

Series DA2AB/2

SET~3

		रोल न	i.				
Roll No.							

प्रश्न-पत्र कोड Q.P. Code 30/2/3

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट / NOTE :

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
 Please check that this question paper contains 23 printed pages.
- (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
 Please check that this question paper contains 38 questions.
- (iii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
 Please write down the serial number of the question in the answer-book before attempting it.
- (v) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

गणित (मानक) MATHEMATICS (Standard)

निर्धारित समय: 3 घण्टे अधिकतम अंक: 80

Time allowed: 3 hours Maximum Marks: 80

30/2/3/DA2AB/21

107 C

Page 1

P. T.O.

- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय (MCQ) तथा प्रश्न संख्या 19 एवं 20
- (iv) खण्ड- **ख** में प्रश्न संख्या 21 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के 2 अंकों के प्रश्न हैं।
- खण्ड $m{\eta}$ में प्रश्न संख्या $m{26}$ से $m{31}$ तक लघु $-m{3}$ त्तरीय ($m{SA}$) प्रकार के $m{3}$ अंकों के प्रश्न हैं $m{i}$
- (vi) खण्ड **घ** में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के 5 अंकों के प्रश्न हैं।
- (vii) खण्ड **ड** में प्रश्न संख्या 36 से 38 तक प्रकरण अध्ययन आधारित 4 अंकों के प्रश्न हैं। प्रत्येक
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **ख** के 2 प्रश्नों में, खण्ड **ग** के 2 प्रश्नों में, खण्ड – घ के 2 प्रश्नों में तथा खण्ड – ङ के 3 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- सामान्य निर्देश :

 ि तम्मलिखित निर्देशों को बहुत सावधानी से पिहए और उनका साखी से पालन कीजिए :

 (i) इस ग्रस्न-पत्र में 38 ग्रस्न हैं | सभी ग्रस्न अनिवार्य हैं |

 (ii) यह ग्रस्न-पत्र मैं विधाजित है क, ख, ग, घ एवं ङ |

 (iii) खण्ड क में ग्रस्म संख्या 1 से 18 तक बहुविकल्पीय (MCQ) तथ अभिकथन एवं तर्क आधारित 1 अंक के ग्रस्म हैं |

 (iv) खण्ड ख में ग्रस्म संख्या 21 से 25 तक अति लघु उत्तरीय (VSA) ग्रका (v) खण्ड च में ग्रस्म संख्या 26 से 31 तक लघु उत्तरीय (LA) ग्रकार के 3

 (vi) खण्ड घ में ग्रस्म संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) ग्रकार के 3

 (vii) खण्ड ङ में ग्रस्म संख्या 36 से 38 तक ग्रकरण अध्ययन आधारित अग्रकरण अध्ययन में आंतरिक विकल्प 2 अंकों के ग्रस्म में दिया गया है |

 (viii) ग्रस्न-पत्र में समग्र विकल्प नहीं दिया गया है | यद्यपि, खण्ड ख के 2 ग्रस्म में तथा खण्ड ङ के 3 ग्रस्मों में तथा खण्ड ङ के 3 ग्रस्मों में तथा खण्ड छ के 2 ग्रस्मों में तथा खण्ड छ के 3 ग्रस्मों में आंतरिक विकल्प हो तथा गया हो |

 (ix) जहाँ आवश्यक हो स्वच्छ आकृतियाँ बनाइए | जहाँ आवश्यक हो त्र = दिया गया हो |

 (x) कैल्कुलेटर का उपयोग विजित है | (ix) जहाँ आवश्यक हो स्वच्छ आकृतियाँ बनाइए । जहाँ आवश्यक हो $\pi = \frac{22}{7}$ लीजिए, यदि अन्यथा न

© General Instructions:

- This question paper contains 38 questions. All questions are compulsory.
- This question paper is divided into FIVE Sections A, B, C, D and E.
- General Instructions:

 Read the following instructions very carefully and strictly follow them:

 (i) This question paper contains 38 questions. All questions are co

 (ii) This question paper is divided into FIVE Sections A, B, C, L

 (iii) In Section–A questions number 1 to 18 are Multiple Choice

 (MCQs) and question number 19 and 20 are Assertion-Rea

 questions of 1 mark each.

 (iv) In Section–B questions number 21 to 25 are Very Short Ans

 type questions, carrying 2 marks each.

 (v) In Section–C questions number 26 to 31 are Short Answer

 questions, carrying 3 marks each.

 (vi) In Section–D questions number 32 to 35 are Long Answer

 questions, carrying 5 marks each.

 (vii) In Section–E question number 36 to 38 are Case Study based

 carrying 4 marks each. Internal choice is provided in 2 mark

 in each case-study.

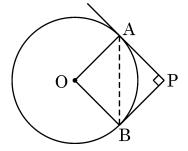
 (viii) There is no overall choice. However, an internal choice has beed

 in 2 questions in Section–B, 2 questions in Section–C, 2 q

 Section–D and 3 question in Section–E.

 (ix) Draw neat diagrams wherever required. Take π = 22/7 wherever

 if not stated.


 (x) Use of calculator is NOT allowed. (iii) In Section-A questions number 1 to 18 are Multiple Choice Questions (MCQs) and question number 19 and 20 are Assertion-Reason based
 - (iv) In Section-B questions number 21 to 25 are Very Short Answer (VSA)
 - In Section-C questions number 26 to 31 are Short Answer (SA) type
 - (vi) In Section-D questions number 32 to 35 are Long Answer (LA) type
 - (vii) In Section-E question number 36 to 38 are Case Study based questions carrying 4 marks each. Internal choice is provided in 2 marks questions
 - (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section- \mathbf{B} , 2 questions in Section- \mathbf{C} , 2 questions in
 - (ix) Draw neat diagrams wherever required. Take $\pi = \frac{22}{7}$ wherever required,

इस खण्ड में 20 प्रश्न हैं तथा प्रत्येक प्रश्न का 1 अंक है।

- बिंदुओं $(a\cos\theta, -a\sin\theta)$ तथा $(a\sin\theta, a\cos\theta)$ के बीच की दूरी है : 1

 $a\sqrt{2}$ (B)

- (D) 2a
- दी गई आकृति में, केंद्र O वाले वृत्त पर बिंदु P से परस्पर लंबवत स्पर्श-रेखाएँ PA और PB खींची गई हैं। यदि PA = 5 cm है, तो AB की लंबाई है:

 $5\sqrt{2}$ cm (B)

- 10 cm (D)
- समांतर श्रेढ़ी (A.P.) -29, -26, -23,, 61 का कौन सा पद 16 है ?

1

1

(B) 16वाँ

- (D) 31**वाँ**
- इस खण्ड में 20 !

 (A)
 a

 (C)
 0

 (A)
 a

 (C)
 0

 (C)
 0

 (D)
 (D)

 (E)
 (E)

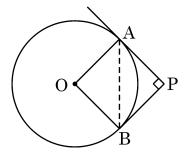
 (E)
 (E)
 </ एक बक्से में कार्ड हैं जिन पर 6 से 55 तक की संख्याएँ अंकित हैं । बक्से में से यादृच्छया एक कार्ड निकालने पर इस पर अंकित संख्या के एक पूर्ण वर्ग संख्या होने की प्रायिकता है:

1

(D) $\frac{5}{49}$

SECTION - A

 $20 \times 1 = 20$


This section consists of 20 questions of 1 mark each.

- The distance between the points (a $\cos \theta$, a $\sin \theta$) and (a $\sin \theta$, a $\cos \theta$) is 1
 - (A) a

(B) $a\sqrt{2}$

(C) 0

- 2a(D)
- In the given figure, tangents PA and PB to the circle centred at O, from point P are perpendicular to each other. If PA = 5 cm, then length of AB is equal to

5 cm(A)

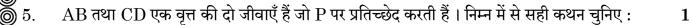
 $5\sqrt{2}$ cm (B)

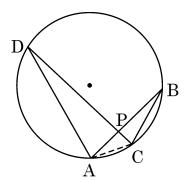
 $2\sqrt{5}$ cm (C)

- (D) 10 cm
- Which term of the A.P. -29, -26, -23,, 61 is 16?

