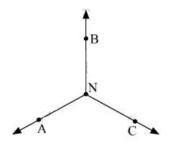
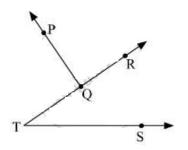

PRACTICE SET 15 [PAGE 25]

Practice Set 15 | Q 1 | Page 25

Observe the figure and complete the table for $\angle AWB$.


Points in the interior	
Points in the exterior	
Points on the arms of the angles	


Solution:

Points in the interior	R, C, N, X
Points in the exterior	T, U, Q, V, Y
Points on the arms of the angles	A, W, G, B

Practice Set 15 | Q 2 | Page 25

Name the pairs of adjacent angles in the figures below.

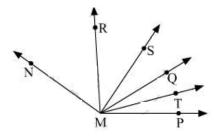
Solution: Two angles that have a common vertex, a common arm, and separate interiors are said to be adjacent angles.

The pairs of adjacent angles are given below:

 $\angle ANB$ and $\angle BNC$,

 \angle BNC and \angle ANC,

 $\angle ANC$ and $\angle ANB$,


 \angle PQR and \angle PQT.

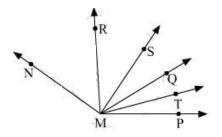
Practice Set 15 | Q 3.1 | Page 25

Are the following pair adjacent angle? If not, state the reason.

 $\angle PMQ$ and $\angle RMQ$

Solution: ∠PMQ and ∠RMQ

Two angles which have a common vertex, a common arm and separate interiors are said to be adjacent angles


In \angle PMQ and \angle RMQ, M is the common vertex and MQ is the common arm. Therefore, \angle PMQ and \angle RMQ are adjacent angles.

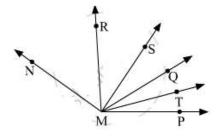
Practice Set 15 | Q 3.2 | Page 25

Are the following pair adjacent angle? If not, state the reason.

∠RMQ and ∠SMR

Solution: ∠RMQ and ∠SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles


The angles \angle RMQ and \angle SMR have a common vertex M, but don't have common arm. Therefore, \angle RMQ and \angle SMR are not adjacent angles.

Practice Set 15 | Q 3.3 | Page 25

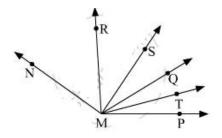
Are the following pair adjacent angle? If not, state the reason.

∠RMS and ∠RMT

Solution: ∠RMQ and ∠SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles

The angles $\angle RMS$ and $\angle RMT$ have a common vertex M, but don't have common arm.


Therefore, $\angle RMS$ and $\angle RMT$ are not adjacent angles.

Practice Set 15 | Q 3.4 | Page 25

Are the following pair adjacent angle? If not, state the reason.

∠SMT and ∠RMS

Solution: \angle RMQ and \angle SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles

In \angle SMT and \angle RMS, M is the common vertex and SM is the common arm. Therefore, \angle SMT and \angle RMS are adjacent angles.

PRACTICE SET 16 [PAGE 26]

Practice Set 16 | Q 1.1 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

40°

Solution: Let the measure of the complementary angle be a.

40 + a = 90

∴ a = 50°

Hence, the measure of the complement of an angle of measure 40° is 50°

Practice Set 16 | Q 1.2 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

63°

Solution: Let the measure of the complementary angle be a.

63 + a = 90

∴ a = 27°

Hence, the measure of the complement of an angle of measure 63° is 27°

Practice Set 16 | Q 1.3 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

45°

Solution: Let the measure of the complementary angle be a.

45 + a = 90

∴ a = 45°

Hence, the measure of the complement of an angle of measure 45° is 45°.

Practice Set 16 | Q 1.4 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

55°

Solution: Let the measure of the complementary angle be a.

55 + a = 90

∴ a = 35°

Hence, the measure of the complement of an angle of measure 55° is 35°

Practice Set 16 | Q 1.5 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

20°

Solution: Let the measure of the complementary angle be a.

20 + a = 90

∴ a = 70°

Hence, the measure of the complement of an angle of measure 20° is 70°

Practice Set 16 | Q 1.6 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

90°

Solution: Let the measure of the complementary angle be a.

90 + a = 90

 $\therefore a = 0^{\circ}$

Hence, the measure of the complement of an angle of measure 90° is 0°.

