Vecton Algebra

Vecton: A quantity that has magnitude as well as direction is called a vector. $A = A = A = A$ $A = A = A$ $A = A = A$ $A = $
Initial point: The point A where from the vector \overrightarrow{AB} starts is known as initial point.
Terminal point: The point B, where it ends is said to be the terminal point.
Magnitude: The distance between initial and tenminal points of a vector is called the magnitude (on length) of the vector.
Scalan: Those physical quantities which have only magnitude are called scalan, e.g., anea, volume mass etc.
Dinection cosines: If $\vec{n} = \alpha \hat{i} + b \hat{j} + c \hat{k}$ makes angle α, β, γ with +ve dinection of x-axis, y-axis and x-axis nespectively, then $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ and the dinection cosines of \vec{n} and ane denoted by l, m and n whene, $ \begin{bmatrix} l = \cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, & m = \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, & n = \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}} \end{bmatrix} $
Dinection natios: If numbers a,b,c are propotional to dinection cosines l , m and n nespectively of \vec{n} , then a,b,c are called direction ratios of \vec{n} .
Position vecton: Consider a point (x,y,z) in space. The vector \overrightarrow{OP} with initial point, oxigin O and terminal point P, is called the position vector of P.
zeno vecton: A vecton whose initial and tenminal points coincide is known as zeno vecton
Unit vector: A vector whose magnitude is unity is said to be unit vector, denoted by \hat{a} . $\hat{a} = \frac{1}{ \vec{a} } \vec{a}$
Co-initial Vectors: Two or more vectors having the same initial point are called coinitial vectors.
Collinean Vectons: Two on more vectors are said to be collinean if they are parallel to the same line, innespective of their magnitudes and directions.
Foual vectors: Two vectors a and b are said to be equal, if they have the same magnitude and direction regardless of the positions of their initial
points, and wnitten as $\vec{a} = \vec{b}$
Negative of a vecton: A vecton whose magnitude is the same as that of a given vecton, but direction is opposite to that of it, is called negative of the given vecton. $\overrightarrow{BA} = -\overrightarrow{AB}$
Addition of vectors: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ (Thiangle law of vector addition)
Properties of vector addition: (i) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (ii) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (iii) $\vec{a} + \vec{o} = \vec{o} + \vec{a} = \vec{a}$
Multiplication of a vector by a scalar: $ \lambda \vec{a} = \lambda \vec{a} $ scalar $ \vec{a} = \vec{a} \vec{a} $
Note: Fon any scalar k, $k\vec{0} = \vec{0}$ vector component
vecton component

 $x, y, z = scalan components of <math>\vec{n}$

Component form: $\vec{n} = \chi \hat{i} + y \hat{j} + z \hat{k}$ $|\vec{n}| = \sqrt{\chi^2 + y^2 + z^2}$

Vector joining two points:

$$|\overrightarrow{P_1P_2}| = \sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Section formula: Case I When R divides PQ internally

$$\vec{n} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

Case II When R divides PQ externally

$$\vec{n} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

Scalan (on dot) product of two vectors:

$$\vec{a} \cdot \vec{b} = |\vec{\alpha}| |\vec{b}| \cos\theta$$

0 is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \Pi$

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

$$0 = \cos^{-1} \left[\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right]$$

I Propenties:

(1)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

(2)
$$\vec{a} \cdot (\vec{b} + c) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

(3)
$$(\lambda \vec{\alpha}) \cdot \vec{b} = \lambda (\vec{\alpha} \cdot \vec{b}) = \vec{\alpha} \cdot (\lambda \vec{b})$$

(4)
$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} = 0, \vec{b} = 0 \text{ OR } \vec{a} \perp \vec{b}$$

(5) If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Projection of
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ and position vector of \vec{a} on $\vec{b} = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|^2} \cdot \vec{b}$

Projection of
$$\vec{b}$$
 on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$ and position vector of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}$. \vec{a}

*! ote: 9f two vectors a and b are given in component form as a i + a j + a j k and b, i + b j + b j k $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Obsenvations:

1. a b is a neal number.