1

1


(A) $11^{\rm th}$


16th (B)

(C) 10^{th}

- (D) $31^{\rm st}$
- A box contains cards numbered 6 to 55. A card is drawn at random from the box. The probability that the drawn card has a number which is a perfect square, is
- 1

(C)

(A) $\triangle ADP \sim \triangle CBA$

 $\triangle ADP \sim \triangle BPC$ (B)

(C) $\triangle ADP \sim \triangle BCP$

(D) $\triangle ADP \sim \triangle CBP$

दो पासे एक साथ उछाले गए । दोनों पासों पर आई संख्याओं का योग 10 से अधिक आने की प्रायिकता है :

(C) $\frac{7}{12}$

(D) $\frac{1}{12}$

एक परीक्षा के बाद, अध्यापिका अपनी कक्षा के अधिकतम बच्चों द्वारा प्राप्तांक जानना चाहती है। उसे ज्ञात करना है प्राप्तांकों का

(A) माध्यक

(B) बहुलक

(C) माध्य (D) परिसर

द्विघात समीकरण $4x^2 - 5x + 4 = 0$ के मूल

1

1

1

(A) अपरिमेय हैं।

(B) परिमेय तथा भिन्न हैं।

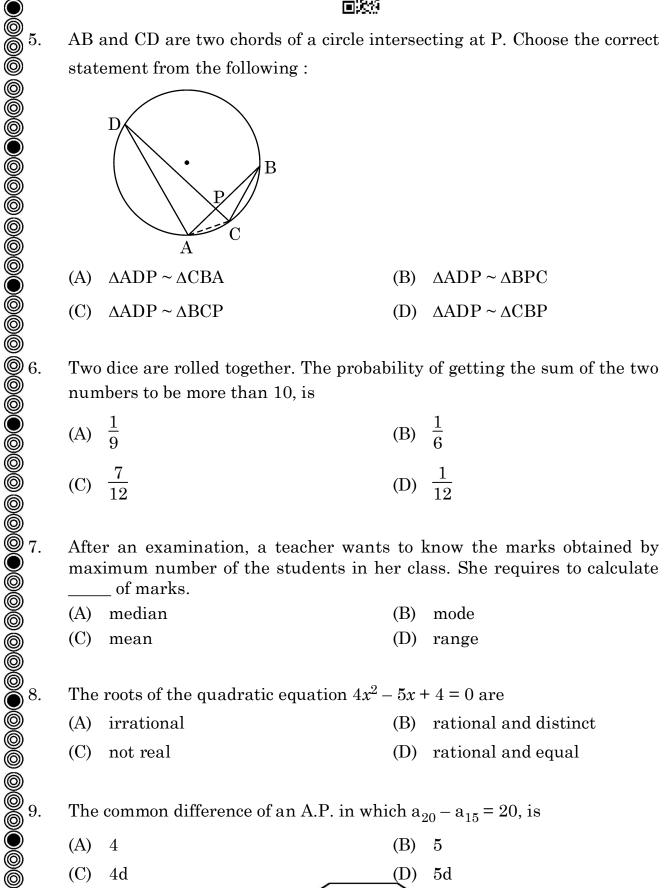
(C) वास्तविक नहीं हैं।

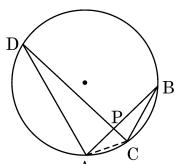
(D) परिमेय तथा समान हैं।

समांतर श्रेढ़ी जिसमें $\mathbf{a}_{20} - \mathbf{a}_{15}$ = 20 है, का सार्व अंतर है :

1

(A) 4


(B) 5


(C) 4d

(D) 5d

9 30/2/3/DA2AB/21

 \triangle ADP ~ \triangle CBA (A)

(B) $\triangle ADP \sim \triangle BPC$

 $\triangle ADP \sim \triangle BCP$

(D) $\triangle ADP \sim \triangle CBP$

Two dice are rolled together. The probability of getting the sum of the two numbers to be more than 10, is

(A)

(B) $\frac{1}{6}$

(C) $\frac{7}{12}$

(D) $\frac{1}{12}$

After an examination, a teacher wants to know the marks obtained by maximum number of the students in her class. She requires to calculate $\underline{\hspace{0.1cm}}$ of marks.

(A) median

(B) mode

(C) mean (D) range

The roots of the quadratic equation $4x^2 - 5x + 4 = 0$ are

1

1

1

1

(A) irrational (B) rational and distinct

(C) not real (D) rational and equal

The common difference of an A.P. in which $a_{20} - a_{15} = 20$, is

1

(A) 4

(B) 5

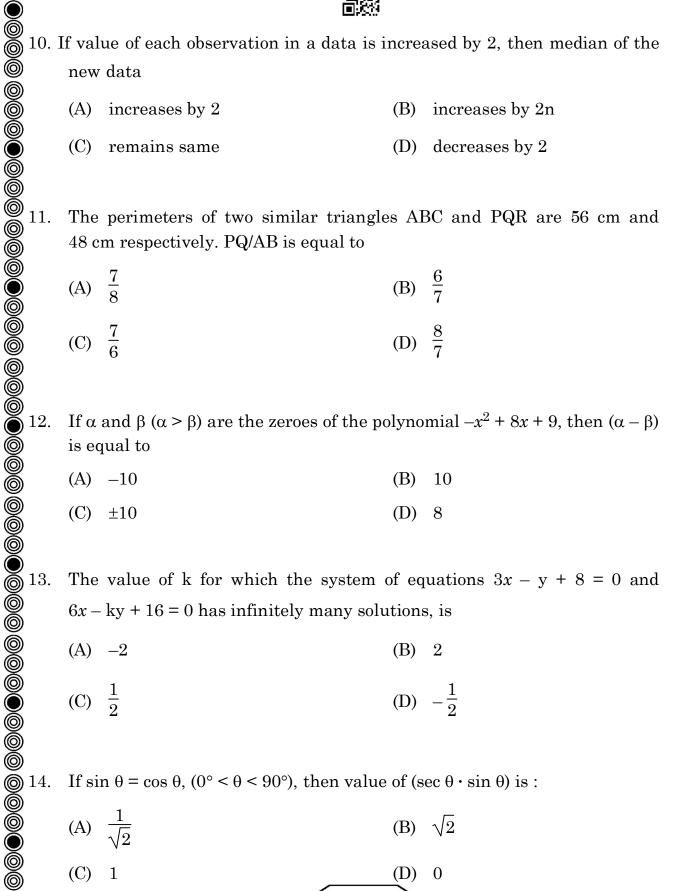
(C) 4d

5d

0 $30/2/3/ ext{DA2AB}/21$

P.T.O.

© 10.	यदि र्	केन्हीं आँकड़ों के प्रत्येक प्रेक्षण का मान 2 से बढ़ा	देया ज	ाए, तो नए आँकड़ों का माध्यक	1
0	(A)	2 से बढ़ जाएगा।	(B)	2n से बढ़ जाएगा।	
	(C)	वही रहेगा ।	(D)	2 से कम हो जाएगा।	
© 0 0 11. 0	दो स है :	मरूप त्रिभुजों ABC तथा PQR के परिमाप क्रमश	т: 56	cm तथा 48 cm हैं । PQ/AB बराबर	1
0 0 0	(A)	$\frac{7}{8}$	(B)	$\frac{6}{7}$	
0 0 0	(C)	$\frac{7}{6}$	(D)	$\frac{8}{7}$	
© 12.	यदि ($lpha$ तथा $eta,(lpha>eta),$ बहुपद $-x^2+8x+9$ के शू	त्यक हैं	, तो $(\alpha - \beta)$ का मान है :	1
0	(A)	-10	(B)	10	
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(C)	±10	(D)	8	
1 3.	k क	ा वह मान जिसके लिए समीकरण निकाय $3x-$	y + 8	8 = 0 तथा $6x - ky + 16 = 0$ के	
	अपरि	मित रूप से अनन्त हल हैं, है			1
0	(A)	-2	(B)	2	
	(C)	$\frac{1}{2}$	(D)	$-\frac{1}{2}$	
© 0 0 14.	यदि ६	केन्हीं आँकड़ों के प्रत्येक प्रेक्षण का मान 2 से बढ़ा है 2 से बढ़ जाएगा। वही रहेगा। मरूप त्रिभुजों ABC तथा PQR के परिमाप क्रमश् $\frac{7}{8}$ $\frac{7}{6}$ α तथा β , ($\alpha > \beta$), बहुपद $-x^2 + 8x + 9$ के श् -10 ± 10 I वह मान जिसके लिए समीकरण निकाय $3x - 6$ िमत रूप से अनन्त हल हैं, है -2 $\frac{1}{2}$ $\sin \theta = \cos \theta$, ($0^\circ < \theta < 90^\circ$) है, तो (sec θ $\frac{1}{\sqrt{2}}$ 1 A2AB/21 Page 8	·sin	θ) का मान है :	1
	(A)	$\frac{1}{\sqrt{2}}$	(B)	$\sqrt{2}$	
©	(C)	1	(D)	0	
30/2	3/D	A2AB/21 $<$ Page 8	>		



