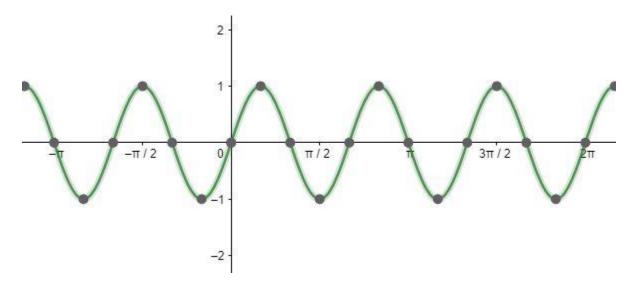
Graphs Of Trigonometric

Exercise 19


Q. 1. Draw the graph of each of the following functions:

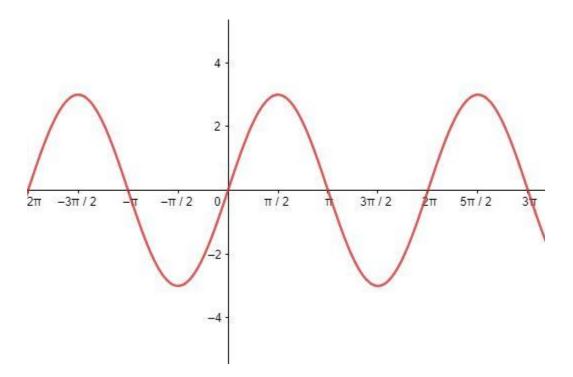
Sin 3x

Answer : To draw the graph of the curve sin(3x) assume some standard angle measures which will help in locating the points and drawing the curve.

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
Sin3x	1	0	-1	0	1	0

Therefore, the graph of curve sin(3x) can be drawn as

Here, the frequency of the function sin(x) is increased by 3 times.


Q. 2. Draw the graph of each of the following functions:

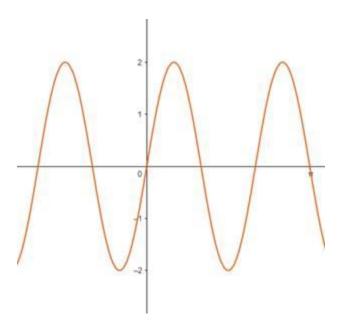
3sin x

Answer : To draw the graph of the curve $3\sin(x)$ assume some standard angle measures which will help in locating the points and drawing the curve.

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
3sin(x)	$\frac{3}{2}$	$\frac{3\sqrt{3}}{2}$	3	0	-3	0

Therefore, the graph of curve 3sin(x) can be drawn as

Here, the amplitude of the function sin(x) is increased by 3 times.

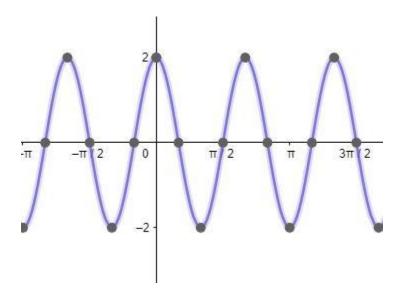

Q. 3. Draw the graph of each of the following functions:

2sin 3x

Answer : To draw the graph of the curve $2\sin(3x)$ assume some standard angle measures which will help in locating the points and drawing the curve

x	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
2sin(3x)	2	0	2	0

The graph looks like:


Q. 4. Draw the graph of each of the following functions:

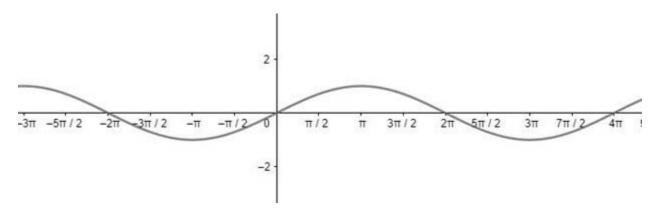
2cos 3x

Answer : To draw the graph of the curve $2\cos(3x)$ assume some standard angle measures which will help in locating the points and drawing the curve.

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
2cos(3x)	0	-2	0	-2	0	2

Therefore, the graph of curve 2cos(3x) can be drawn as

Here, the amplitude and frequency of the function $\cos(x)$ is increased by 2 and 3 times respectively.

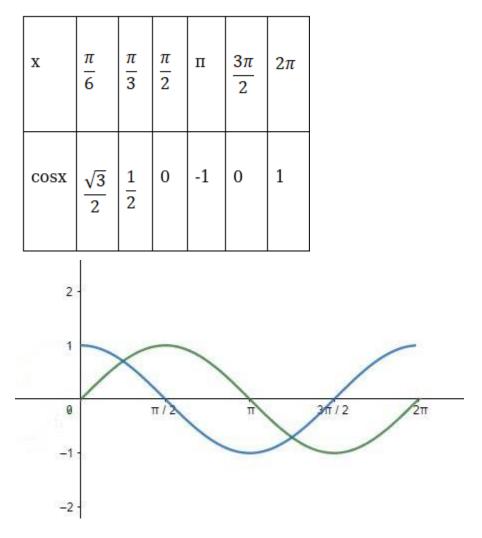

Q. 5. Draw the graph of each of the following functions:

$$\frac{\sin \frac{x}{2}}{2}$$

Answer : To draw the graph of the curve sin(x/2) assume some standard angle measures which will help in locating the points and drawing the curve.

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
sin(x/2)	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	0

Therefore, the graph of curve 2cos(3x) can be drawn as


Here, the frequency of the function sin(x) is decreased by 0.5 times.

Q. 6. Draw the graphs of y = sin x and $y = cosxin[0, 2\pi]$ on the same axes.

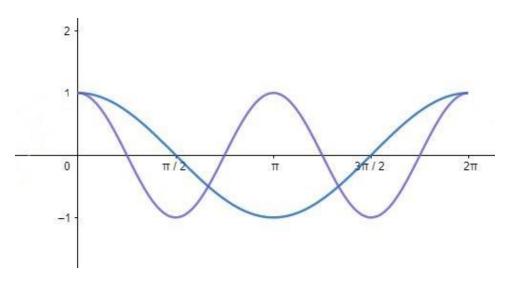
Answer : For sinx

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
Sinx	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0

For cosx

The green line represents curve for sin(x) and blue for cos(x) for $[0,2\pi]$.

Q. 7. Draw the graphs of y = cos x and $y = \cos 2x in[0, 2\pi]$ on the same axes.


Answer : For cosx

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
cosx	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1	0	1

For cos(2x)

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	п	$\frac{3\pi}{2}$	2π
Cos(2x)	$\frac{1}{2}$	- <u>1</u> -2	-1	1	-1	1

The graph is:-

Blue line depicts curve cos(2x)

Purple lines depict cos(x).