CHAPTER – 2

Whole Numbers

EXERCISE 2.3

Q. 1

Which of the following will not represents zero:

(a)
$$1 + 0$$
 (b) 0×0

(b)
$$0 \times 0$$

$$(c)\frac{0}{2}$$

(c)
$$\frac{0}{2}$$
 (d) $\frac{10-10}{2}$

Answer:

$$a.1 + 0 = 1$$

It does not represent 0.

It does represent 0.

c.
$$\frac{0}{2} = 0$$

It does represent 0.

$$\mathbf{d.} \frac{10-10}{2} = 0$$

It does represent 0.

Q. 2

If the product of two whole numbers is zero, can we say that one or both of them will be zero? Justify through examples.

Answer:

Yes, if the product of two whole numbers is zero, then one of them will be 0.

For example-

$$1 \times 0 = 0$$

$$0 \times 7 = 0$$

Yes, if the product of two whole numbers is zero, then both may also be 0.

For example-

$$0 \times 0 = 0$$

Q. 3

If the product of two whole numbers is 1, can we say that one or both of them will be 1? Justify through examples.

Answer:

If the product of two numbers is 1, then both the numbers need to be 1.

Example -

$$1 \times 1 = 1$$

However, if only one number is 1 then,

Example –

$$1 \times 9 = 9$$

So,

We can say that the product of two whole numbers is 1 only when, both 1.

Q. 4

Find using distributive property:

(a)
$$728 \times 101$$
 (b) 5437×1001

(b)
$$5437 \times 1001$$

(c)
$$824 \times 25$$

(c)
$$824 \times 25$$
 (d) 4275×125

(e)
$$504 \times 35$$
.

Answer:

Distributive property is,

$$a (b + c) = ab + ac$$

a.
$$728 \times 101$$

$$= 728 \times (100 + 1)$$

$$= 728 \times 100 + 728 \times 1$$

$$= 72800 + 728 = 73528$$

$$= 5437 \times (1000+1)$$

$$= 5437 \times 1000 + 5437 \times 1$$

$$= 5437000 + 5437$$

$$= 5442437$$

c.
$$824 \times 25$$

$$= (800 + 24) \times 25$$

$$= (800 + 25 - 1) \times 25$$

$$= 800 \times 25 + 25 \times 25 - 1 \times 25$$

$$= 20000 + 625 - 25$$

$$= 20000 + 600$$

$$= 20600$$

$$\mathbf{d.}4275 \times 125$$

$$= (4000 + 200 + 100 - 25) \times 125$$

$$= 4000 \times 125 + 200 \times 125 + 100 \times 125 - 25 \times 125$$

$$= 500000 + 25000 + 12500 - 3125$$

$$= 534375$$

$$\mathbf{e.} 504 \times 35$$

$$= (500 + 4) \times 35$$

$$= 500 \times 35 + 4 \times 35$$

$$= 17500 + 140$$

$$= 17640$$

Q. 5

Study the pattern:

$$1 \times 8 + 1 = 9$$

 $12 \times 8 + 2 = 98$
 $123 \times 8 + 3 = 987$
 $1234 \times 8 + 4 = 9876$
 $12345 \times 8 + 5 = 98765$

Write the next two steps. Can you say how the pattern works?

Answer:

From the given pattern, the 1st step is: $1 \times 8 + 1 = 9$

And the **2nd step:** $12 \times 8 + 2 = 98$, which can be written as:

$$(11+1) \times 8 + 2$$

On following distributive property, we get,

$$=(11 \times 8) + (1 \times 8) + 2$$

$$= 88 + 8 + 2 = 98$$

Therefore, we can write the 3rd step: $123 \times 8 + 3 = 987$ as,

$$=(111+11+1)\times 8+3$$

$$= 111 \times 8 + 11 \times 8 + 1 \times 8 + 2$$

$$= 888 + 88 + 8 + 3 = 987$$

Similarly, **4th step:** $1234 \times 8 + 4 = 9876$ as,

$$= (1111 + 111 + 11 + 1) \times 8 + 4$$

$$= 11111 \times 8 + 1111 \times 8 + 11 \times 8 + 1 \times 8 + 4$$

$$= 8888 + 888 + 88 + 8 + 4 = 9876$$

In the same way, the next steps are:

5th step: $12345 \times 8 + 5$, can be written as,

Thus, the 5th term is : $12345 \times 8 + 5 = 98765$

Now, the 6th step: $123456 \times 8 + 6$ can be written as,

$$= (11111111 + 1111111 + 111111 + 1111 + 1111 + 111 + 11 + 1) \times 8 + 7$$

$$= 11111111 \times 8 + 1111111 \times 8 + 11111 \times 8 + 11111 \times 8 + 1111 \times 8 + 11111 \times 8 + 111111 \times 8 + 1111111 \times 8 + 1111111 \times 8 + 111111 \times 8 + 1111111 \times 8$$

$$= 8888888 + 888888 + 88888 + 8888 + 888 + 88 + 88 + 8 + 8 + 7$$

=9876543

Thus, the 6th step is: $123456 \times 8 + 6 = 9876543$