10. If value of each observation	in a data is increased	d by 2, then	median of the
new data			
(4)		1 0	

(A) increases by 2 (B) increases by 2n

remains same (C)

decreases by 2 (D)

(A)

(B) $\frac{6}{7}$

(C)

(D) $\frac{8}{7}$

12. If
$$\alpha$$
 and β ($\alpha > \beta$) are the zeroes of the polynomial $-x^2 + 8x + 9$, then $(\alpha - \beta)$ is equal to

(A) -10

10 (B)

(C) ± 10 (D) 8

13. The value of k for which the system of equations
$$3x - y + 8 = 0$$
 and $6x - ky + 16 = 0$ has infinitely many solutions, is

(A) -2

(B) 2

(C)

(D) $-\frac{1}{2}$

14. If
$$\sin \theta = \cos \theta$$
, $(0^{\circ} < \theta < 90^{\circ})$, then value of $(\sec \theta \cdot \sin \theta)$ is:

(B) $\sqrt{2}$

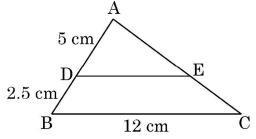
(C) 1

(D) 0 1

1

1

- बिंदु P, बिंदुओं A(4,-5) तथा B(1,2) को मिलाने वाले रेखाखण्ड को $5{:}2$ के अनुपात में बाँटता है । बिंदु P के निर्देशांक हैं:

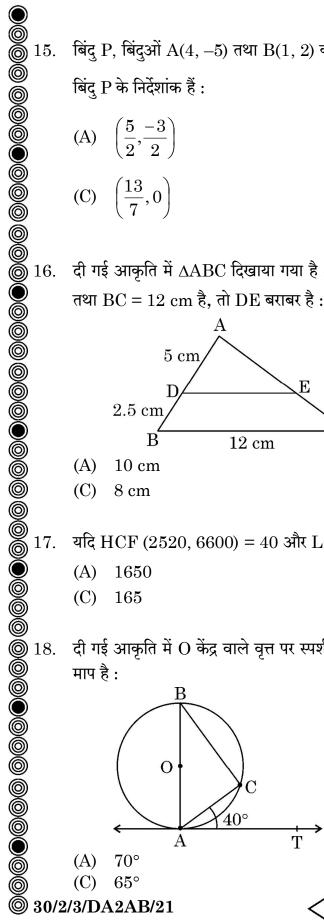

(B) $\left(\frac{11}{7},0\right)$

1

1

1

- (D) $\left(0, \frac{13}{7}\right)$
- दी गई आकृति में ΔABC दिखाया गया है और $DE \parallel BC$ है, यदि AD = 5~cm,~DB = 2.5~cmतथा BC = 12 cm है, तो DE बराबर है:



(B) 6 cm

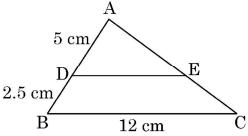
- (D) $7.5 \mathrm{cm}$
- यदि HCF (2520, 6600) = 40 और LCM (2520, 6600) = $252 \times k$ है, तो k का मान है : 1

(B) 1600

- (D) 1625
- दी गई आकृति में O केंद्र वाले वृत्त पर स्पर्श-रेखा AT है । यदि $\angle CAT = 40^\circ$ है, तो $\angle CBA$ की

(B) 50°

(D) 40°


- Point P divides the line segment joining the points A(4, -5) and B(1, 2) in the ratio 5:2. Co-ordinates of point P are
- 1

1

 $\left(\frac{5}{2}, \frac{-3}{2}\right)$

(B) $\left(\frac{11}{7},0\right)$

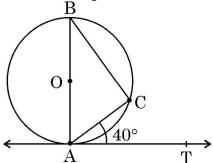
- (D) $\left(0, \frac{13}{7}\right)$
- In the given figure $\triangle ABC$ is shown. DE is parallel to BC. If AD = 5 cm, DB = 2.5 cm and BC = 12 cm, then DE is equal to

10 cm (A)

(B) $6 \, \mathrm{cm}$

(C) 8 cm

- (D) $7.5 \mathrm{cm}$
- If the HCF (2520, 6600) = 40 and LCM (2520, 6600) = $252 \times k$, then the value of k is
- 1


1

(A) 1650

1600 (B)

(C) 165

- 1625 (D)
- In the given figure, AT is tangent to a circle centred at O. If $\angle CAT = 40^{\circ}$, then $\angle CBA$ is equal to

(A) 70° (B) 50°

(C) 65° (D) 40°

0 $30/2/3/ ext{DA2AB}/21$

निर्देश: प्रश्न 19 तथा 20 में प्रत्येक प्रश्न में एक अभिकथन (A) के बाद एक तर्क कथन (R) दिया है। निम्न में से सही विकल्प चुनिए:

- (A) दोनों अभिकथन (A) तथा तर्क कथन (R) सत्य हैं। तर्क कथन (R), अभिकथन (A) की व्याख्या करता है।
- (B) दोनों अभिकथन (A) तथा तर्क कथन (R) सत्य हैं। तर्क कथन (R), अभिकथन (A) की व्याख्या नहीं करता है।
- अभिकथन (A) सत्य है परन्तु तर्क कथन (R) असत्य है।
- अभिकथन (A) असत्य है जबिक तर्क कथन (R) सत्य है।
- अभिकथन (A) : यदि $\sin A = \frac{1}{3} (0^{\circ} < A < 90^{\circ})$ है, तो $\cos A$ का मान $\frac{2\sqrt{2}}{3}$ है।

तर्क कथन (R) : सभी कोण θ के लिए $\sin^2 \theta + \cos^2 \theta = 1$.

अभिकथन (A): 10 cm भुजा वाले दो घनों को किनारे मिलाकर रखने से बने नये घनाभ का संपूर्ण पृष्ठीय क्षेत्रफल $1200~\mathrm{cm}^2$ है।

तर्क कथन (R): घन, जिसकी भुजा $10~{\rm cm}$ है, के प्रत्येक फलक का क्षेत्रफल $100~{\rm cm}^2$ है।

1

1

 $\mathbf{2}$

 $\mathbf{2}$

खण्ड – ख

इस खण्ड में 5 प्रश्न हैं तथा प्रत्येक के 2 अंक हैं।

बिंदुओं (3, -5) तथा (-1, 6) को मिलाने वाला रेखाखण्ड रेखा y = x द्वारा किस अनुपात में (a) विभाजित होता है ?

अथवा

A(3, 0), B(6, 4) तथा C(-1, 3) एक ΔABC के शीर्ष हैं । माध्यिका BE की लंबाई ज्ञात कीजिए।

igotimes 30/2/3/DA2AB/21

- **Directions:** In Question 19 and 20, Assertion (A) and Reason (R) are given. Select the correct option from the following:
- Both Assertion (A) and Reason (R) are true. Reason (R) is the correct explanation of Assertion (A).
- Both Assertion (A) and Reason (R) are true. Reason (R) does not give correct explanation of (A).
- Assertion (A) is true but Reason (R) is not true.
- Assertion (A) is not true but Reason (R) is true.
- **Assertion (A)**: If sin A = $\frac{1}{3}$ (0° < A < 90°), then the value of cos A is $\frac{2\sqrt{2}}{3}$

Reason (R): For every angle θ , $\sin^2 \theta + \cos^2 \theta = 1$.

