Sample Question Paper - 38 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

1. A point *P* is 10 cm from the centre of the circle. The length of the tangent drawn from *P* to the circle is 8 cm, then find the radius of circle.

OR

O is the centre of two concentric circles of radii 12 cm and 13 cm. *AB* is a chord of outer circle which touches the inner circle. What is the length of chord *AB*.

- 2. A solid sphere of radius *r* is melted and recast into the shape of a solid cone of height *r*, find the radius of the base of the cone.
- 3. A sum of ₹ 2000 is invested at 6% simple interest per annum.
 - (i) Calculate the interests at the end of 1, 2, 3,... years.
 - (ii) Does the sequence of interests forms an A.P.?
- 4. If the mean of the following distribution is 6, then find the value of *p*.

ĺ	<i>x</i> :	2	4	6	10	<i>p</i> + 5
	f:	3	2	3	1	2

5. The product of two consecutive even integers is 528. Represent the situation in the form of a quadratic equation.

OR

Find the value of *a* and *b*, if x = 7 and 5 are the solutions of the equation $ax^2 - bx + 35 = 0$.

6. Find the median of the collection of first seven whole numbers. If 9 is also included in the collection, find the difference of the median in two cases.

SECTION - B

7. In an A.P., the first term is 25, n^{th} term is -17 and sum of first *n* terms is 60. Find *n* and *d*, the common difference.

Maximum Marks : 40

OR

Which term of the A.P.: -2, -7, -12,... will be -77? Find the sum of this A.P. upto the term -77.

- 8. In a class test, the sum of the marks obtained by Ankur in Mathematics and Science is 28. If he had got 3 more marks in Mathematics and 4 marks less in Science, then product of marks obtained in the two subjects would have been 180. Find the marks obtained in the two subjects separately.
- **9.** Draw a circle of radius 5 cm. From a point *P*, 8 cm away from its centre, construct a pair of tangents to the circle. Measure the length of each one of the tangents.
- **10.** The angle of elevation of the top of a chimney from the top of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of the tower is 40 m, then find the height of the chimney.

SECTION - C

- **11.** Two circles with centres *A* and *B* of radii 6 cm and 8 cm respectively intersect at two points *C* and *D* such that *AC* and *BC* are tangents to the two circles. Find the length of common chord *CD*.
- **12.** The angles of elevation of the top of a rock from the top and foot of 100 m high tower are 30° and 45° respectively. Find the height of the rock.

OR

Mr Anna Hazare Padyatra party wanted to go from Delhi to Dehradun. The walkers travelled 150 km straight and then took a 45° turn towards Varanasi and walked straight for another 120 km. Approximately how far was the party from the starting point? (Use $\sqrt{2} = 1.414$)

Case Study - 1

13. To make the learning process more interesting, creative and innovative, Amayra's class teacher brings clay in the classroom, to teach the topic - Surface Areas and Volumes. With clay, she forms a cylinder of radius 6 cm and height 8 cm. Then she moulds the cylinder into a sphere and asks some questions to students.

- (i) Find the radius of the sphere so formed.
- (ii) Find the ratio of the volume of sphere to the volume of cylinder.

Case Study - 2

14. On a particular day, National Highway Authority of India (NHAI) checked the toll tax collection of a particular toll plaza in Rajasthan.

The following table shows the toll tax paid by drivers and the number of vehicles on that particular day.

Toll tax (in ₹)	30-40	40-50	50-60	60-70	70-80
Number of vehicles	80	110	120	70	40

Based on the above information, answer the following questions.

- (i) If x_i 's denotes the class marks and d_i 's denotes the deviation of assumed mean (*A*) from x_i 's, then find the minimum value of $|d_i|$.
- (ii) Find the mean of toll tax received by NHAI by assumed mean method.

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

1. Since *PT* is a tangent of circle

 $\therefore \ \ \angle T = 90^{\circ}$ In right $\triangle OPT$, $OT^2 = OP^2 - PT^2$ $\Rightarrow \ OT^2 = 10^2 - 8^2$

 $\Rightarrow OT = 6 \text{ cm}$

BM is a tangent of inner circle

 $\therefore \ \angle M = 90^{\circ}$

In right ΔOMB ,

 $BM^2 = OB^2 - OM^2$

 $\implies BM^2 = 13^2 - 12^2$

- $\Rightarrow BM^2 = 169 144 = 25$
- $\Rightarrow BM = 5 \text{ cm and } AB = 2BM = 2 \times 5 = 10 \text{ cm}$
- 2. Volume of the sphere $=\frac{4}{3}\pi r^3$

Since the sphere is melted and recast into a cone. ∴ Volume of the cone = Volume of the sphere

 $\therefore \quad \frac{1}{3}\pi R^2 h = \frac{4}{3}\pi r^3 \quad [R \text{ is radius of the cone}]$

But h = r

$$\therefore \quad \frac{1}{3}\pi R^2 \cdot r = \frac{4}{3}\pi r^3 \Longrightarrow R^2 = 4r^2 \Longrightarrow \quad R = 2r$$

:. Base radius of the cone =2r.

