Basic Proportionality Theorem for a Triangle

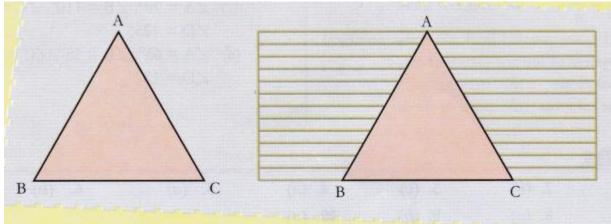
Objective

To verify the basic proportionality theorem by using parallel lines board, triangle cut outs.

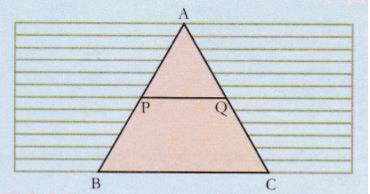
Basic Proportionality Theorem

If a line is drawn parallel to one side of a triangle, to intersect the other two sides at distinct points, the other two sides are divided in the same ratio.

Prerequisite Knowledge


- 1. Statement of Basic Proportionality theorem.
- 2. Drawing a line parallel to a given line which passes through a given point.

Materials Required


White chart paper, coloured papers, geometry box, sketch pens, fevicol, a pair of scissors, ruled paper sheet (or Parallel line board).

Procedure

- 1. Cut an acute-angled triangle say ABC from a coloured paper.
- 2. Paste the \triangle ABC on ruled sheet such that the base of the triangle coincides with ruled line.

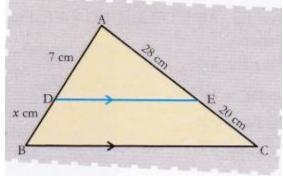
3. Mark two points P and Q on AB and AC such that PQ || BC.

- 4. Using a ruler measure the length of AP, PB, AQ and QC.
- 5. Repeat the same for right-angled triangle and obtuse-angled triangle.
- 6. Now complete the following observation table.

Observation

Triangle ABC	Length of the segments				$\frac{AP}{PB}$	$\frac{AQ}{QC}$	Equal/Not equal
	AP	· PB	AQ	QC	PB	QC	Equal Norequa
Acute							
Obtuse .							
Right						RETER	

Result


In each set of triangles, we verified that $\frac{AP}{PB}=\frac{AQ}{QC}$

Learning Outcome

Students will observe that in all the three triangles the Basic Proportionality theorem is verified.

Activity Time


1. Find x if DE || BC.

2. Is PQ || AB ?

3. Find x if PQ || BC

Viva Voce

Question 1. Is there any other name for B.P.T. (Basic Proportionality Theorem) ? Answer: Yes, Thales Theorem

Question 2.

Name the mathematician who gave B.P.T. Answer: Greek mathematician Thales

Question 3.

What is the statement of B.P.T. ? **Answer:**

If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio.

Question 4.

Can we prove Mid-point theorem by using B.P.T.?

Answer:

Yes

Question 5.

Is the B.P.T. applicable for a scalene triangle ? Answer: Yes

Question 6.

What is the converse of B.P.T. ?

Answer:

If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side of the triangle.

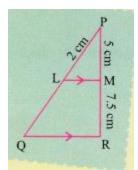
Question 7.

Give two different examples of pairs of similar figures. Answer: Pair of squares, pair of circles

Question 8.

What are the conditions for two polygons of same number of sides to be similar ? **Answer:**

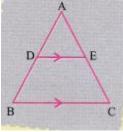
- 1. Their corresponding angles are equal.
- 2. Their corresponding sides are proportional.


Multiple Choice Questions

Question 1.

In $\triangle ABC$, if DE || BC,AD = 3.2, DB = 1.6, AE = x and EC = 2.1, then x is (a) 4.2 (b) 3.2 (c) 1.6 (d) 4.8

Question 2.

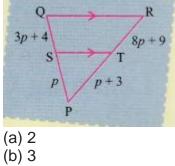

In the given fig., LM || QR. Find LQ

- (a) 3.1 cm (b) 2.5 cm (c) 3 cm
- (d) None of these

Question 3.

In the given fig., DE || BC. If $\frac{AE}{AC} = \frac{2}{5}$ and AB = 15 cm ,find AD.

(a) 6 cm

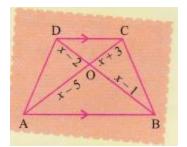

(b) 5 cm

(c) 4 cm

(d) 7 cm

Question 4.

What value of p will make ST || QR in the given fig. ?

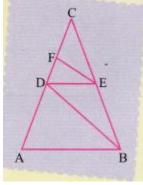


(c) 5

(d) None of these

Question 5.

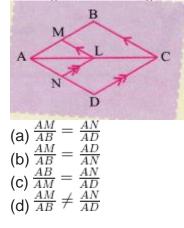
Find x, if DC \parallel AB.



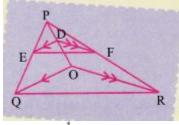
- (a) 7
- (b) 3
- (c) 5

(d) None of these

Question 6.

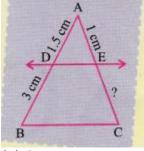

In the given fig., AB || DE and BD || EF. Find the correct relation.

- (a) $DC^2 = CF \times AC$ (b) $CF^2 = DC \times AC$
- (c) $AC^2 = DC \times CF$
- (d) None of these


Question 7.

If LM || CB and LN || CD, then choose the correct answer

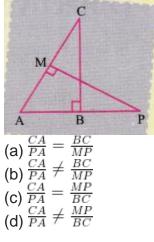
Question 8.


In the given figure, DE || OQ and DF || OR, then which is the correct relation ?

(a) $EF = \frac{1}{2}QR$ (b) $EF \neq QR$ (c) EF = QR(d) EF||QR

Question 9.

In the given figure DE || BC, then EC is



(a) 2 cm (b) 1.5 cm

- (c) 1 cm
- (d) 3 cm

Question 10.

In the given figure ABC and AMP are two right triangles, right angled at B and M respectively. Then tick the correct answer.

Answers

- 1. (a)
- 2. (c)
- 3. (a)
- 4. (a)
- 5. (d) 6. (a)
- 7. (a)
- 8. (d) 9. (a)
- 10.(a)