1

1

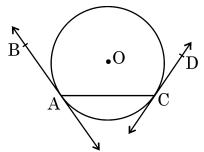
2

2

- | Directions | given. Select | Garden | **Assertion (A):** Two cubes each of edge length 10 cm are joined together. The total surface area of newly formed cuboid is 1200 cm².
 - **Reason (R)**: Area of each surface of a cube of side 10 cm is 100 cm².

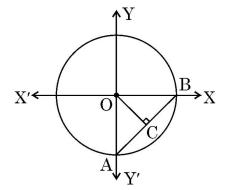
SECTION - B

In this section, there are 5 questions of 2 marks each.


In what ratio is the line segment joining the points (3, -5) and (-1, 6)divided by the line y = x?

OR

A(3, 0), B(6, 4) and C(-1, 3) are vertices of a triangle ABC. Find length of its median BE.


दी गई आकृति में, AB तथा CD, केंद्र O वाले वृत्त की दो स्पर्श-रेखाएँ हैं । क्या $\angle BAC = \angle DCA$? अपने उत्तर की पृष्टि कीजिए।

2

222. **2**3. **2**4. **2**5. दी गई आकृति में मूल बिंदु O पर एक 7~cm त्रिज्या के वृत्त का केंद्र है तथा OC, ΔOAB की माध्यिका है। माध्यिका OC की लंबाई ज्ञात कीजिए।

2

 $2 \sin^2 30^\circ \sec 60^\circ + \tan^2 60^\circ$ का मान ज्ञात कीजिए। (a)

2

अथवा

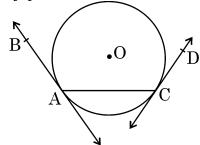
(b) यदि $2 \sin (A + B) = \sqrt{3}$ तथा $\cos (A - B) = 1$ है, तो कोण A तथा B की माप ज्ञात कीजिए, $0 \le A$, B, $(A + B) \le 90^\circ$.

2

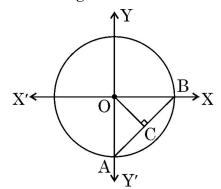
 $\mathbf{2}$

क्या संख्या 8^n , एक प्राकृत संख्या n के लिए , अंक 0 पर समाप्त हो सकती है ? कारण दीजिए ।

खण्ड – ग


इस खण्ड में 6 प्रश्न हैं तथा प्रत्येक के 3 अंक हैं।

) 26. सिद्ध कीजिए कि
$$\frac{\csc^2\theta - \sec^2\theta}{\csc^2\theta + \sec^2\theta} = \frac{3}{4}$$
, जहाँ $\tan\theta = \frac{1}{\sqrt{7}}$ है।


In the given figure, AB and CD are tangents to a circle centred at O. Is $\angle BAC = \angle DCA$? Justify your answer.

● 22. ● 22. 23. 24. 25. In the given figure, a circle centred at origin O has radius 7 cm, OC is median of $\triangle OAB$. Find the length of median OC.

Evaluate: $2 \sin^2 30^\circ \sec 60^\circ + \tan^2 60^\circ$. (a)

2

OR

- If $2 \sin (A + B) = \sqrt{3}$ and $\cos (A B) = 1$, then find the measures of angles A and B. $0 \le A$, B, $(A + B) \le 90^\circ$.
- Can the number 8ⁿ, n being a natural number, end with the digit 0? Give reasons.

2

 $\mathbf{2}$

SECTION - C

This section consists of 6 questions of 3 marks each.

Prove that $\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{3}{4}$, if $\tan \theta = \frac{1}{\sqrt{7}}$

3

30/2/3/DA2AB/21

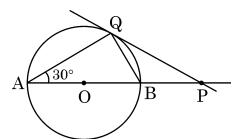
P.T.O.

यदि एक समांतर श्रेढ़ी (A.P.) के प्रथम m पदों का योगफल इसके प्रथम n पदों ($m \ne n$) के योगफल के समान है, तो दर्शाइए कि इसके प्रथम (m + n) पदों का योगफल शून्य है।

3

अथवा

एक समांतर श्रेढ़ी के तीन क्रमागत पदों का योगफल 24 है तथा इनके वर्गों का योगफल 194 है। संख्याएँ ज्ञात कीजिए।

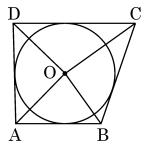

3

सिद्ध कीजिए कि $\sqrt{5}$ एक अपरिमेय संख्या है।

3

3

दी गई आकृति में, केंद्र O वाले वृत्त की एक स्पर्श-रेखा PQ है तथा $\angle BAQ = 30^{\circ}$ है, तो दर्शाइए कि BP = BQ।



अथवा

दी गई आकृति में, AB, BC, CD तथा DA केंद्र O वाले वृत्त की स्पर्श-रेखाएँ हैं जो एक (b) चतुर्भुज ABCD बनाती हैं। दर्शाइए कि

3

$$\angle AOB + \angle COD = 180^{\circ}$$

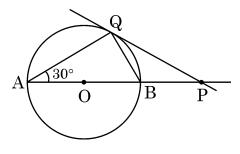
एक व्यापारी एक वस्तु को ₹ 75 में बेचकर क्रय मूल्य के बराबर प्रतिशत लाभ प्राप्त करता है। इस वस्तु का क्रय मूल्य ज्ञात कीजिए।

② 27. (a) If the terms
③ (b) In an their s
⑤ 28. Prove that \
② 29. (a) In the ∠BAQ
⑥ (b) In the with cell Show th
⑥ 30. A dealer sell price of the al ⑥ 30/2/3/DA2AB/21 If the sum of first m terms of an A.P. is same as sum of its first n terms $(m \neq n)$, then show that the sum of its first (m + n) terms is zero.

3

OR

In an A.P., the sum of three consecutive terms is 24 and the sum of their squares is 194. Find the numbers.

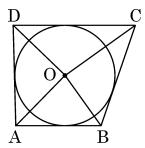

3

Prove that $\sqrt{5}$ is an irrational number.

3

In the given figure, PQ is tangent to a circle centred at O and $\angle BAQ = 30^{\circ}$; show that BP = BQ.

3



OR

In the given figure, AB, BC, CD and DA are tangents to the circle with centre O forming a quadrilateral ABCD.

3

Show that $\angle AOB + \angle COD = 180^{\circ}$

A dealer sells an article for ₹ 75 and gains as much percent as the cost price of the article. Find the cost price of the article.

3

5

5

5

5

5

5

एक परीक्षा में 100 विद्यार्थियों के 50 में से प्राप्त अंक नीचे दिए गए हैं:

प्राप्तांक:	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
विद्यार्थियों की संख्या :	12	23	34	25	6

विद्यार्थियों द्वारा प्राप्त अंकों का माध्य ज्ञात कीजिए।

खण्ड – घ

इस खण्ड में 4 प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।

- एक व्यक्ति एक नदी के एक किनारे पर खड़ा होकर दूसरे किनारे पर सम्मुख खड़ी एक मीनार के शिखर का उन्नयन कोण 60° पाता है। यह व्यक्ति जब किनारे से $30~\mathrm{m}$ दूर जाता है तो मीनार के शिखर का उन्नयन कोण 30° हो जाता है। मीनार की ऊँचाई तथा नदी की चौड़ाई ज्ञात कीजिए। (लीजिए $\sqrt{3}=1.732$)
- $5.6~\mathrm{m}$ त्रिज्या के एक वृत्त के एक त्रिज्यखण्ड का परिमाप $20.0~\mathrm{m}$ है । त्रिज्यखण्ड का क्षेत्रफल ज्ञात कीजिए।
- 31. 31. 32. 33. 34. यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद (a) करने के लिए एक रेखा खींची जाए, तो सिद्ध कीजिए कि ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

अथवा

- एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज PQR की (b) भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं । दर्शाइए कि $\Delta ABC \sim$ ΔPQR Ι
- आलेखीय विधि से निम्न समीकरण युग्म को हल कीजिए : (a)

$$3x - 2y = 10$$
 तथा $5x + 3y = 4$

अथवा

(b) यदि दो संख्याओं में बड़ी संख्या के तीन गुने को छोटी संख्या से भाग करें, तो भागफल 4 तथा शेषफल 3 आता है। यदि छोटी संख्या के 7 गुने को बड़ी संख्या से भाग करें, तो भागफल 5 तथा शेषफल 1 आता है। संख्याएँ ज्ञात कीजिए।

 $igotimes 30/2/3/ ext{DA2AB}/21$

In a test, the marks obtained by 100 students (out of 50) are given below:

Marks obtained :	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Number of students :	12	23	34	25	6

Find the mean marks of the students.