Practice Set 16 | Q 1.7 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

x°

Solution: Let the measure of the complementary angle be a.

x + a = 90

∴ a = (90 - x)°

Hence, the measure of the complement of an angle of measure x° is $(90 - x)^{\circ}$

Practice Set 16 | Q 2 | Page 26

 $(y - 20)^{\circ}$ and $(y + 30)^{\circ}$ are the measures of complementary angles. Find the measure of each angle.

Solution: Sum of two complementary angles is 90°

```
\therefore (y - 20)^{\circ} + (y + 30)^{\circ} = 90^{\circ}
\Rightarrow y - 20 + y + 30 = 90
\Rightarrow 2y + 10 = 90
\Rightarrow 2y = 80
\Rightarrow y = 40
```

Hence, the measure of the two angles are 20° and 70° .

PRACTICE SET 17 [PAGE 27]

Practice Set 17 | Q 1.1 | Page 27

Write the measure of the supplement of the angle given below.

15°

Solution: Let the measure of the supplementary angle be a.

15 + a = 180

∴ a = 165°

Hence, the measure of the supplement of an angle of measure 15° is 165°.

Practice Set 17 | Q 1.2 | Page 27

Write the measure of the supplement of the angle given below.

85°

Solution: Let the measure of the supplementary angle be a.

85 + a = 180

∴ a = 95°

Hence, the measure of the supplement of an angle of measure 85° is 95°.

Practice Set 17 | Q 1.3 | Page 27

Write the measure of the supplement of the angle given below.

120[°]

Solution: Let the measure of the supplementary angle be a.

120 + a = 180

∴ a = 60°

Hence, the measure of the supplement of an angle of measure 120° is 60°.

Practice Set 17 | Q 1.4 | Page 27

Write the measure of the supplement of the angle given below.

37°

Solution: Let the measure of the supplementary angle be a.

37 + a = 180

∴ a = 143°

Hence, the measure of the supplement of an angle of measure 37° is 143°.

Practice Set 17 | Q 1.5 | Page 27

Write the measure of the supplement of the angle given below.

108°

Solution: Let the measure of the supplementary angle be a.

108 + a = 180

∴ a = 72°

Hence, the measure of the supplement of an angle of measure 108° is 72°.

Practice Set 17 | Q 1.6 | Page 27

Write the measure of the supplement of the angle given below.

0°

Solution: Let the measure of the supplementary angle be a.

0 + a = 180

∴ a = 180°

Hence, the measure of the supplement of an angle of measure 0° is 180°.

Practice Set 17 | Q 1.7 | Page 27

Write the measure of the supplement of the angle given below.

a°

Solution: Let the measure of the supplementary angle be x.

∴ x = (180 - a)°

Hence, the measure of the supplement of an angle of measure a° is $(180 - a)^{\circ}$.

Practice Set 17 | Q 2 | Page 27

The measures of some angles are given below. Use them to make pairs of complementary and supplementary angles.

 $\begin{array}{l} m \angle B = 60^{\circ} \ m \angle N = 30^{\circ} \ m \angle Y = 90^{\circ} \ m \angle J = 150^{\circ} \\ m \angle D = 75^{\circ} \ m \angle E = 0^{\circ} \ m \angle F = 15^{\circ} \ m \angle G = 120^{\circ} \end{array}$

Solution: If the sum of the measures of two angles is 90° they are known as complementary angles.

Hence, the pairs of complementary angles are $\angle B$ and $\angle N$, $\angle D$ and $\angle F$, $\angle Y$, and $\angle E$.

If the sum of the measures of two angles is 180° they are known as supplementary angles.

Hence, the pairs of supplementary angles are $\angle B$ and $\angle G$, $\angle N$, and $\angle J$.

Practice Set 17 | Q 3 | Page 27

In $\triangle XYZ$, m $\angle Y = 90^{\circ}$. What kind of a pair do $\angle X$ and $\angle Z$ make?

Solution: In $\triangle XYZ$,

 $\angle X + \angle Y + \angle Z = 180^{\circ}$ (Angle Sum property of triangle

 $\Rightarrow \angle X + 90^{\circ} + \angle Z = 180^{\circ}$

 $\Rightarrow \angle X + \angle Z = 90^{\circ}$

Since, the sum of the measure of the two angles is 90°. Hence, $\angle X$ and $\angle Z$ are complementary angles.

