|             | (a) $ad - bc > 0$                                              | (b) $ad - bc < 0$                               | (c) $ab - cd > 0$                                                 | (d) $ab - cd < 0$               |  |  |  |  |  |  |
| <b>41.</b>  | If $f(x) = \sin x - \cos x$ , $0 \le x \le$                    | $2\pi$ the function decreasing in               |                                                                   | [UPSEAT 2001]                   |  |  |  |  |  |  |
|             | (a) $\left[\frac{5\pi}{6},\frac{3\pi}{4}\right]$               | (b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ | (c) $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$                 | (d) None of these               |  |  |  |  |  |  |
|             |                                                                |                                                 |                                                                   |                                 |  |  |  |  |  |  |

|             |                                                   |                                                              |                                                        | ripplication of Delivatives <b>11</b> 9 |  |  |  |  |  |  |
|-------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| 42.         | If $f(x) = \frac{1}{x+1} - \log(1+x)$             | (x), x > 0 then <i>f</i> is                                  |                                                        | [Rajasthan PET 2002]                    |  |  |  |  |  |  |
|             | (a) An increasing fur                             | nction                                                       | (b) A decreasing function                              |                                         |  |  |  |  |  |  |
|             | (c) Both increasing a                             | and decreasing function                                      | (d) None of these                                      |                                         |  |  |  |  |  |  |
| 43.         | The function $f(x) = x^1$                         | <sup>/x</sup> is                                             |                                                        | [AMU 2002]                              |  |  |  |  |  |  |
|             | (a) Increasing in (1,∝                            | 0)                                                           | (b) Decreasing in (                                    | 1,∞)                                    |  |  |  |  |  |  |
|             | (c) Increasing in (1, <i>e</i>                    | ), decreasing in $(e,\infty)$                                | (d) Decreasing in                                      | $(1,e)$ increasing in $(e,\infty)$      |  |  |  |  |  |  |
| 44.         | The length of the lon                             | gest interval, in which the funct                            | ion $3\sin x - 4\sin^3 x$ is inc                       | creasing, is                            |  |  |  |  |  |  |
|             | _                                                 |                                                              | (c) $\frac{3\pi}{2}$                                   | (d) π                                   |  |  |  |  |  |  |
|             | (a) $\frac{\pi}{3}$                               | (b) $\frac{\pi}{2}$                                          | (c) $\frac{1}{2}$                                      | (u) <i>n</i>                            |  |  |  |  |  |  |
| 45.         | The function $f(x) = 1$ -                         | $-e^{-x^2/2}$ is                                             |                                                        |                                         |  |  |  |  |  |  |
|             | (a) Decreasing for al                             | l x                                                          | (b) Increasing for a                                   | all <i>x</i>                            |  |  |  |  |  |  |
|             | (c) Decreasing for <i>x</i>                       | < 0 and increasing for $x > 0$                               | (d) Increasing for                                     | x < 0 and decreasing for $x > 0$        |  |  |  |  |  |  |
| 46.         | The function $\sin x - \cos x$                    | sx is increasing in the interval                             |                                                        |                                         |  |  |  |  |  |  |
|             | (a) $\left[\frac{3\pi}{4}, \frac{7\pi}{4}\right]$ | (b) $\left[0,\frac{3\pi}{4}\right]$                          | (c) $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$       | (d) None of these                       |  |  |  |  |  |  |