SECTION - D

This section consists of 4 questions of 5 marks each.

- A person standing on the bank of a river observes that the angle of elevation of the top of a tower on the opposite bank is 60°. When he moves 30 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tower and width of the river. (Take $\sqrt{3} = 1.732$)
 - The perimeter of a certain sector of a circle of radius 5.6 m is 20.0 m. Find the area of the sector.
 - If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.

OR

- Sides AB and AC and median AD to ΔABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$.
- Using graphical method, solve the following system of equations: 5 3x - 2y = 10 and 5x + 3y = 4

OR

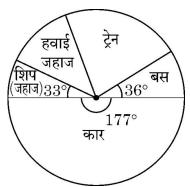
If three times the greater of two numbers is divided by the smaller one, we get 4 as the quotient and 3 as the remainder. Also, if seven times the smaller number is divided by greater one, we get 5 as the quotient and 1 as the remainder. Find the numbers.

5

3

5

5


5

खण्ड – ङ

इस खण्ड में 3 प्रकरण आधारित प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।

छुट्टियों के दिनों के एक सर्वे में 120 व्यक्तियों से अपनी पिछली छुट्टियों में प्रयोग किए गए वाहन के प्रकार के बारे में पूछा गया । निम्न पाई-चार्ट इस सर्वे के परिणाम बताता है।

पाई-चार्ट के अवलोकन से निम्न प्रश्नों के उत्तर दीजिए :

यदि याद्रच्छया एक व्यक्ति चुना गया, तो उसके बस अथवा शिप (जहाज) द्वारा यात्रा करने की (i) प्रायिकता ज्ञात कीजिए।

1

1

 $\mathbf{2}$

2

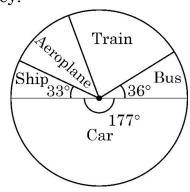
- सबसे अधिक प्रचलित/पसंदीदा परिवहन का साधन कौन सा है और कितने लोगों ने इसका उपयोग किया ?
- एक यादृच्छया चुने गए व्यक्ति के ट्रेन द्वारा न जाने की प्रायिकता 4/5 है तो ज्ञात कीजिए (iii) (a) कितने लोगों ने ट्रेन का प्रयोग किया ?

अथवा

- एक यादूच्छया चुने गए व्यक्ति द्वारा हवाई जहाज के प्रयोग करने की प्रायिकता 7/60 है, तो (iii) (b) हवाई कम्पनी द्वारा अर्जित आय ज्ञात कीजिए, यदि उन्होंने प्रति व्यक्ति ₹ 5,000 लिए ।
- 'सर्कस' शब्द मूलत: सर्कल (वृत्त) के समान ही है। एक बंद गोलाकार क्षेत्र में मानव कौशल और पशु प्रशिक्षण सहित विभिन्न मनोरंजन कार्यक्रम भीड़ के सामने प्रस्तृत किए जाते हैं। एक सर्कस का टैंट $8~\mathrm{m}$ की ऊँचाई तक बेलनाकार है तथा इसके ऊपर शंक्वाकार है । आधार का व्यास $28~\mathrm{m}$ है तथा टैंट की कुल ऊँचाई $18.5~\mathrm{m}$ है।

igotimes 30/2/3/DA2AB/21

Page 20



SECTION - E

This section consists of 3 case based questions of 4 marks each.

This section

36. In a survey transport the the results of the res In a survey on holidays, 120 people were asked to state which type of transport they used on their last holiday. The following pie chart shows the results of the survey.

Observe the pie chart and answer the following questions:

- If one person is selected at random, find the probability that he/she travelled by bus or ship.
- Which is most favourite mode of transport and how many people used it?
- A person is selected at random. If the probability that he did not use train is 4/5, find the number of people who used train.

OR.

- The probability that randomly selected person used aeroplane is 7/60. Find the revenue collected by air company at the rate of ₹ 5,000 per person.
- The word 'circus' has the same root as 'circle'. In a closed circular area, various entertainment acts including human skill and animal training are presented before the crowd.

A circus tent is cylindrical upto a height of 8 m and conical above it. The diameter of the base is 28 m and total height of tent is 18.5 m.

1

1

2

उपरोक्त के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

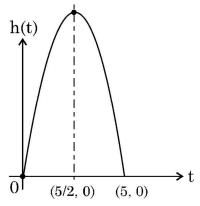
शंक्वाकार भाग की तिर्यक ऊँचाई ज्ञात कीजिए। (i)

1

टैंट के फर्श का क्षेत्रफल ज्ञात कीजिए।

1

(iii) (a) टैंट बनाने में प्रयोग होने वाले कपड़े का क्षेत्रफल ज्ञात कीजिए।


2

अथवा

इस खाली टैंट में हवा का कुल आयतन ज्ञात कीजिए। (iii) (b)

 $\mathbf{2}$

एक गेंद हवा में इस प्रकार फेंकी गई कि t सेकण्ड के बाद इसकी ऊँचाई, अपने आरम्भिक बिंदु से h मीटर है तथा बहुपद $h=25t-5t^2$ द्वारा व्यक्त की गई है।

बहुपद के ग्राफ का अवलोकन करके निम्न प्रश्नों के उत्तर दीजिए:

दिए गए बहुपद के शून्यक लिखिए। (i)

1

गेंद द्वारा प्राप्त की गई अधिकतम दूरी ज्ञात कीजिए।

1

ऊपर फेंकने के कितने समय के पश्चात् गेंद 30 m की ऊँचाई पर होगी ?

2

अथवा

जब गेंद की ऊँचाई 20 m है तो t के दो विभिन्न मान ज्ञात कीजिए। (iii) (b)

Based on the above, answer the following questions: Find slant height of the conical part. Determine the floor area of the tent. Find area of the cloth used for making tent. OR Find total volume of air inside an empty tent. A ball is thrown in the air so that t seconds after it is thrown, its height h metre above its starting point is given by the polynomial $h = 25t - 5t^2$. h(t) (5/2, 0)(5, 0)

Observe the graph of the polynomial and answer the following questions:

1

1

2

 $\mathbf{2}$

1

1

 $\mathbf{2}$

 $\mathbf{2}$

- Write zeroes of the given polynomial.
- Find the maximum height achieved by ball.
- After throwing upward, how much time did the ball take to reach to the height of 30 m?

OR

Find the two different values of t when the height of the ball was 20 m.

Marking Scheme Strictly Confidential (For Internal and Restricted use only) **Secondary School Examination, 2024** MATHEMATICS PAPER CODE 30/2/3

General	Instructions: -	
O CHICL MI	THE CLUSTER	

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations 2 conducted, Evaluation done and several other aspects, Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done 3 according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class- X, while evaluating two competencybased questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. The Marking scheme carries only suggested value points for the answers 4 These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. 5 The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark ($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be 6
 - marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
 - If a question has parts, please award marks on the right-hand side for each part. Marks awarded 7 for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
 - If a question does not have any parts, marks must be awarded in the left-hand margin and 8 encircled. This may also be followed strictly.

