Rational Numbers

EXERCISE 2 (A)

Question 1.

Write down a rational number whose numerator is the largest number of two digits and denominator is the smallest number of four digits.

Solution:

Largest two digit = 99 Smallest, number of four digit = 1000 Now numerator = 99 and denominator = 1000 \therefore Rational number = $\frac{99}{1000}$

Question 2.

Write the numerator of each of the following rational numbers:

(i) $\frac{-125}{127}$ (ii) $\frac{37}{-137}$ (*iii*) $\frac{-85}{93}$ (*iv*) 2 (v) 0Solution: (*i*) $\frac{-125}{127}$ Numerator = -125(*ii*) $\frac{37}{-137}$ Numerator = 37(*iii*) $\frac{-85}{93}$ Numerator = -85 $(iv) 2 = \frac{2}{1}$ Numerator = 2 $(v) 0 = \frac{0}{1}$ Numerator = 0

Question 3.

Write the denominator of each of the following rational numbers:

(i)
$$\frac{7}{-15}$$
 (ii) $\frac{-18}{29}$
(iii) $\frac{-3}{4}$ (iv) -7
(v) 0

Solution:

(*i*)
$$\frac{7}{-15}$$

Denominator = -15

(*ii*)
$$\frac{-18}{29}$$

Denominator = 29

(*iii*)
$$\frac{-3}{4}$$

Denominator = 4

$$(iv) -7 = \frac{-7}{1}$$

Denominator = 1

.

$$(v) \ 0 = \frac{0}{1}$$

Denominator = 1

Question 4.

Write down a rational number numerator (-5) x (-4) and denominator (28 – 27) x (8 – 5).

Solution:

Numerator = $(-5) \times (-4) = 20$ Denominator = $(28 - 27) \times (8 - 5)$ = $(1) \times (3) = 3$ \therefore Rational number = $\frac{20}{5} = \frac{4}{1} = 4$

Question 5.

(i)
$$\frac{-15}{1}$$
 in integer form is

(*ii*)
$$\frac{23}{-1}$$
 in integer form is

(*iii*) If
$$18 = \frac{18}{a}$$
 then $a = \dots$.

(*iv*) If
$$-57 = \frac{57}{a}$$
 then $a = \dots$.

(i)
$$\frac{-15}{1}$$
 in integer form is = -15

(*ii*)
$$\frac{23}{-1}$$
 in integer form is = -23

(*iii*) If
$$18 = \frac{18}{a}$$
 then $a = \frac{18}{18} = 1$

(*iv*) If
$$-57 = \frac{57}{a}$$
 then $a = \frac{57}{-57} = -1$

Question 6.

Separate positive and negative rational numbers from the following :

$$\frac{-3}{5}, \frac{3}{-5}, \frac{-3}{-5}, \frac{3}{5}, 0, \frac{-13}{-3}, \frac{15}{-8}, \frac{-15}{8}$$

Solution:

Positive rational numbers are $\frac{-3}{-5} = \frac{3}{5}$

(as both or negative)

 $\frac{-13}{-3} = \frac{13}{3}$ (as both are negative) Negative rational numbers = $\frac{-3}{5}$, $\frac{3}{-5}$, $\frac{15}{-8}$ and $\frac{-15}{8}$

0 is neither positive nor negative integer.

Question 7.