3. Here, P = ₹ 2000, R = 6% per annum We know that, Simple interest (S.I.) = *PRT*/100, ...(i) where *T* is the time in years (i) Putting T = 1, 2, 3, ... in (i)

Interest at the end of first year $=\frac{2000 \times 6 \times 1}{100} =$ ₹ 120 Interest at the end of second year $=\frac{2000 \times 6 \times 2}{100} =$ ₹ 240 Interest at the end of third year $=\frac{2000 \times 6 \times 3}{100} =$ ₹ 360 So, the sequence of interest (in ₹) is 120, 240, 360, ... (ii) In the above sequence,

Since, $a_1 = 120$, $a_2 = 240$, $a_3 = 360$,...

Now,
$$a_2 - a_1 = 240 - 120 = 120$$
,

 $a_3 - a_2 = 360 - 240 = 120$

:: $a_2 - a_1 = a_3 - a_2 = 120$ (in each case)

:. The sequence of interests forms an A.P.

4. We construct the following table :

x _i	f_i	$f_i x_i$	
2	3	6	
4	2	8	
6	3	18	
10	1	10	
<i>p</i> + 5	2	2 <i>p</i> + 10	
	$n = \Sigma f_i = 11$	$\Sigma f_i x_i = 2p + 52$	

We have, $n = \Sigma f_i = 11$, $\Sigma f_i x_i = 2p + 52$

$$\therefore \quad \text{Mean} = \frac{\sum f_i x_i}{n} \implies 6 = \frac{2p + 52}{11}$$

 $\Rightarrow 66 = 2p + 52 \Rightarrow 2p = 14 \Rightarrow p = 7$

5. Let the two consecutive even integers are 2x and 2x + 2.

According to the condition, 2x(2x + 2) = 528 $\Rightarrow 4x^2 + 4x - 528 = 0 \Rightarrow x^2 + x - 132 = 0$ This is the required quadratic equation.

OR

Since
$$x = 7$$
 and $x = 5$ are the solutions of equation
 $p(x) = 0$ where $p(x) = ax^2 - bx + 35$
 $\therefore p(7) = 0$ and $p(5) = 0$
 $p(7) = 0 \Rightarrow a(7)^2 - b(7) + 35 = 0$
 $\Rightarrow 49a - 7b + 35 = 0$
 $\Rightarrow 7a - b + 5 = 0 \Rightarrow b = 7a + 5$...(i)
Now, $p(5) = 0 \Rightarrow a(5)^2 - b(5) + 35 = 0$
 $\Rightarrow 25a - 5b + 35 = 0$
 $\Rightarrow 5a - b + 7 = 0$...(ii)
Using (i) in (ii), we get
 $5a - (7a + 5) + 7 = 0$
 $\Rightarrow -2a - 5 + 7 = 0 \Rightarrow -2a = -2 \Rightarrow a = 1$.
From (i), we have, $b = 7(1) + 5 = 12$
Hence, $a = 1$ and $b = 12$.

6. The first seven whole numbers arranged in ascending order are 0, 1, 2, 3, 4, 5, 6
Here, n = 7
∴ Median = 4th observation = 3
If 9 is included, then observations are 0, 1, 2, 3, 4, 5, 6, 9
Now, n = 8

$$\therefore \quad \text{Median} = \frac{(4^{\text{th}} + 5^{\text{th}}) \text{ observation}}{2}$$

$$=\frac{3+4}{2}=\frac{7}{2}=3.5$$

 \therefore Difference of medians = 3.5 - 3 = 0.5

7. Given, first term (a) = 25, $a_n = -17$ and $S_n = 60$ We have, $a_n = a + (n-1)d \implies 25 + (n-1)d = -17$ $\implies (n-1)d = -42$...(i)

$$S_n = \frac{n}{2} [2a + (n-1)d] \Longrightarrow \frac{n}{2} [2(25) + (n-1)d] = 60 \quad \dots \text{(ii)}$$