| 47.         | On the interval $\left(0, \frac{\pi}{2}\right)$   | , the function $\log \sin x$ is                              |                                                        |                                         |  |  |  |  |  |  |
|             | (a) Increasing                                    |                                                              | (b) Decreasing                                         |                                         |  |  |  |  |  |  |
|             | (c) Neither increasir                             | ng nor decreasing                                            | (d) None of these                                      |                                         |  |  |  |  |  |  |
| 48.         | For all real values of                            | <i>x</i> , increasing function $f(x)$ is                     |                                                        | [MP PET 1996]                           |  |  |  |  |  |  |
|             | (a) $x^{-1}$                                      | (b) $x^2$                                                    | (c) $x^{3}$                                            | (d) $x^4$                               |  |  |  |  |  |  |
| <b>49</b> . | The function which is                             | s neither decreasing nor increas                             | ing in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ is |                                         |  |  |  |  |  |  |
|             | (a) <i>c</i> osec <i>x</i>                        | (b) tan <i>x</i>                                             | (c) $x^2$                                              | (d) $ x-1 $                             |  |  |  |  |  |  |
| 50.         | For every value of <i>x</i> ,                     | function $f(x) = e^x$ is                                     |                                                        |                                         |  |  |  |  |  |  |
|             | (a) Decreasing                                    |                                                              | (b) Increasing                                         |                                         |  |  |  |  |  |  |
|             | (c) Neither increasir                             | ng nor decreasing                                            | (d) None of these                                      |                                         |  |  |  |  |  |  |
| 51.         | Consider the following                            | ng statements S and R                                        |                                                        |                                         |  |  |  |  |  |  |
|             | $S$ : Both $\sin x$ and $\cos x$                  | $x$ are decreasing functions in $\left( \frac{1}{2} \right)$ | $\left(\frac{\pi}{2},\pi\right)$                       |                                         |  |  |  |  |  |  |
|             | <i>R</i> : If a differentiable                    | e function decreases in (a, b) the                           | en its derivative also de                              | crease in ( <i>a</i> , <i>b</i> )       |  |  |  |  |  |  |
|             | Which of the following                            | ng is true                                                   |                                                        |                                         |  |  |  |  |  |  |
|             | (a) Both <i>S</i> and <i>R</i> are                | -                                                            |                                                        |                                         |  |  |  |  |  |  |
|             |                                                   | correct but <i>R</i> is not the correct of                   | -                                                      |                                         |  |  |  |  |  |  |
|             |                                                   | R is the correct explanation for S                           | i                                                      |                                         |  |  |  |  |  |  |
|             | (d) S is correct and R                            | 15 WIOIIg                                                    |                                                        |                                         |  |  |  |  |  |  |