Find three rational numbers equivalent to

(i)
$$\frac{3}{5}$$
 (ii) $\frac{4}{-7}$

(*iii*)
$$\frac{-5}{9}$$
 (*iv*) $\frac{8}{-15}$

(i)
$$\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}, \frac{3 \times 3}{5 \times 3} = \frac{9}{15}$$
 and
 $\frac{3 \times 4}{5 \times 4} = \frac{12}{20}$
Hence, $\frac{6}{10}, \frac{9}{15}$ and $\frac{12}{20}$ are rational
numbers equivalent to the given rational
number $\frac{3}{5}$.
(ii) $\frac{4}{-7} = \frac{4 \times 2}{-7 \times 2} = \frac{8}{-14}, \frac{4 \times 3}{-7 \times 3} = \frac{12}{-21}$
and $\frac{4 \times 4}{-7 \times 4} = \frac{16}{-28}$
Hence $\frac{8}{-14}, \frac{12}{-21}$ and $\frac{16}{-28}$ are rational
numbers equivalent to given rational number
 $\frac{4}{-7}$.
(iii) $\frac{-5}{9} = \frac{-5 \times 2}{9 \times 2} = \frac{-10}{18}, \frac{-5 \times 3}{9 \times 3} = \frac{-15}{27}$ and
 $\frac{-5 \times 4}{9 \times 4} = \frac{-20}{36}$
Hence, $\frac{-10}{18}, \frac{-15}{27}$ and $\frac{-20}{36}$ are rational
numbers equivalent to given rational number

$$(iv) \quad \frac{8}{-15} = \frac{8 \times 2}{-15 \times 2} = \frac{16}{-30},$$

$$\frac{8 \times 3}{-15 \times 3} = \frac{24}{-45} \text{ and } \frac{8 \times 4}{-15 \times 4} = \frac{32}{-60}$$
Hence, $\frac{16}{-30}, \frac{24}{-45}$ and $\frac{32}{-60}$ are rational numbers equivalent to given rational number $\frac{8}{-15}$.

Question 8.

Which of the following are not rational numbers :

(*i*) -3
(*ii*)
$$\frac{0}{4}$$

(*iv*) $\frac{8}{0}$
(*v*) $\frac{0}{0}$

Solution:

(i)
$$-3 = \frac{-3}{1}$$
 is a rational number.

(*ii*)
$$0 = \frac{0}{1}$$
 is a rational number.

(*iii*)
$$\frac{0}{4}$$
 is a rational number.

$$(iv) \frac{8}{0}$$
 is not a rational number.

(v) $\frac{0}{0}$ is not a rational number as numerator and denominator both are zero.

Question 9.

Express each of the following integers as a rational number with denominator 7 : (i) 5 (ii) -8

(ii) -8 (iii) 0 (iv) -16 (v) 7

Solution:
(i)
$$5 = \frac{5 \times 7}{7} = \frac{35}{7}$$

(ii) $-8 = \frac{-8 \times 7}{7} = \frac{-56}{7}$
(iii) $0 = \frac{0 \times 7}{7} = \frac{0}{7}$
(iv) $-16 = \frac{-16 \times 7}{7} = \frac{-112}{7}$
(v) $7 = \frac{7 \times 7}{7} = \frac{49}{7}$

Question 10. Express $\frac{3}{5}$ as a rational number with denominator:

(i) 20

$$\frac{3}{5} = \frac{3 \times 4}{5 \times 4} = \frac{12}{20}$$
(ii) -20

$$\frac{3}{5} = \frac{3 \times -4}{5 \times -4} = \frac{-12}{-20}$$
(iii) 45

$$\frac{3}{5} = \frac{3 \times 9}{5 \times 9} = \frac{27}{45}$$
(iv) 25

$$\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}$$
(v) -35

$$\frac{3}{5} = \frac{3 \times -7}{5 \times -7} = \frac{-12}{-35}$$

Question 11.

Express $\frac{4}{7}$ as a rational number with numerator :

Solution:

Solution:
(i) 12

$$\frac{4}{7} = \frac{4 \times 3}{7 \times 3} = \frac{12}{21}$$
(ii) -12

$$\frac{4}{7} = \frac{4 \times -3}{7 \times -3} = \frac{-12}{-21}$$
(iii) -16

$$\frac{4}{7} = \frac{4 \times -4}{7 \times -4} = \frac{-16}{-28}$$
(iv) -20

$$\frac{4}{7} = \frac{4 \times -5}{7 \times -5} = \frac{-20}{-35}$$
(v) 20

$$\frac{4}{7} = \frac{4 \times 5}{7 \times 5} = \frac{20}{35}$$

Question 12.