2. Let \vec{a} and \vec{b} be two non-zeno vectors, then $\vec{a} \cdot \vec{b} = 0$ if and only if \vec{a} and \vec{b} are penpendiculan to each other i.e. $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$

3. If $\theta = 0$ then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$. In panticular $\vec{a} \cdot \vec{a} = |\vec{a}|^2$, as θ in this case is θ .

4. If $0 = \Pi$ then $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$. In panticular $\vec{a} \cdot (-\vec{a}) = -|\vec{a}|^2$, as θ in this case is Π .

5. In view of the Observations 2 and 3, for mutually penpendicular unit vectors î, j and k, we have $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = \mathbf{1} \qquad \qquad \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = \mathbf{0}$

6. The angle between two non-zeno vectors \vec{a} and \vec{b} is given by $|\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}|$

7. The scalar product is commutative i.e $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

Management of a vector on a line: The p is called the projection vector and its magnitude |p| is simply called as the projection of the vector AB on the directed

line L.

 $(90^{\circ} \le \theta \le 180^{\circ})$ (ii)

Obsenvations:

1. If \vec{P} is the unit vector along a line l, then the projection of a vector \vec{a} on the line l is given by a p.

- 2. Projection of a vector \vec{a} on other vector \vec{b} , is given by $\vec{a} \cdot \vec{b}$ or $\vec{a} \cdot \left[\frac{\vec{b}}{|\vec{b}|}\right]$ or $\frac{1}{|\vec{b}|}$ ($\vec{a} \cdot \vec{b}$)
- 3. If 0=0, then the projection vector of \overrightarrow{AB} will be \overrightarrow{AB} itself and if $\theta=\Pi$, then the projection vector of \overrightarrow{AB} will be \overrightarrow{BA} .
- 4. If $\theta = \frac{\pi}{2}$ on $\theta = \frac{3\pi}{2}$, then the projection vector of \overrightarrow{AB} will be zero vector.
- **Note:** If α , β and γ are the direction angles of vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, then its direction cosines may be given as

$$\begin{bmatrix}
\cos\alpha = \frac{\vec{a} \cdot \hat{\iota}}{|\vec{a}||\hat{\iota}|} = \frac{a_1}{|\vec{a}|}, \quad \cos\beta = \frac{a_2}{|\vec{a}|} \quad \text{and} \quad \cos\gamma = \frac{a_3}{|\vec{a}|}
\end{bmatrix}$$

$$\vec{a} = \cos\alpha \hat{\iota} + \cos\beta \hat{\jmath} + \cos\beta \hat{k}$$
and
$$\vec{a} = \cos\alpha \hat{\iota} + \cos\beta \hat{\jmath} + \cos\beta \hat{k}$$

Vector (on cross) product of two vectors

$$\vec{a} \times \vec{b} = |\vec{a}||\vec{b}||\vec{s}$$
 in $\vec{o} \cdot \vec{n}$ OR $|\vec{a} \times \vec{b}| = |\vec{a} \times \vec{b}|$

O is the angle between \vec{a} and \vec{b} , $0 \le 0 \le \pi$
 $\vec{n} = unit \ vector \ penpendiculan \ to \ the plane \vec{a} and $\vec{b}$$

- Properties: (1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- (2) If $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} = 0$, $\vec{b} = 0$ on $\vec{a} \parallel \vec{b}$

(3) If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

- Obsenvations: 1. $\vec{a} \times \vec{b}$ is a vecton.
- 2. If $0 = \frac{\pi}{2}$ then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$
- 3. Angle between two vectors \vec{a} and \vec{b} $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}||}$
- 4. $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$ $\hat{i} \times \hat{j} = \hat{k} , \hat{j} \times \hat{k} = \hat{i} , \hat{k} \times \hat{i} = \hat{j}$ 5. $\hat{j} \times \hat{i} = -\hat{k} , \hat{k} \times \hat{j} = -\hat{i} \text{ and } \hat{i} \times \hat{k} = -\hat{j}$

- Anea of thiangle ABC = 11511a'l sino = 11a'x bl
- Anea of panallelognam ABCD = |B||a|sino = |axB|
- Projection formulae:

(1)
$$a = b \cos c + c \cos B$$
 (2) $b = c \cos A + a \cos C$ (3) $c = a \cos C + b \cos a$