9 In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous attempt), marks shall be awarded for the first attempt only and the other answer scored out with a note "Extra Ouestion". In Q21-Q38, if a student has attempted an extra question, answer of the question deserving more 10 marks should be retained and the other answer scored out with a note "Extra Question". No marks to be deducted for the cumulative effect of an error. It should be penalized only once. 11 12 A full scale of marks (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it. 13 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. Ensure that you do not make the following common types of errors committed by the 14 Examiner in the past :-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totalling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totalling on the title page. Wrong totalling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. 15 While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0) Marks. Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected 16 by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the "Guidelines for 17 **spot Evaluation**" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the 18 title page, correctly totalled and written in figures and words. The candidates are entitled to obtain photocopy of the Answer Book on request on payment 19 of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME MATHEMATICS (Subject Code-041) (PAPER CODE: 30/2/3)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Marks			
	SECTION A This section consists of 20 questions of 1 mark each.				
1.	The distance between the points (a $\cos \theta$, – a $\sin \theta$) and (a $\sin \theta$, a $\cos \theta$) is				
	(A) a (B) $a\sqrt{2}$				
	(C) 0 (D) 2a				
Sol.	(B) $a\sqrt{2}$	1			
2.	In the given figure, tangents PA and PB to the circle centred at O, from point P are perpendicular to each other. If PA = 5 cm, then length of AB is equal to				
	(A) 5 cm (B) $5\sqrt{2}$ cm				
	(C) $2\sqrt{5}$ cm (D) 10 cm				
Sol.	(B) $5\sqrt{2}$ cm	1			
3.	Which term of the A.P29, -26, -23,, 61 is 16?				
	(A) 11 th (B) 16 th				
	(C) 10 th (D) 31 st				
Sol.	(B) 16 th	1			

4.	A box contains cards numbered 6 to 55. A	A coud is duous at yandam from				
	the box. The probability that the drawn card has a number which is a					
	perfect square, is	_				
	(A) $\frac{7}{50}$	B) $\frac{7}{55}$ D) $\frac{5}{49}$				
	1	5				
	(C) $\frac{1}{10}$ (I	D) $\frac{3}{49}$				
Sol.	$(C)\frac{1}{10}$		1			
5.						
	AB and CD are two chords of a circle inter	rsecting at P. Choose the correct				
	statement from the following:					
	D					
	В					
	A C					
		D) AADD ADDC				
		B) $\triangle ADP \sim \triangle BPC$				
	(C) $\triangle ADP \sim \triangle BCP$ (I	D) $\triangle ADP \sim \triangle CBP$				
Sol.	(D) $\triangle ADP \sim \triangle CBP$		1			
6.						
	Two dice are rolled together. The probabil	ity of getting the sum of the two				
	numbers to be more than 10, is	-				
	(A) $\frac{1}{9}$	B) $\frac{1}{6}$				
	7					
	(C) $\frac{7}{12}$	D) $\frac{1}{12}$				
Sol.	(D) $\frac{1}{12}$		1			
	` 12					

7.	After an examination, a teacher wants to know the marks obtained by maximum number of the students in her class. She requires to calculate of marks. (A) median (B) mode	
	(C) mean (D) range	
	(=) =======	
Sol.	(B) mode	1
8.	The roots of the quadratic equation $4x^2 - 5x + 4 = 0$ are	
	(A) irrational (B) rational and distinct	
	(C) not real (D) rational and equal	
Sol.	(C) not real	1
9.	The common difference of an A.P. in which $a_{20} - a_{15} = 20$, is	
	(A) 4 (B) 5	
	(C) 4d (D) 5d	
Sol.	(A) 4	1
10.	If value of each observation in a data is increased by 2, then median of the new data	
	(A) increases by 2 (B) increases by 2n	
	(C) remains same (D) decreases by 2	
Sol.	(A) increases by 2	1

11.		
	The perimeters of two similar triangles ABC and PQR are 56 cm and	
	48 cm respectively. PQ/AB is equal to	
	(A) $\frac{7}{8}$ (B) $\frac{6}{7}$	
	(C) $\frac{7}{6}$ (D) $\frac{8}{7}$	
Sol.	$(B)\frac{6}{7}$	1
12.		
	If α and β ($\alpha > \beta$) are the zeroes of the polynomial $-x^2 + 8x + 9$, then $(\alpha - \beta)$ is equal to	
	(A) -10 (B) 10	
	(C) ± 10 (D) 8	
Sol.	(B) 10	1
13.		
	The value of k for which the system of equations $3x - y + 8 = 0$ and	
	6x - ky + 16 = 0 has infinitely many solutions, is	
	(A) -2 (B) 2	
	(C) $\frac{1}{2}$ (D) $-\frac{1}{2}$	
Sol.	(B) 2	1
14.	If $\sin \theta = \cos \theta$, $(0^{\circ} < \theta < 90^{\circ})$, then value of $(\sec \theta \cdot \sin \theta)$ is :	
	(A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$	
	(C) 1 (D) 0	
Sol.	(C) 1	1

15.		
	Doing D divides the line assument is in in a the mainter A(A	9) :
	Point P divides the line segment joining the points A(4, -5) and B(1, the ratio 5:2. Co-ordinates of point P are	2) In
	-	
	(A) $\left(\frac{5}{2}, \frac{-3}{2}\right)$ (B) $\left(\frac{11}{7}, 0\right)$	
	(A) $\left(\frac{5}{2}, \frac{-3}{2}\right)$ (B) $\left(\frac{11}{7}, 0\right)$ (C) $\left(\frac{13}{7}, 0\right)$ (D) $\left(0, \frac{13}{7}\right)$	
Sol.	$(C)\left(\frac{13}{7},0\right)$	1
16.		_
	In the given figure $\triangle ABC$ is shown. DE is parallel to BC. If AD = 2.5 cm and BC = 12 cm, then DE is equal to	5 cm,
	A	
	5 cm/	
	D E	
	2.5 cm	
	B 12 cm C	
	(A) 10 cm (B) 6 cm	
	(C) 8 cm (D) 7.5 cm	
Sol.	(C) 8 cm	1
17.		
	If the HCF (2520, 6600) = 40 and LCM (2520, 6600) = $252 \times k$, the value of k is	nen the
	(A) 1650 (B) 1600	
	(C) 165 (D) 1625	
Sol.	(A) 1650	1

		Γ
18.	In the given figure, AT is tangent to a circle centred at O. If \angle CAT = 40°, then \angle CBA is equal to (A) 70° (B) 50° (C) 65° (D) 40°	
Sol.	(D) 40 °	1
	 Directions: In Question 19 and 20, Assertion (A) and Reason (R) are given. Select the correct option from the following: (A) Both Assertion (A) and Reason (R) are true. Reason (R) is the correct explanation of Assertion (A). (B) Both Assertion (A) and Reason (R) are true. Reason (R) does not give correct explanation of (A). (C) Assertion (A) is true but Reason (R) is not true. (D) Assertion (A) is not true but Reason (R) is true. 	
19.	Assertion (A): If $\sin A = \frac{1}{3} (0^{\circ} < A < 90^{\circ})$, then the value of $\cos A$ is $\frac{2\sqrt{2}}{3}$ Reason (R): For every angle θ , $\sin^{2}\theta + \cos^{2}\theta = 1$.	
Sol.	(A) Both Assertion (A) and (R) are true. Reason (R) is the correct explanation of Assertion (A)	1

		T
20.	Assertion (A): Two cubes each of edge length 10 cm are joined together.	
	The total surface area of newly formed cuboid is $1200~\mathrm{cm}^2$.	
	Reason (R): Area of each surface of a cube of side 10 cm is 100 cm ² .	
	reason (1), Thea of each surface of a case of side 10 cm is 100 cm.	
Sol.	(D) Assertion (A) is not true but Reason (R) is true.	1
	SECTION B	
	In this section, there are 5 questions of 2 marks each.	
21(a).	In order to the line of the li	
	In what ratio is the line segment joining the points $(3, -5)$ and $(-1, 6)$ divided by the line $y = x$?	
Sol.		
	$P = \begin{pmatrix} B \\ -1, 6 \end{pmatrix}$	
	P = X $K = X$ $(-1, 6)$	
	(3, 5)	
	Let the required ratio be K:1	
	Coordinates of point P are $\left(\frac{-K+3}{K+1}, \frac{6K-5}{K+1}\right)$	1
	Point P lies on line $y = x \Longrightarrow \frac{-K+3}{K+1} = \frac{6K-5}{K+1}$	1/2
	Solving, we get $K = \frac{8}{7}$	
	∴ Required ratio is 8: 7	1/2
	OR	
21(b).	A(2, 0) B(C, 4) and C(1, 2) are marked of a triangle ABC Find	
	A(3, 0), B(6, 4) and C(-1, 3) are vertices of a triangle ABC. Find length of its median BE.	
	Tongon of the moduli DB.	
Sol.	Mid-point of AC is $E\left(1,\frac{3}{2}\right)$	1
L	I.	