Find x, such that:

(<i>i</i>) $\frac{-2}{3} = \frac{6}{x}$	(<i>ii</i>) $\frac{7}{-4} = \frac{x}{8}$
(<i>iii</i>) $\frac{3}{7} = \frac{x}{-35}$	$(iv) \ \frac{-48}{x} = 6$
$(v) \ \frac{36}{x} = 3$	$(vi) \ \frac{-27}{x} = 9$

$$(i) \frac{-2}{3} = \frac{6}{x}$$

$$-2x = 6 \times 3$$

$$x = \frac{6 \times 3}{-2} = -3 \times 3 = -9$$

$$\therefore \frac{-2}{3} = \frac{6}{-9} = -\frac{6}{9}$$
OR
$$\frac{-2}{3} = \frac{6}{x}$$

$$\Rightarrow \frac{-2 \times 3}{-3 \times 3} = \frac{6}{x}$$
OR
$$\Rightarrow \frac{-2 \times 3}{-3 \times 3} = \frac{6}{x}$$

$$\Rightarrow \frac{-14}{-4} = \frac{x}{8}$$

$$\Rightarrow \frac{-14}{8} = \frac{x}{8}$$

$$x = -14$$
OR
$$\Rightarrow \frac{-7 \times 2}{4 \times 2} = \frac{x}{8}$$

$$\Rightarrow \frac{-14}{8} = \frac{x}{8}$$

$$x = -14$$
(iii) $\frac{3}{7} = \frac{x}{-35}$

$$\Rightarrow \frac{3 \times -5}{7 \times -5} = \frac{x}{-35}$$

$$\Rightarrow \frac{-15}{-35} = \frac{x}{-35}$$

$$\Rightarrow x = -15$$

$(iv) \ \frac{-48}{x} = 6$
$\Rightarrow \frac{-48}{x} = \frac{6}{1}$
$\Rightarrow \frac{-48}{x} = \frac{6 \times -8}{1 \times -8}$
$\Rightarrow \frac{-48}{x} = \frac{-48}{-8}$
$\Rightarrow x = -8$
$(v) \ \frac{36}{x} = 3$
$\Rightarrow \frac{36}{x} = \frac{3}{1}$
$\Rightarrow \frac{36}{x} = \frac{3 \times 12}{1 \times 12}$
$\Rightarrow \frac{36}{x} = \frac{36}{12}$
$\Rightarrow x = 12$
$(vi) \ \frac{-27}{x} = 9$
$\Rightarrow \frac{-27}{x} = \frac{9}{1}$
$\Rightarrow \frac{-27}{x} = \frac{9 \times (-3)}{1 \times (-3)}$
$\Rightarrow \frac{-27}{x} = \frac{-27}{-3}$
$\Rightarrow x = -3$

Question 13.

Express each of the following rational numbers to the lowest terms :

(<i>i</i>) $\frac{12}{15}$	(<i>ii</i>) $\frac{-120}{144}$
(<i>iii</i>) $\frac{-48}{-72}$	$(iv) \frac{14}{-56}$
Solution: (<i>i</i>) $\frac{12}{15}$	
$ \begin{array}{r} 12)15(1 \\ 12 \\ \overline{3})12(4 \\ \underline{12} \\ \underline{\times} \\ \end{array} $	

(Dividing by 3, H.C.F. of 12 and 15)

$$\Rightarrow \frac{12 \div 3}{15 \div 3} = \frac{4}{5}$$

(*ii*)
$$\frac{-120}{144}$$

 $120\overline{)144}(1)$
 $120\overline{)24}(5)$
 120
 $\underline{120}$
 $\underline{120}$
 $\underline{120}$
 $\underline{120}$
 $\underline{120}$
 $\underline{120}$

(Dividing by 24, H.C.F. of -120 and 144)

$$\Rightarrow \frac{-120 \div 24}{144 \div 24} = \frac{-5}{6}$$
(iii) $\frac{-48}{-72}$

$$\frac{48}{24)48(2)}$$

$$\frac{48}{\times}$$

(Dividing by 24, H.C.F. of -48 and -72)

$$\Rightarrow \frac{-48 \div 24}{-72 \div 24} = \frac{-2}{-3} = \frac{2}{3}$$
(iv) $\frac{14}{-56}$

$$\frac{14)\overline{56}(4)}{\underline{56}}$$
(Dividing by 14, H C E of 1)

(Dividing by 14, H.C.F. of 14 and -56)

$$\Rightarrow \frac{14 \div 14}{-56 \div 14} = \frac{1}{-4} \text{ or } \frac{-1}{4}$$

Question 14.