If f'(x) is zero in the interval (a, b) then in this interval it is 52. (a) Increasing function (b) Decreasing function (c) Only for a > 0 and b > 0 is increasing function (d) None of these The function  $\frac{x-2}{x+1}$ ,  $(x \neq -1)$  is increasing on the interval 53. (a) (−∞,0] (b)  $[0,\infty)$ (c) R (d) None of these If *f* and *g* are two decreasing functions such that *fog* exists, then *fog* 54. (a) Is an increasing function (b) Is a decreasing function (c) Is neither increasing nor decreasing (d) None of these The function  $f(x) = \cos(\pi / x)$  is increasing in the interval 55. (b)  $\left(\frac{1}{2n+1}, 2n\right)$ ,  $n \in N$  (c)  $\left(\frac{1}{2n+2}, \frac{1}{2n+1}\right)$ ,  $n \in N$  (d) None of these (a)  $(2n+1, 2n), n \in N$ The set of all values of *a* for which the function  $f(x) = \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^5 - 3x + \log 5$  decreases for all real *x* is 56. (b)  $\left[-4, \frac{3-\sqrt{21}}{2}\right] \cup (1,\infty)$  (c)  $\left(-3, 5-\frac{\sqrt{27}}{2}\right) \cup (2,\infty)$  (d)  $[1,\infty)$ (a)  $(-\infty,\infty)$ The function  $f(x) = x\sqrt{ax - x^2}, a > 0$ 57. (a) Increases on the interval  $\left(0, \frac{3a}{4}\right)$ (b) Decreases on the interval  $\left(\frac{3a}{4},a\right)$ (c) Decreases on the interval  $\left(0, \frac{3a}{4}\right)$ (d) Increases on the interval  $\left(\frac{3a}{4},a\right)$ The function  $f(x) = \frac{|x-1|}{|x|^2}$  is monotonically decreasing on 58. (a) (−2,∞) (b) (0, 1) (c) (0, 1)  $\cup (2,\infty)$ (d)  $(-\infty,\infty)$ The set of values of a for which the function  $f(x) = x^2 + ax + 1$  is an increasing function on [1, 2] is 59. (c) [−∞,−2) (a)  $(-2,\infty)$ (b)  $[-4,\infty]$ (d) (-∞,2] **60.** On which of the following intervals is the function  $x^{100} + \sin x - 1$  decreasing (a)  $\left(0,\frac{\pi}{2}\right)$ (c)  $\left(\frac{\pi}{2},\pi\right)$ (b) (0, 1) (d) None of these If a < 0 the function  $f(x) = e^{ax} + e^{-ax}$  is a monotonically decreasing function for values of x given by 61. (a) x > 0(b) x < 0(c) x > 1(d) *x* < 1  $y = [x(x-3)]^2$  increases for all values of x lying in the interval 62. (a)  $0 < x < \frac{3}{2}$ (c)  $-\infty < x < 0$ (b)  $0 < x < \infty$ (d) 1 < x < 3**63.** The function  $f(x) = \frac{\log x}{x}$  is increasing in the interval [EAMCET 1994]

|            | (a) (1,2 <i>e</i> )                                                                                                                                                                                                                                                             | (b) (0, <i>e</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) (2,2 <i>e</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) $\left(\frac{1}{e}, 2e\right)$        |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| 64.        | The value of <i>a</i> for which t                                                                                                                                                                                                                                               | the function $f(x) = \sin x - \cos x - \frac{1}{2} + $ | ax + b decreases for all real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | values of <i>x</i> , is given by          |  |  |  |  |
|            | (a) $a \ge \sqrt{2}$                                                                                                                                                                                                                                                            | (b) $a \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) $a < \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) <i>a</i> < 1                          |  |  |  |  |
| 65.        | If the function $f(x) = \cos   x$                                                                                                                                                                                                                                               | x  - 2ax + b increases along the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | entire number scale, the ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nge of values of a is given by            |  |  |  |  |
|            | (a) $a \leq b$                                                                                                                                                                                                                                                                  | (b) $a = \frac{b}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) $a \leq -\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $a \ge -\frac{3}{2}$                  |  |  |  |  |
| 66.        | If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{1}{\tan x}$                                                                                                                                                                                                                      | $\frac{x}{n x}$ , where $0 < x \le 1$ , then in the function of the transformed equation of the transformation of transformat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | his interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |  |  |  |  |