From (i) and (ii), we get

$$\frac{n}{2}[50-42] = 60 \implies n = \frac{60}{4} \implies n = 15$$

Now, substituting $n = 15$ in (i), we get

$$(15-1)d = -42 \implies d = \frac{-42}{14} = -3$$

Given A.P. is -2, -7, -12, Let the n^{th} term of the A.P. is -77. Then, first term, a = -2 and common difference, d = -7 - (-2) = -7 + 2 = -5 \therefore n^{th} term of an A.P., $a_n = a + (n - 1)d$ $\Rightarrow -77 = -2 + (n - 1)(-5)$ $\Rightarrow -75 = -(n - 1) \times 5$ $\Rightarrow (n - 1) = 15 \Rightarrow n = 16$

So, the 16^{th} term of the given A.P. will be -77. Now, the sum of *n* terms of an A.P. is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

So, sum of 16 terms, $S_{16} = \frac{16}{2} [2 \times (-2) + (n-1)(-5)]$

 $= 8[-4 + (16 - 1)(-5)] = 8(-4 - 75) = 8 \times (-79) = -632$ Hence, the sum of this A.P. upto the term -77 is -632.

8. Let marks obtained by Ankur in Mathematics be x, then marks obtained in Science is 28 - x.

According to question, (x + 3) (28 - x - 4) = 180 $\Rightarrow (x + 3) (24 - x) = 180$ $\Rightarrow 24x - x^2 + 72 - 3x = 180 \Rightarrow x^2 - 21x + 108 = 0$ $\Rightarrow x^2 - 12x - 9x + 108 = 0$

$$\Rightarrow x(x-12) - 9(x-12) = 0$$

$$\Rightarrow (x - 12) (x - 9) = 0 \Rightarrow x = 12 \text{ or } x = 9$$

If marks obtained in Mathematics = 12, then marks obtained in Science = 28 - 12 = 16

If marks obtained in Mathematics = 9, then marks obtained in Science = 28 - 9 = 19

9. Steps of construction :

Step-I: Draw a circle with *O* as centre and radius 5 cm.

Step-II : Mark a point *P* outside the circle such that *OP* = 8 cm.

Step-III : Join *OP* and draw its perpendicular bisector, which cuts *OP* at *M*.

Step-IV : Draw a circle with *M* as centre and radius equal to *MP* to intersect the given circle at the point *T* and *T'*. Join *PT* and *PT'*.

Hence, PT and PT' are the required tangents.

10. In right \triangle *CDB*,

$$\tan 30^{\circ} = \frac{CD}{DB} \implies \frac{1}{\sqrt{3}} = \frac{40}{DB}$$

$$\implies DB = 40\sqrt{3} \text{ m} \qquad \dots(i) \qquad A \qquad \text{(Top)}$$
In right ΔAEC ,
$$\tan 60^{\circ} = \frac{AE}{CE} \implies \sqrt{3} = \frac{AE}{DB}$$

$$\implies \sqrt{3} = \frac{AE}{40\sqrt{3}}$$

$$\implies AE = 40\sqrt{3}\sqrt{3} = 40 \times 3 \qquad \text{(Top)}$$

$$\implies AE = 120 \text{ m}$$

$$\therefore \text{ Height of the chimney}$$

$$= AB = AE + EB = AE + CD \qquad \text{(Foot)}$$

$$= 120 + 40 = 160 \text{ m}$$

11. Since tangent at a point to a circle is perpendicular to the radius through the point of contact.

 $\therefore \ \angle ACB = 90^{\circ}$ In $\triangle ACB$, $AB^2 = AC^2 + BC^2$ $\Rightarrow AB^2 = (6)^2 + (8)^2$ = 36 + 64 = 100

 $\therefore AB = 10 \text{ cm}$

Since the line joining the centres of two intersecting circles is perpendicular bisector of their common chord.