Express each of the following rational numbers in the standard form.

(i)
$$\frac{-7}{-8}$$
 (ii) $\frac{5}{-12}$
(iii) $\frac{-7}{-20}$ (iv) $\frac{4}{-9}$

Solution:

We know that, a rational number is said to be in standard form, if its denominator is

positive in lowest term.

$$(i) \ \frac{-7}{-8} = \frac{7}{8}$$
$$(ii) \ \frac{5}{-12} = \frac{-5}{12}$$
$$(iii) \ \frac{-7}{-20} = \frac{7}{20}$$
$$(iv) \ \frac{4}{-9} = \frac{-4}{9}$$

EXERCISE 2 (B)

Question 1.

Mark the following pairs of rational numbers on the separate number lines :

(i)
$$\frac{3}{4}$$
 and $-\frac{1}{4}$
(ii) $\frac{2}{5}$ and $\frac{-3}{5}$
(iii) $\frac{5}{6}$ and $-\frac{2}{3}$
(iv) $\frac{2}{5}$ and $-\frac{4}{5}$
(v) $\frac{1}{4}$ and $-\frac{5}{4}$

Question 2. Compare:

(i) $\frac{3}{5}$ and $\frac{5}{7}$ (ii) $\frac{-7}{2}$ and $\frac{5}{2}$ (iii) -3 and $2\frac{3}{4}$ (iv) $-1\frac{1}{2}$ and 0 (iv) 0 and $\frac{3}{4}$ (vi) 3 and -1

(i)
$$\frac{3}{5}$$
 and $\frac{5}{7}$
 $\underbrace{\frac{3}{5}}{-1}$ $\underbrace{\frac{3}{5}}{-1}$ $\underbrace{\frac{3}{5}}{7}$ 1

Since, $\frac{5}{7}$ is on the right side of the number line.

Since, P is on the right of Q.

Q P Since, P is on the right of Q.

$$\Rightarrow \frac{11}{4} > -3 \text{ or } 2\frac{3}{4} > -3$$

Since, P is on the right of Q

$$\Rightarrow \frac{3}{4} > 0$$

(vi) 3 and -1

Since, P is on the right of Q

$$\Rightarrow 3 > -1 \qquad \begin{array}{c} -1 & 3 \\ \hline Q & P \end{array}$$

Question 3. Compare:

(i)
$$-\frac{1}{4}$$
 and 0
(ii) $\frac{1}{4}$ and 0
(iii) $-\frac{3}{8}$ and $\frac{2}{5}$
(iv) $\frac{-5}{8}$ and $\frac{7}{-12}$
(v) $\frac{5}{-9}$ and $\frac{-5}{-9}$
(vi) $\frac{-7}{8}$ and $\frac{5}{-6}$
(vii) $\frac{2}{7}$ and $\frac{-3}{-8}$
(viii) $\frac{-5}{8}$ and $\frac{7}{-12}$

(*i*)
$$-\frac{1}{4}$$
 and 0

Since, $-\frac{1}{4}$ is a negative rational number and always less than 0.

$$\therefore -\frac{1}{4} < 0$$

(*ii*)
$$\frac{1}{4}$$
 and 0

Since, $\frac{1}{4}$ is a positive rational number and always greater than 0.

$$\therefore \frac{1}{4} > 0$$
(iii) $-\frac{3}{8}$ and $\frac{2}{5}$

$$-3 \times 5$$
 and 2×8

$$\left(\because \frac{a}{5} \text{ and } \frac{c}{d} \Rightarrow a \times d \text{ and } b \times c\right)$$