	Length of median BE	
	$= \sqrt{(6-1)^2 + (4-\frac{3}{2})^2} = \sqrt{\frac{125}{4}} \text{ or } \frac{5\sqrt{5}}{2}$	1
22.	In the given figure, AB and CD are tangents to a circle centred at O. Is $\angle BAC = \angle DCA$? Justify your answer.	
Sol.	B O D	
	Join OA and OC	1/2
	$ \begin{aligned} OA &= OC \\ \angle OAC &= \angle OCA \end{aligned} $	1/2
	Also, $\angle OAB = \angle OCD$	/ 2
	$\Rightarrow \angle OAC + \angle OAB = \angle OCA + \angle OCD$	1/2
	$\Rightarrow \angle BAC = \angle DCA$	1/2

23.	In the given figure, a circle centred at origin O has radius 7 cm, OC is median of $\triangle OAB$. Find the length of median OC.	
Sol.	$\angle AOB = 90^{\circ}$ $\therefore AB^2 = 7^2 + 7^2$	1/2
	$\Rightarrow AB = 7\sqrt{2} \text{ cm}$	72
	\Rightarrow AC = $\frac{7\sqrt{2}}{2}$ cm	1/2
	Now In \triangle AOC,	
	$\Rightarrow OC^2 = 7^2 - \left(\frac{7\sqrt{2}}{2}\right)^2$	1/2
	$\therefore OC = \frac{7\sqrt{2}}{2} cm$	1/2
24(a).	Evaluate : $2 \sin^2 30^\circ \sec 60^\circ + \tan^2 60^\circ$.	
Sol.	$2sin^230^{\circ}\sec 60^{\circ} + tan^260^{\circ}$	
	$=2\times\left(\frac{1}{2}\right)^2\times2+\left(\sqrt{3}\right)^2$	11/2
	= 4	1/2
	OR	
24(b).	If $2 \sin (A + B) = \sqrt{3}$ and $\cos (A - B) = 1$, then find the measures of angles A and B. $0 \le A$, B, $(A + B) \le 90^{\circ}$.	
Sol.	$\sin(A + B) = \frac{\sqrt{3}}{2} \Longrightarrow A + B = 60^{\circ} \dots (1)$	1/2

	$\cos(A - B) = 1 \Rightarrow A - B = 0^{\circ} \dots (2)$	1/2
	Solving (1) and (2), we get $A = B = 30^{\circ}$	1
25.	Can the number 8 ⁿ , n being a natural number, end with the digit 0 ? Give reasons.	
Sol.	$8^{n} = (2 \times 2 \times 2)^{n} \text{ or } 2^{3n}$	1
	A number ends with digit 0 if it has two prime factors 2 and 5 both. Since 8 ⁿ does not have 5 as a prime factor, so it can't end with digit 0.	1
	SECTION C	
	This section consists of 6 questions of 3 marks each.	
26.	Prove that $\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{3}{4}$, if $\tan \theta = \frac{1}{\sqrt{7}}$	
Sol.	$\tan \theta = \frac{1}{\sqrt{7}}$	
	$\Rightarrow \sec^2\theta = \frac{8}{7} \text{ and } \csc^2\theta = 8$	1+1
	$\therefore LHS = \frac{8 - \frac{8}{7}}{8 + \frac{8}{7}} = \frac{3}{4} = RHS$	1
27(a).	If the sum of first m terms of an A.P. is same as sum of its first n terms $(m \neq n)$, then show that the sum of its first $(m + n)$ terms is zero.	
Sol.	$S_{m} = S_{n}$	
	$\Rightarrow \frac{m}{2}[2a + (m-1)d] = \frac{n}{2}[2a + (n-1)d]$	1
	$\Rightarrow 2a(m-n) = d(n^2 - m^2) - d(n-m)$	1
	$\Rightarrow 2a = -d(m+n-1)$	

	or $2a + (m + n - 1)d = 0$	1/2			
	i. e., $S_{m+n} = \frac{m+n}{2} [2a + (m+n-1)d] = 0$	1/2			
	OR				
27(b).	In an A.P., the sum of three consecutive terms is 24 and the sum of their squares is 194. Find the numbers.				
Sol.	Let the numbers be $a - d$, a , $a + d$	1/2			
	$\therefore a - d + a + a + d = 24$	1/2			
	\Rightarrow a = 8				
	Also, $(a - d)^2 + a^2 + (a + d)^2 = 194$				
	$\Rightarrow (8 - d)^2 + 8^2 + (8 + d)^2 = 194$	1			
	$\Rightarrow d^2 = 1 \Rightarrow d = \pm 1$	1/2			
	: Numbers are 7, 8, 9 or 9,8,7	1/2			
28.	Prove that $\sqrt{5}$ is an irrational number.				
Sol.	Let $\sqrt{5}$ be a rational number.				
	$\therefore \sqrt{5} = \frac{p}{q}$, where $q \neq 0$ and let p & q be co-prime.	1/2			
	$5q^2 = p^2 \implies p^2$ is divisible by $5 \implies p$ is divisible by $5 \longrightarrow p$	1			
	\Rightarrow p = 5a, where 'a' is some integer 25a ² = 5q ² \Rightarrow q ² = 5a ² \Rightarrow q' is divisible by 5 \Rightarrow q is divisible by 5 (ii)	1			
	(i) and (ii) leads to contradiction as 'p' and 'q' are co-prime.	1/2			
	$\therefore \sqrt{5} \text{ is an irrational number.}$	/ 4			

29(a).	In the given figure, PQ is tangent to a circle centred at O and $\angle BAQ = 30^{\circ}$; show that BP = BQ.	
Sol.	Join OQ OQ=OA $\Rightarrow \angle 2 = 30^{\circ}$ $\angle 3 = 90^{\circ} - 30^{\circ} = 60^{\circ}$ $\angle 4 = 90^{\circ} - 60^{\circ} = 30^{\circ}$ $\angle 6 = \angle 1 + \angle 2 = 60^{\circ}$ Hence $\angle 5 = 90^{\circ} - 60^{\circ} = 30^{\circ} = \angle 4$ $\therefore BP=BQ$	1/ ₂
	UK	

20(1)		I
29(b).	In the given figure, AB, BC, CD and DA are tangents to the circle with centre O forming a quadrilateral ABCD.	
	Show that $\angle AOB + \angle COD = 180^{\circ}$	
	D C C A B	
Sol.	$ \begin{array}{c c} D & R & C \\ \hline S & 65 & 43 & Q \\ \hline 7 & 81 & Q \\ \hline A & P & B \end{array} $	
	Join OP, OQ, OR and OS $\Delta POB \cong \Delta QOB$ $\Rightarrow \angle 1 = \angle 2$	1/2
	Similarly $\angle 3 = \angle 4, \angle 5 = \angle 6, \angle 7 = \angle 8$	1/2
	Now, $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$	1/2
	$\Rightarrow 2(\angle 1 + \angle 8 + \angle 4 + \angle 5) = 360^{\circ}$	
	$\therefore \angle AOB + \angle COD = 180^{\circ}$	1/2
30.	A dealer sells an article for ₹ 75 and gains as much percent as the cost price of the article. Find the cost price of the article.	
Sol.	Let the cost price of the article be ₹ x	

	∴ Gain ^o	% = x						1/2
	$\Rightarrow \mathbf{x} = \frac{7}{2}$	$\Rightarrow x = \frac{75 - x}{x} \times 100$						1
	$\Rightarrow x^2 + 100x - 7500 = 0$						1/2	
		-50)(x + 150						1/2
		0 : x = 50)) – 0					1/2
			.1 .'1 ' x	50				/2
21	So, the c	cost price of t	the article is ₹	50				
31.	In a tes	st, the marks	obtained by 10	00 student	ts (out of 50	0) are give	n below:	
	Marks	obtained :	0 – 10	10 - 20	20 - 30	30 - 40	40 – 50	
	Numbe	er of studer	its: 12	23	34	25	6	
	Find th	ne mean mar	ks of the stude	nts.				
Sol.								
		Marks Obtained	Number of students (\mathbf{f}_i)	X _i	f _i x	i		1½
		0 - 10	12	5	60)		marks
		10 - 20	23	15	34:	5		for correct
	_	20 - 30	34	25	850	0		table
		30 – 40	25	35	87:	5		
	_	40 - 50	6	45	270			
		Total	100		240	00		
		Mean =	2400 100					1
	= 24					1/2		
			SE	CTION I)			
		This sect	ion consists of			arks each	ı .	