|            | (a) Both $f(x)$ and $g(x)$ are                                                                                                                                                                                                                                                  | e increasing functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) Both $f(x)$ and $g(x)$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e decreasing function                     |  |  |  |  |
|            | (c) $f(x)$ is an increasing function                                                                                                                                                                                                                                            | the function $f(x) = \sin x - \cos x - ax + b$ decreases for all real value<br>(b) $a \ge 1$ (c) $a < \sqrt{2}$ (d)<br>x  -2ax + b increases along the entire number scale, the range of<br>(b) $a = \frac{b}{2}$ (c) $a \le -\frac{1}{2}$ (d)<br>$\frac{x}{\tan x}$ , where $0 < x \le 1$ , then in this interval<br>re increasing functions (b) Both $f(x)$ and $g(x)$ are decreasing function (d) $g(x)$<br>$x^{(x)}$ , $x^{(x)}$ or every real number $x$ , then<br>hever $f$ is increasing and decreasing whenever $f$ is decreasing<br>hever $f$ is increasing and decreasing whenever $f$ is decreasing<br>hever $f$ is increasing<br>in general<br>$-1 \le x \le 2$<br>$2 < x \le 3$ then $f(x)$ is<br>(b) Continuous in $[-1, 3]$ (c) Greatest at $x = 2$ (d)<br>re $g(\lambda) \ne 0$ and $g(x)$ is continuous at $x = \lambda$ then function $f(x)$<br>at if $g(\lambda) < 0$ (d) Ince<br>$+x \int -\cos x \cos\left(\frac{\pi}{3} + x\right)$ for all real values of $x$ will be<br>(b) Constant (c) Decreasing (d)<br>and $f'(x) < 0$ whereas $0 \le x \le 1$ then function $Q(x)$ is decreasing in<br>(b) $\left[0, \frac{1}{2}\right]$ (c) $\left(\frac{1}{2}, 1\right)$ (d)<br>$\le 5$ , then $f(x)$ is increasing function in the interval<br>(b) $[0, c]$ (c) $[c, 0]$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g(x) is an increasing                     |  |  |  |  |
| 67.        | Let $h(x) = f(x) - (f(x))^2 + (f(x))^2$                                                                                                                                                                                                                                         | )) <sup>3</sup> for every real number $x$ , th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |  |  |  |  |
|            | (a) <i>h</i> is increasing whene                                                                                                                                                                                                                                                | ever <i>f</i> is increasing and decrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sing whenever <i>f</i> is decreasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng                                        |  |  |  |  |
|            | (b) <i>h</i> is increasing whene                                                                                                                                                                                                                                                | ever f is decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |  |  |  |  |
|            | (c) <i>h</i> is decreasing when                                                                                                                                                                                                                                                 | ever <i>f</i> is increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |  |  |  |  |
|            | (d) Nothing can be said in                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |  |  |  |  |
| 68.        | If $f(x) = \begin{cases} 3x^2 + 12x - 1 & , & -1 \\ 37 - x & , & 2 \end{cases}$                                                                                                                                                                                                 | $1 \le x \le 2$<br>$2 < x \le 3$ then $f(x)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [IIT 1993]                                |  |  |  |  |
|            | (a) Increasing in [-1, 2]                                                                                                                                                                                                                                                       | (b) Continuous in [-1, 3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) Greatest at $x = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) All of these                          |  |  |  |  |
