MATHEMATICS

DPP No. 67

Total Marks: 33

Max. Time: 33 min.

Topics: Circle, Permutation & Combination, Binomial Theorem

Type of Questions		IVI . IVI .	, win.
Single choice Objective (no negative marking) Q.1,4,5,6,7,8	(3 marks, 3 min.)	[24,	24]
Multiple choice objective (no negative marking) Q.3	(5 marks, 4 min.)	[5,	4]
Subjective Questions (no negative marking) Q.2	(4 marks, 5 min.)	[4,	5]

- The length of an external common tangent to the two circles $x^2 + y^2 4x 4y + 4 = 0$ and 1. $x^2 + y^2 - 12x - 10y + 52 = 0$ is :
 - (A) $\sqrt{20}$
- (B) $\sqrt{24}$
- (C) $\sqrt{26}$
- (D) None
- 2. The midpoint of the chord on the line 3x + 4y - 25 = 0 intercepted by the circle $x^2 + y^2 = 81$ is
- 3. The centre of a circle S = 0 lies on 2x - 2y + 9 = 0 and S = 0 cuts orthogonally the circle $x^2 + y^2 = 4$. Then the circle must pass through the point
 - (A)(1,1)

(B) (-1/2, 1/2)

(C) (5, 5)

- (D) (-4, 4) ब
- Let AB be any chord of the circle $x^2 + y^2 2x 6y 6 = 0$ which subtends right angle at the point (2, 4), then 4. the locus of the mid point of AB is
 - (A) $x^2 + y^2 3x 7y 16 = 0$

(B) $x^2 + y^2 - 3x - 7y + 7 = 0$

(C) $x^2 + y^2 + 3x + 7y - 16 = 0$

- (D) $x^2 + y^2 + 3x + 7y 7 = 0$
- 5. Tangents are drawn to the circle $x^2 + y^2 = 10$ at the points where it is met by the circle $x^2 + y^2 + 4x - 3y + 2 = 0$. The point of intersection of these tangents is:
- (B) $\left(\frac{5}{2}, \frac{10}{3}\right)$
- (C) $\left(-\frac{10}{3}, \frac{5}{2}\right)$ (D) $\left(-\frac{10}{3}, -\frac{5}{2}\right)$
- Number of diagonals in sixteen sided regular polygon are 6.
 - $(A)^{16}C_2$
- (B) ${}^{16}C_2 16$
- (C) 16
- (D) None of these
- 7. Two cards are drawn one at a time & without replacement from a pack of 52 card. The number of ways in which the two cards can be drawn, are
 - (A) 2652
- (B) 2704
- (C) 2500
- (D) None of these
- Sum of the last 30 coefficients in the expansion of (1 + x)⁵⁹, when expanded in ascending powers of 8. x, is
 - (A) 2^{29}
- (B) 2²⁸
- $(C)^{60}C_{30} 2^{19}$
- (D) 2⁵⁸

Answers Key

- **1.** (B)
- **2.** (3,4)
- **3.** (B, D)
- **4.** (B)
- **5.** (C)
- **6.** (B)
- **7.** (A)
- **8.** (D)