Mathematical Aptitude

Factorisation

Check Your Concepts

Q.3. True / False:

Directions: Read the following statements and mark your response as true or false.

1.	$\left(\frac{1}{3}x-1\right)\left(\frac{1}{3}x+1\right) = \frac{1}{9}x^2 + 1.$	[]
2.	$(r+s)^2 = (r+s)(r+5).$	[]
3.	$(p+q)^2 = (p+q)(p-q).$	[]
4.	Expression $2x + 4y$ can be written as $2(x + 2y)$.	[]
5.	$(5x+3y)^2 = 25x^2 - 30xy - 9y^2.$	[]
6.	An irreducible factor is a factor which cannot be expressed as a product of factors.	[]
7.	If the given expression is the difference of two squares, then to factories it, we use	the	formula:
	$a^2-b^2=\left(a-b\right)^2.$	[]
8.	If the given expression is in the form $x^2 + (a+b)x - ab$, then we factories it in the form $(x-a)$	x	-b).
		[]
9.	When an expression is the product of two or more expressions then each of these expressions is called a		
	factor of the given expression.	[]
10.	The process of writing a given expression as the product of two or more factors is called factorization.		
		[]

Q.4. Multiple choice questions:

Directions:		Read the following questions and choose the answer that best answers the questions.				
1.	If $x + a$	u is a factor of, then the value of	f a is			
	(a) 0	(b) 1	(c) 2	(d) 3		

- 2. If (x+1) is a factor of $x^2 3ax + 3a 7$, then the value of a is -(a) 1 (b) - 1 (d) 0 (c) - 2
- **3.** The polynomial, $x^{6} + 64y^{6}$ on factorization gives (a) $(x^{2} + 4y^{2})(x^{4} - 4y^{4})$ (b) $(x^{2} + 4y^{2})(x^{4} - 4x^{2}y^{2} + 16y^{4})$ (c) $(x^{2} - 4y^{2})(x^{4} + 4y^{4})$ (d) $(x^{2} + 4y^{2})(x^{4} + 4x^{2}y^{2} + 16y^{4})$
- 4. When $x^3 3x^2 + 5x 3$ is divided by $x^2 2$ the quotient is (a) x + 2 (b) x - 3 (c) x + 4 (d) 2x - 1
- 5. If $p(x) = 3x^3 2x^2 + 7x + 5$ and $g(x) = x^2 2$. If p(x) is divided by g(x) then remainder is (a) 2x + 13 (b) 13x + 1 (c) 2x - 3 (d) x - 13
- **6.** Consider the following statements:
 - **1.** $x^2 9$ is a factor of $(x^3 + 5x^2 9x 45)$.
 - **2.** $f\left(\frac{a}{b}\right)$ is the remainder when the polynomial f(x) is divided by ax + b.
 - **3.** $f\left(-\frac{a}{b}\right)$ is the remainder when the polynomial f(x) is divided by ax + b.
 - **4.** 0 is the remainder when the polynomial f(x) is divided by a linear factor x a.
 - (a) 1 and 2 are correct (b) 1 alone is correct
 - (c) 3 alone is correct (d) 3 and 4 are correct

7. The quotient when $3x^4 - 5x^3 + 10x^2 + 11x - 61$ is divided by (x-3) is

- (a) $3x^3 + 4x^2 + 22x + 77$ (b) $77x^3 + 22x^2 + 4x + 3$ (c) $3x^2 + 4x^3 + 22x + 77$ (d) $3x^3 + 4x + 22x^2 + 11$
- **8.** Which one of the following is a factor of $x^3 19x + 30$?
 - (a) x-2 (b) x+2 (c) x-1 (d) x+1
- 9. If quotient = $3x^2 2x + 1$, remainder = 2x 5 and divisor = x + 2, then the dividend is (a) $3x^3 - 4x^2 + x - 3$ (b) $3x^3 - 4x^2 - x + 3$ (c) $3x^3 + 4x^2 - x + 3$ (d) $3x^3 + 4x^2 - x - 3$

Q.5.	Subjective questions:
1.	Factories: $x^2 - \frac{13}{24} \times \frac{1}{12}$.
Ans.	
2.	Find the remainder when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by $g(x) = 1 - 2x$.
Ans.	
3.	Divide $3x^2 - x^3 - 3x + 5$ by $x - 1 - x^2$, and verify the division algorithm.
Ans.	
11101	
4.	Simplify and factories $y(2-y)(3-y) + y^2(y+5)$.
	Simplify and factories $y(2 - y)(3 - y) + y (y + 3)$.
Ans.	