Practice Set 17 | Q 4 | Page 27

The difference between the measures of the two angles of a complementary pair is 40°.

Find the measures of the two angles.

Solution: Let the measure of the first angle a.

Then, the measure of the other angle a + 40°

Now, a + a + 40 = 90

⇒ 2a = 50

⇒ a = 25°

Hence, the measure of the two angles are 25° and 65°.

Practice Set 17 | Q 5 | Page 27

□ PTNM is a rectangle. Write the names of the pairs of supplementary angles.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.

The measure of all the angles of a rectangle is 90°.

Hence, the pairs of supplementary angles are $\angle P$ and $\angle M$, $\angle T$ and $\angle N$, $\angle P$ and $\angle T$, $\angle M$ and $\angle N$, $\angle P$ and $\angle N$, $\angle M$ and $\angle T$.

Practice Set 17 | Q 6 | Page 27

If $m \angle A = 70^\circ$, what is the measure of the supplement of the complement of $\angle A$?

Solution: Let the measure of the complementary angle be a.

70 + a = 90

∴ a = 20°

Let the measure of the supplementary angle of 20° be x.

20 + x = 180

∴ x = 160°

Hence, the measure of the supplement of the complement of $\angle A$ is 160°.

Practice Set 17 | Q 7 | Page 27

If $\angle A$ and $\angle B$ are supplementary angles and $m \angle B = (x + 20)^\circ$, then what would be $m \angle A$?

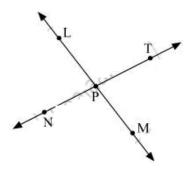
Solution: Let the measure of the supplementary angle of $\angle B$ be a.

$$(x + 20)^{\circ} + a = 180$$

Hence, the measure of $\angle A$ is $(160 - x)^{\circ}$.

PRACTICE SET 18 [PAGE 28]

Practice Set 18 | Q 1 | Page 28


Name the pairs of opposite rays in the figure alongside.

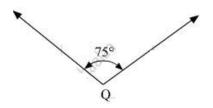
Solution: Two rays that have a common origin and form a straight line are said to be opposite rays.

Hence, the pairs of opposite rays are ray PL & ray PM and ray PN & ray PT.

Practice Set 18 | Q 2 | Page 28

Are the ray PM and PT opposite rays? Give reasons for your answer.

Solution: Ray PM and PT are not opposite rays because they do not form a straight line.


PRACTICE SET 19 [PAGE 29]

Practice Set 19 | Q 1.1 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Complementary angles that are not adjacent.

Solution:

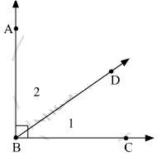
Practice Set 19 | Q 1.2 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Angles in a linear pair are not supplementary.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.

The sum of the measures of the angles in a linear pair is 180°.

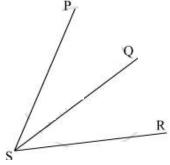

Therefore, angles in a linear pair are always supplementary.

Practice Set 19 | Q 1.3 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Complementary angles that do not form a linear pair.

Solution:

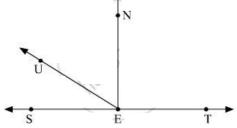


Practice Set 19 | Q 1.4 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Adjacent angles which are not in a linear pair.

Solution:



Practice Set 19 | Q 1.5 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

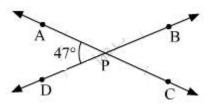
Angles which are neither complementary nor adjacent.

Practice Set 19 | Q 1.6 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Angles in a linear pair which are complementary.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.


The sum of the measures of the angles in a linear pair is 180°.

Therefore, angles in a linear pair are always supplementary.

PRACTICE SET 20 [PAGE 30]

Practice Set 20 | Q 1 | Page 30

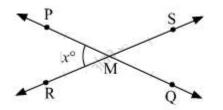
Lines AC and BD intersect at point P. m \angle APD = 47°. Find the measures of \angle APB, \angle BPC, \angle CPD.

Solution: In the given figure,

 \angle DPA + \angle APB = 180° (Linear Pair angles)

⇒ ∠APB = 133°

Now,


 $\angle APD = \angle BPC = 47^{\circ}$ (Vertically opposite angles)

 $\angle APB = \angle DPC = 133^{\circ}$ (Vertically opposite angles)

Hence, the measures of $\angle APB$, $\angle BPC$, $\angle CPD$ are 133°, 47° and 133° respectively.