-15 < 16	$(\because a \times d < b \times c)$
$\therefore -\frac{3}{8} < \frac{2}{5}$	
(<i>iv</i>) $\frac{-5}{8}$ and $\frac{7}{-12}$	
-5×-12 and 7 >	< 8
$\left(\because \frac{a}{b}\right)$	and $\frac{c}{d} \Rightarrow a \times d$ and $b \times c$
60 > 56	$(\because a \times d > b \times c)$
$\therefore \ \frac{-5}{8} > \frac{7}{-12}$	
(v) $\frac{5}{-9}$ and $\frac{-5}{-9}$	
5 \times –9 and –5 \times	9
$\left(\because \frac{a}{b}\right)$	and $\frac{c}{d} \Rightarrow a \times d$ and $b \times c$
-45 < 45	$(\because a \times d < b \times c)$
$\therefore \ \frac{5}{-9} < \frac{-5}{-9}$	

(vi)
$$\frac{-7}{8}$$
 and $\frac{5}{-6}$
 -7×-6 and 5×8
 $\left(\because \frac{a}{b} \text{ and } \frac{c}{d} \Rightarrow a \times d \text{ and } b \times c\right)$
 $42 > 40$ $(\because a \times d > b \times c)$
 $\therefore \frac{-7}{8} > \frac{5}{-6}$
(vii) $\frac{2}{7}$ and $\frac{-3}{-8}$
 2×8 and 7×-3
 $\left(\because \frac{a}{b} \text{ and } \frac{c}{d} \Rightarrow a \times d \text{ and } b \times c\right)$
 $16 > -21$ $(\because a \times d > b \times c)$
 $\therefore \frac{2}{7} > \frac{-3}{-8}$
(viii) $\frac{-5}{8}$ and $\frac{7}{-12}$
 -5×-12 and 7×8
 $60 > 56$
 $\therefore \frac{-5}{8} > \frac{7}{-12}$

Question 4. Arrange the given rational numbers in ascending order :

(*i*)
$$\frac{7}{10}$$
, $\frac{-11}{-30}$ and $\frac{5}{-15}$
(*ii*) $\frac{4}{-9}$, $\frac{-5}{12}$ and $\frac{2}{-3}$

(i)
$$\frac{7}{10}$$
, $\frac{-11}{-30}$ and $\frac{5}{-15}$
= $\frac{7}{10}$, $\frac{11}{30}$ and $\frac{-5}{15}$
= $\frac{7 \times 3}{10 \times 3}$, $\frac{11}{30}$ and $\frac{-5 \times 2}{15 \times 2}$
(: LCM of 10, 30 and 15 = 30)
= $\frac{21}{30}$, $\frac{11}{30}$, $\frac{-10}{30}$
 $\overleftarrow{-10}$ 11 21
Since, $-10 < 11 < 21$
 $\therefore \frac{-10}{30} < \frac{11}{30} < \frac{21}{30}$
 $\Rightarrow \frac{5}{-15} < \frac{-11}{-30} < \frac{7}{10}$
(ii) $\frac{4}{-9}$, $\frac{-5}{12}$ and $\frac{2}{-3}$

$$= \frac{-4}{9}, \frac{-5}{12} \text{ and } \frac{-2}{3}$$

$$= \frac{-4 \times 4}{9 \times 4}, \frac{-5 \times 3}{12 \times 3} \text{ and } \frac{-2 \times 12}{3 \times 12}$$
(: LCM of 9, 12 and 3 = 36)
$$= \frac{-16}{36}, \frac{-15}{36} \text{ and } \frac{-24}{36}$$

$$\underbrace{-24}_{-24}, -16_{-15}$$
Since, $-24 < -16 < -15$

$$\therefore \frac{-24}{36} < \frac{-16}{36} < \frac{-15}{36}$$

$$\Rightarrow \frac{2}{-3} < \frac{4}{-9} < \frac{-5}{12}$$

Question 5.