| 69.        | If $f'(x) = g(x)(x - \lambda)^2$ where                                                                                                                                                                                                                                          | $g(\lambda) \neq 0$ and $g(x)$ is continuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | us at $x = \lambda$ then function $f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x)                                        |  |  |  |  |
|            | (a) Increasing near to $\lambda$<br>$g(\lambda) > 0$                                                                                                                                                                                                                            | if $g(\lambda) > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Decreasing near to $\lambda$ if           |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |  |  |  |  |
|            | (c) Increasing near to $\lambda$<br>every value of $g(\lambda)$                                                                                                                                                                                                                 | if $g(\lambda) < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Increasing near to $\lambda$ for          |  |  |  |  |
| 70.        | every value of $g(\lambda)$                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(e^{-1})$ sin x - cos x - ax + b decreases for all real values of x, is given by $(c) \ a < \sqrt{2} \qquad (d) \ a < 1$ s along the entire number scale, the range of values of a is given by $(c) \ a \le -\frac{1}{2} \qquad (d) \ a \ge -\frac{3}{2}$ l, then in this interval ons $(b) Both \ f(x) \text{ and } g(x) \text{ are decreasing function}$ $(d) \qquad g(x) \text{ is an increasing}$ umber x, then and decreasing whenever f is decreasing is $(IIT 1993)$ in [-1, 3] $(c) \text{ Greatest at } x = 2 \qquad (d) \text{ All of these}$ is continuous at $x = \lambda$ then function $f(x)$ $(b) \qquad Decreasing near to \ \lambda \text{ if}$ $(d) \qquad Increasing near to \ \lambda \text{ for}$ for all real values of x will be $(c) \text{ Decreasing in} \qquad (d) \text{ (o, 1)}$ reasing function in the interval $(c) \ [c, 0] \qquad (d) \ [c, c]$ |                                           |  |  |  |  |
| 70.        | every value of $g(\lambda)$                                                                                                                                                                                                                                                     | $x  ight) - \cos x \cos \left( \frac{\pi}{3} + x \right)$ for all real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | values of <i>x</i> will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |  |  |  |  |
| 70.<br>71. | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + (a) \text{ Increasing}\right)$                                                                                                                                                                 | $x  ightarrow -\cos x \cos \left( \frac{\pi}{3} + x  ight)$ for all real<br>(b) Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | values of <i>x</i> will be<br>(c) Decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) None of these                         |  |  |  |  |
|            | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + (a) \text{ Increasing}\right)$<br>Let $Q(x) = f(x) + f(1 - x)$ and                                                                                                                             | $x = \cos x \cos \left(\frac{\pi}{3} + x\right) \text{ for all real}$<br>(b) Constant<br>$f''(x) < 0 \text{ whereas } 0 \le x \le 1 \text{ th}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | values of $x$ will be<br>(c) Decreasing<br>en function $Q(x)$ is decreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these<br>ing in               |  |  |  |  |
|            | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + (a) \text{ Increasing}\right)$<br>Let $Q(x) = f(x) + f(1 - x)$ and<br>(a) $\left[\frac{1}{2}, 1\right]$                                                                                        | $x - \cos x \cos \left(\frac{\pi}{3} + x\right) \text{ for all real}$<br>(b) Constant<br>d $f''(x) < 0$ whereas $0 \le x \le 1$ th<br>(b) $\left[0, \frac{1}{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) Decreasing<br>ten function $Q(x)$ is decreasing<br>(c) $\left(\frac{1}{2}, 1\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) None of these<br>ing in               |  |  |  |  |