Practice Set 20 | Q 2 | Page 30

Lines PQ and RS intersect at point M. m \angle PMR = x° What are the measures of \angle PMS, \angle SMQ and \angle QMR?

Solution: In the given figure,

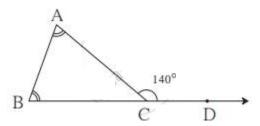
 \angle RMP + \angle PMS = 180° (Linear Pair angles)

 $\Rightarrow x^{\circ} + \angle PMS = 180^{\circ}$

 $\Rightarrow \angle PMS = (180 - x)^{\circ}$

Now,

 \angle PMR = \angle SMQ = x° (Vertically opposite angles)


 $\angle PMS = \angle RMQ = (180 - x)^{\circ}$ (Vertically opposite angles)

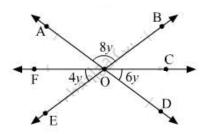
Hence, the measures of $\angle PMS$, $\angle SMQ$ and $\angle QMR$ are $(180 - x)^{\circ}$, x° and $(180 - x)^{\circ}$ respectively.

PRACTICE SET 21 [PAGE 33]

Practice Set 21 | Q 1 | Page 33

 \angle ACD is an exterior angle of $\Delta \triangle$ ABC. The measures of \angle A and \angle B are equal. If m \angle ACD = 140°, find the measures of the angles \angle A and \angle B.

Solution: $\angle A + \angle B = \angle ACD$ (Exterior angle property)


$$\Rightarrow 2 \angle A = 140^{\circ} (\because \angle A = \angle B)$$

 $\Rightarrow \angle A = 70^{\circ}$

Hence, the measures of $\angle A$ and $\angle B$ are 70° and 70° respectively.

Practice Set 21 | Q 2 | Page 33

Using the measures of the angles given in the figure alongside, find the measures of the remaining three angles.

Solution: In the given figure,

 $\angle BOC = \angle FOE = 4y$ (Vertically opposite angles) $\angle EOD = \angle AOB = 8y$ (Vertically opposite angles) $\angle AOF = \angle COD = 6y$ (Vertically opposite angles) Now, $\angle AOB + \angle BOC + \angle COD = 180^{\circ}$ (Linear Pair angles) $\Rightarrow 8y + 4y + 6y = 180^{\circ}$ $\Rightarrow 18y = 180^{\circ}$ $\Rightarrow y = 10^{\circ}$ Therefore, $\angle BOC = 4y$ $= 40^{\circ}$ $\angle EOD = 8y$ $= 80^{\circ}$ $\angle AOF = 6y$ $= 60^{\circ}$

Hence, the measures of $\angle BOC$, $\angle EOD$, $\angle AOF$ are 40°, 80° and 80° respectively.

Practice Set 21 | Q 3 | Page 33

In the isosceles triangle ABC, $\angle A$, and $\angle B$ are equal. $\angle ACD$ is an exterior angle of $\triangle ABC$. The measures of $\angle ACB$ and $\angle ACD$ are $(3x-17)^{\circ}$ and $(8x + 10)^{\circ}$ respectively. Find the measures of $\angle ACB$ and $\angle ACD$. Also find the measures of $\angle A$ and $\angle B$.

Solution: Given:

∠ACB = (3x - 17)°

 $\angle ACD = (8x + 10)^{\circ}$

Now, $\angle ACB + \angle ACD = 180^{\circ}$ (Linear Pair angles)

 $\Rightarrow 3x - 17 + 8x + 10 = 180$

 \Rightarrow 11x =187

 \Rightarrow x =17

Therefore,

∠ACB = (3x - 17)° = (51- 17)° = 34°

∠ACD = (8x + 10)°

= (136+ 10)°

= 146°

Now, $\angle A + \angle B = \angle ACD$ (Exterior angle property)

$$\Rightarrow 2 \angle A = 146^{\circ} (\because \angle A = \angle B)$$

 $\Rightarrow \angle A = 73^{\circ}$

Hence, the measures of $\angle ACB$, $\angle ACD$, $\angle A$ and $\angle B$ are 146°, 34°, 73° and 73° respectively.