32.	A person standing on the bank of a river observes that the angle of elevation of the top of a tower on the opposite bank is 60°. When he moves 30 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tower and width of the river. (Take $\sqrt{3} = 1.732$)	
Sol.	A h	1 mark for correct figure
	Let the height of tower BA be h m and the width of river BC be x m	
	$\tan 60^\circ = \sqrt{3} = \frac{h}{x}$	1
	$\Rightarrow h = \sqrt{3}x - (i)$	1/2
	$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{h}{30 + x}$	1
	$\Rightarrow h\sqrt{3} = 30 + x (ii)$	1/2
	Solving (i) and (ii), we get $x = 15$	1/2
	and h = $15\sqrt{3} = 15 \times 1.732 = 25.98 \text{ m}$	1/2
	∴Height of tower = 25.98 m and width of river = 15 m	
	•	

the area of the sector.	
2πτθ	
$2r + \frac{2\pi 6}{360} = 20$	
$\Rightarrow 11.2 + 2 \times \frac{22}{2} \times 5.6 \times \frac{\theta}{2.00} = 20$	2
	1
	1
,	
$= 24.64 \text{ m}^2$	1
If a lime is decome smalled to one side of a toice alone interest the	
2	
are divided in the same ratio.	
Compet Circum to many figures construction	1/ >/4 2
Correct groof Correct proof	$\frac{1}{2} \times 4 = 2$
OR	
Sides AR and AC and median AD to AARC are respectively	
proportional to states I q and I it and median I in or another strange	
PQR. Show that AABC ~ APQR.	
PQR. Show that $\triangle ABC \sim \triangle PQR$.	
PQR. Show that $\triangle ABC \sim \triangle PQR$.	
	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio. Correct Given, to prove, figure, construction Correct proof

	Correct figure	1
Produce AD to E such that AD = DE and join EC Produce PM to N such that PM = MN and join NR \triangle ADB $\cong \triangle$ EDC		1/2
$\therefore AB = EC$		1
Similarly, PQ=NR		
Since, $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{AD}{PM}$		
$\Rightarrow \frac{EC}{NR} = \frac{AC}{PR} = \frac{\frac{AE}{2}}{\frac{PN}{2}}$		
2 ∴ ΔAEC ~ ΔPNR		1
$\Rightarrow \angle 1 = \angle 2$		1/2
$\Rightarrow \angle 1 - \angle 2$ Similarly, $\angle 3 = \angle 4$		
Hence $\angle 1 + \angle 3 = \angle 2 + \angle 4$ or $\angle A = \angle P$		1/2
Also, $\frac{AB}{PQ} = \frac{AC}{PR}$		
∴ ΔABC ~ ΔPQR		1/2

35(a).	Using graphical method, solve the following system of equations : $3x - 2y = 10$ and $5x + 3y = 4$	
Sol.	5x+3y = 4 5 $3x-2y = 10$ x x x x x x x x x	2 marks for each correct line
	OR	
35(b).	If three times the greater of two numbers is divided by the smaller one, we get 4 as the quotient and 3 as the remainder. Also, if seven times the smaller number is divided by greater one, we get 5 as the quotient and 1 as the remainder. Find the numbers.	
Sol.	Let the smaller number be x	
	and the greater number be y	
	$3y = 4x + 3 \dots (i)$	11/2
	$7x = 5y + 1 \dots (ii)$	11/2
	Solving (i) and (ii), we get	

	x = 18, y	= 25		1+1	
	∴ Smaller number is 18				
	and greater number is 25				
	SECTION E				
	This section consists of 3 case based questions of 4 marks each.				
36.	transport	vey on holidays, 120 people were asked to state which type of the they used on their last holiday. The following pie chart shows to five the survey. Train Ship 33° Bus 177° Car			
	(i) If or trav (ii) Whi	ich is most favourite mode of transport and how many people d it? A person is selected at random. If the probability that he did	1 1 2		
Sol.	(i)	P (travelling by bus or ship) = $\frac{36+33}{360} = \frac{69}{360}$ or $\frac{23}{120}$		1	
	(ii)	Car Number of people who used $car = \frac{177}{360} \times 120 = 59$		1/ ₂ 1/ ₂	
	(iii)	(a) P (person used train) = $1 - \frac{4}{5} = \frac{1}{5}$		1	
		∴ Number of people who used train = $\frac{120}{5}$ = 24 OR		1	

	(iii) (b) Number of people who used aeroplane = $\frac{7}{60} \times 120 = 14$	1		
	$∴ Revenue generated = 14 \times 5000 = ₹70,000$			
37.	The word 'circus' has the same root as 'circle'. In a closed circular area, various entertainment acts including human skill and animal training are presented before the crowd. A circus tent is cylindrical upto a height of 8 m and conical above it. The diameter of the base is 28 m and total height of tent is 18.5 m. Based on the above, answer the following questions: (i) Find slant height of the conical part. (ii) Determine the floor area of the tent. (iii) (a) Find area of the cloth used for making tent. OR (iii) (b) Find total volume of air inside an empty tent.			
Sol.		1/2		
501.	(i) Height of conical part = $18.5 - 8 = 10.5$ m	72		
	Radius of conical part = 14 m	1/2		
	Slant height = $\sqrt{(10.5)^2 + (14)^2} = 17.5 \text{ m}$	72		
	(ii) Floor area = $\frac{22}{7} \times 14 \times 14 = 616 \text{ m}^2$	1		
	(iii) (a) Area of cloth used			
	$= 2 \times \frac{22}{7} \times 14 \times 8 + \frac{22}{7} \times 14 \times 17.5$	1		
	$= 1474 \text{ m}^2$	1		
	OR			
	(iii) (b) Volume of air inside the tent			
	$= \frac{22}{7} \times 14 \times 14 \times 8 + \frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times 10.5$	1		
	$= 7084 \text{ m}^3$	1		

20					
38.	A ball is thrown in the air so that t seconds after it is thrown, its height h				
	metre above its starting point is given by the polynomial $h = 25t - 5t^2$.				
	$h(t) \\ \hline \\ 0 \\ \hline \\ (5/2, 0) \\ (5, 0) \\ \hline \\ (5, 0) \\ (5, 0) \\ \hline \\ (5,$				
	(i) Write zeroes of the given polynomial.(ii) Find the maximum height achieved by ball.	1			
	(iii) (a) After throwing upward, how much time did the ball take to	1			
	reach to the height of 30 m ?	2			
	OR (iii) (b) Find the two different values of t when the height of the ball was 20 m.	2			
Sol.	(i) Zeroes of the polynomial are 0 and 5	1			
	(ii) Maximum height achieved by ball				
	$=25\times\frac{5}{2}-5\times\left(\frac{5}{2}\right)^2$	1/2			
	$=\frac{125}{4}$ or 31.25 m	1/2			
	(iii) (a) $-5t^2 + 25t = 30$	1/2			
	$\Rightarrow t^2 - 5t + 6 = 0$	1/2			
	$\Rightarrow (t-2)(t-3) = 0$	1/2			
	$t \neq 3, \therefore t = 2$	1/2			
	OR				
	(iii) (b) $-5t^2 + 25t = 20$	1/2			
	$\implies t^2 - 5t + 4 = 0$	1/2			
	$\Rightarrow (t-4)(t-1) = 0$	1/2			
	\Rightarrow t = 4, 1	1/2			