| 71.        | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + (a) \text{ Increasing}\right)$<br>Let $Q(x) = f(x) + f(1 - x)$ and<br>(a) $\left[\frac{1}{2}, 1\right]$                                                                                        | $x = \cos x \cos \left(\frac{\pi}{3} + x\right) \text{ for all real}$<br>(b) Constant<br>d $f''(x) < 0$ whereas $0 \le x \le 1$ th<br>(b) $\left[0, \frac{1}{2}\right]$<br>is 5, then $f(x)$ is increasing fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) Decreasing<br>(c) Decreasing<br>(en function $Q(x)$ is decreasing<br>(c) $\left(\frac{1}{2}, 1\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) None of these<br>ing in<br>(d) (0, 1) |  |  |  |  |
| 71.        | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + \frac{\pi}{3}\right)$<br>(a) Increasing<br>Let $Q(x) = f(x) + f(1 - x)$ and<br>(a) $\left[\frac{1}{2}, 1\right]$<br>If $f(x) = \frac{x}{c} + \frac{c}{x}$ for $-5 \le x \le 1$<br>(a) $[c, 5]$ | $x = \cos x \cos \left(\frac{\pi}{3} + x\right) \text{ for all real}$<br>(b) Constant<br>d $f''(x) < 0$ whereas $0 \le x \le 1$ th<br>(b) $\left[0, \frac{1}{2}\right]$<br>is 5, then $f(x)$ is increasing fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I values of x will be<br>(c) Decreasing<br>ten function $Q(x)$ is decreasing<br>(c) $\left(\frac{1}{2}, 1\right)$<br>function in the interval<br>(c) [c, 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these<br>ing in<br>(d) (0, 1) |  |  |  |  |
| 71.<br>72. | every value of $g(\lambda)$<br>Function $\cos^2 x + \cos^2 \left(\frac{\pi}{3} + \frac{\pi}{3}\right)$<br>(a) Increasing<br>Let $Q(x) = f(x) + f(1 - x)$ and<br>(a) $\left[\frac{1}{2}, 1\right]$<br>If $f(x) = \frac{x}{c} + \frac{c}{x}$ for $-5 \le x \le 1$<br>(a) $[c, 5]$ | $x = \cos x \cos \left(\frac{\pi}{3} + x\right) \text{ for all real}$<br>(b) Constant<br>(c) Constant<br>(c) Constant<br>(c) $\left[0, \frac{1}{2}\right]$<br>(c) $\left[0, \frac{1}{2}\right]$<br>(c) $\left[0, c\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I values of x will be<br>(c) Decreasing<br>ten function $Q(x)$ is decreasing<br>(c) $\left(\frac{1}{2}, 1\right)$<br>function in the interval<br>(c) [c, 0]<br>(x) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) None of these<br>ing in<br>(d) (0, 1) |  |  |  |  |

(c) Decreasing in  $\left[0, \frac{\pi}{2}\right]$  and increasing in  $\left[\frac{\pi}{2}, \pi\right]$ (d) None of these 74. If  $f(x) = (ab - b^2 - 1)x - \int_0^x (\cos^4 \theta + \sin^4 \theta) d\theta$  is a decreasing function of x for all  $x \in R$  and  $b \in R$ , b being independent of x, then (b)  $a \in (-\sqrt{6}, \sqrt{6})$ (c)  $a \in (-\sqrt{6}, 0)$ (a)  $a \in (0, \sqrt{6})$ (d) None of these **75.** If  $f(x) = \frac{p^2 - 1}{p^2 + 1}x^3 - 3x + \log 2$  is a decreasing function of x in R then the set of possible values of p (independent of x) is (a) [-1, 1] (b) [1,∞) (c)  $(-\infty, -1]$ (d) None of these **76.** Let  $f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x$ , where  $a_i$ 's are real and f(x) = 0 has a positive root  $\alpha_0$ . Then (a) f'(x) = 0 has a root  $\alpha_1$  such that  $0 < \alpha_1 < \alpha_0$ (b) f'(x) = 0 has at least two real root (c) f''(x) = 0 has at least one real roots (d) None of these 77. If *a*, *b*, *c* are real, then  $f(x) = \begin{vmatrix} x+a^2 & ab & ac \\ ab & x+b^2 & bc \\ ac & bc & x+c^2 \end{vmatrix}$  is decreasing in (a)  $\left(-\frac{2}{3}(a^2+b^2+c^2),0\right)$  (b)  $\left(0,\frac{2}{3}(a^2+b^2+c^2)\right)$  (c)  $\left(\frac{a^2+b^2+c^2}{3},0\right)$  (d) None of these

\*\*\*\*

# Answer Sheet

|    | Assignment (Basic and Advance Level) |    |    |    |    |    |    |    |    |    |    |    |    |    |           |     |     |     |    |
|----|--------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------|-----|-----|-----|----|
|    |                                      |    |    |    |    |    |    |    |    |    |    |    |    |    |           |     |     |     |    |
| 1  | 2                                    | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16        | 17  | 18  | 19  | 20 |
| a  | a                                    | с  | a  | С  | d  | d  | а  | С  | d  | a  | с  | a  | a  | b  | d         | с   | d   | b   | a  |
| 21 | 22                                   | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36        | 37  | 38  | 39  | 40 |
| b  | b                                    | d  | a  | с  | с  | С  | a  | с  | b  | с  | с  | a  | d  | b  | с         | с   | a,d | a,d | b  |
| 41 | 42                                   | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56        | 57  | 58  | 59  | 60 |
| d  | b                                    | С  | a  | С  | b  | а  | С  | a  | b  | d  | d  | b  | a  | d  | b         | a,b | С   | a   | d  |
| 61 | 62                                   | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76        | 77  |     |     |    |
| b  | a                                    | b  | a  | с  | с  | a  | d  | a  | b  | а  | а  | d  | b  | a  | a,b,<br>c | a   |     |     |    |