 $\therefore AP \perp CD \text{ and } CP = PD$ Let AP = x, then BP = 10 - xLet CP = DP = y cm

In
$$\triangle APC$$
 and $\triangle BPC$, applying pythagoras theorem,
 $AC^2 = AP^2 + PC^2$ and $BC^2 = BP^2 + PC^2$
 $\Rightarrow (6)^2 = x^2 + y^2$ and $(8)^2 = (10 - x)^2 + y^2$
 $\Rightarrow 36 = x^2 + y^2$ and $64 = 100 + x^2 - 20x + y^2$
 $\therefore 64 = 100 - 20x + 36 \Rightarrow 20x = 100 + 36 - 64$
 $\Rightarrow 20x = 72 \Rightarrow x = \frac{72}{20} = 3.6 \text{ cm}$
Also $36 = x^2 + y^2$
 $\Rightarrow 36 = (3.6)^2 + y^2 \Rightarrow 36 - 12.96 = y^2$
 $\Rightarrow 23.04 = y^2 \Rightarrow y = 4.8 \text{ cm}$
 $\therefore CD = 2CP = 2y = 2 \times 4.8 \text{ cm} = 9.6 \text{ cm}$

12. Let *AB* be the height of the rock and *CD* be the height of tower. A

CD = BE = 100 m,AB = HE H**≺**30° $\therefore AE = AB - BE = H - 100,$ CE = BD = x100 m In $\triangle ACE$, $\tan 30^\circ = \frac{AE}{CE}$ $\Rightarrow \frac{1}{\sqrt{2}} = \frac{H - 100}{x} \Rightarrow x = \sqrt{3} (H - 100)$...(1) In $\triangle ABD$, $\tan 45^\circ = \frac{AB}{BD}$ $\Rightarrow 1 = \frac{H}{r} \Rightarrow x = H$...(2) From (1) and (2), we have $H = \sqrt{3} (H - 100) \Rightarrow H = \sqrt{3} H - 100\sqrt{3}$ $\Rightarrow \sqrt{3}H - H = 100\sqrt{3} \Rightarrow H = \frac{100\sqrt{3}}{\sqrt{2}}$ $\Rightarrow H = \frac{100\sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}+1)} = \frac{100\sqrt{3}(\sqrt{3}+1)}{2}$ \Rightarrow $H = 50\sqrt{3}(\sqrt{3}+1) \Rightarrow H = 50(3+\sqrt{3}) \text{m}$ OR Let *O* be the starting point of Mr Anna Hazare Padyatra party.

OA = 150 km,AC = 120 km

In
$$\triangle ABC$$
, $\sin 45^\circ = \frac{BC}{AC}$
 $\Rightarrow \frac{1}{\sqrt{2}} = \frac{BC}{120} \Rightarrow BC = 60\sqrt{2} \text{ km}$

BC

and $\cos 45^\circ = \frac{AB}{AC} \Rightarrow \frac{1}{\sqrt{2}} = \frac{AB}{120} \Rightarrow AB = 60\sqrt{2} \text{ km}$ $\therefore OB = OA + AB = (150 + 60\sqrt{2}) \text{ km}$ $\Rightarrow OB = 150 + 60(1.414) = 234.84 \text{ km}$ and $BC = 60\sqrt{2} = 60(1.414) = 84.84 \text{ km}$ In $\triangle OBC$, $OC^2 = OB^2 + BC^2$ $\Rightarrow OC^2 = (234.84)^2 + (84.84)^2$ $\Rightarrow OC^2 = 55149.82 + 7197.82$ $\Rightarrow OC^2 = 62347.64$ $\Rightarrow OC = \sqrt{62347.64} = 249.69$ $\therefore OC = 250 \text{ km} (approx.)$

Thus, the distance between starting point to the final point is 250 km approx.

13. (i) Since, volume of sphere = volume of cylinder

$$\Rightarrow \frac{4}{3}\pi R^3 = \pi r^2 h$$
, where *R*, *r* are the radii of sphere

and cylinder respectively.

$$\Rightarrow R^{3} = \frac{6 \times 6 \times 8 \times 3}{4} = (6)^{3} \Rightarrow R = 6 \text{ cm}$$

- \therefore Radius of sphere = 6 cm
- (ii) Volume of sphere $=\frac{4}{3}\pi R^3$

$$=\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6 = 905.14 \text{ cm}^3$$

- : Volume of sphere = Volume of cylinder
- \therefore Required ratio = 1 : 1
- **14.** Let us consider the following table :

Class	Class	$d_i = x_i - A$	Frequency	$f_i d_i$
	marks (x _i)		(f_i)	
30-40	35	-20	80	-1600
40-50	45	-10	110	-1100
50-60	55 = A	0	120	0
60-70	65	10	70	700
70-80	75	20	40	800
Total			$\sum f_i = 420$	$\sum f_i d_i = -1200$

(i) The values of $|d_i|$ are 0, 10, 20

Thus, the minimum value of $|d_i|$ is 0.

(ii) Required mean = A +
$$\frac{\sum f_i d_i}{\sum f_i} = 55 - \frac{1200}{420}$$

= ₹ 52.14