Arrange the given rational numbers in descending order:

(i)
$$\frac{5}{8}$$
, $\frac{13}{-16}$ and $\frac{-7}{12}$
(ii) $\frac{3}{-10}$, $\frac{-13}{30}$ and $\frac{8}{-20}$

(i)
$$\frac{5}{8}$$
, $\frac{13}{-16}$ and $\frac{-7}{12}$

$$= \frac{5}{8}$$
, $\frac{-13}{16}$ and $\frac{-7}{12}$

$$= \frac{5 \times 6}{8 \times 6}$$
, $\frac{-13 \times 3}{16 \times 3}$ and $\frac{-7 \times 4}{12 \times 4}$
(: LCM of 8, 16 and 12 = 48)

$$= \frac{30}{48}$$
, $\frac{-39}{48}$ and $\frac{-28}{48}$
 $\underbrace{-39}_{-28}_{-28}_{-39}$
Since, $30 > -28 > -39$
 $\therefore \frac{30}{48} > \frac{-28}{48} > \frac{-39}{48}$
 $\Rightarrow \frac{5}{8} > \frac{-7}{12} > \frac{-13}{16}$
(ii) $\frac{3}{-10}$, $\frac{-13}{30}$ and $\frac{8}{-20}$
 $= \frac{-3}{10}$, $\frac{-13}{30}$ and $\frac{-8}{20}$
 $= \frac{-3 \times 6}{10 \times 6}$, $\frac{-13 \times 2}{30 \times 2}$ and $\frac{-8 \times 3}{20 \times 3}$
(: LCM of 10, 20 and 30 = 60)
 $= \frac{-18}{60} > \frac{-26}{60}$ and $\frac{-24}{60}$
 $\therefore \frac{-18}{60} > \frac{-24}{-26} < \frac{-26}{60}$
 $\Rightarrow \frac{-3}{10} > \frac{-8}{20} > \frac{-13}{30}$

Question 6. Fill in the blanks :

(i)
$$\frac{5}{8}$$
 and $\frac{3}{10}$ are on the side of zero.
(ii) $-\frac{5}{8}$ and $\frac{3}{10}$ are on the sides of zero.
(iii) $-\frac{5}{8}$ and $-\frac{3}{10}$ are on the side of zero.
(iv) $\frac{5}{8}$ and $-\frac{3}{10}$ are on the sides of

(i)
$$\frac{5}{8}$$
 and $\frac{3}{10}$ are on the **right** side of zero.

(*ii*)
$$-\frac{5}{8}$$
 and $\frac{5}{10}$ are on the **opposite** sides of zero.

(*iii*)
$$-\frac{5}{8}$$
 and $-\frac{3}{10}$ are on the same/left side of zero.

(*iv*)
$$\frac{5}{8}$$
 and $-\frac{3}{10}$ are on the **opposite** sides of zero.

EXERCISE 2 (C)

Question 1. Add:

(i) $\frac{7}{5}$ and $\frac{2}{5}$ (ii) $\frac{-4}{9}$ and $\frac{2}{9}$ (iii) $\frac{5}{-12}$ and $\frac{1}{12}$ (iv) $\frac{4}{-15}$ and $\frac{-7}{-15}$ (v) $\frac{-7}{25}$ and $\frac{9}{-25}$ (vi) $\frac{-7}{26}$ and $\frac{7}{-26}$

(i)
$$\frac{7}{5}$$
 and $\frac{2}{5} = \frac{7}{5} + \frac{2}{5}$
 $= \frac{7+2}{5} = \frac{9}{5}$
(ii) $\frac{-4}{9}$ and $\frac{2}{9} = \frac{-4}{9} + \frac{2}{9}$
 $= \frac{-4+2}{9} = \frac{-2}{9}$
(iii) $\frac{5}{-12}$ and $\frac{1}{12} = \frac{-5}{12} + \frac{1}{12}$
 $= \frac{-5+1}{12} = \frac{-4}{12} = -\frac{4}{12}$
(iv) $\frac{4}{-15}$ and $\frac{-7}{-15} = \frac{-4}{15} + \frac{7}{15}$
 $= \frac{-4+7}{15} = \frac{3}{15}$

(v)
$$\frac{-7}{25}$$
 and $\frac{9}{-25} = \frac{-7}{25} + \frac{-9}{25}$
$$= \frac{(-7) + (-9)}{25} = \frac{-16}{25}$$

(vi) $\frac{-7}{26}$ and $\frac{7}{-26} = \frac{-7}{26} + \frac{-7}{26}$
$$= \frac{(-7) + (-7)}{26} = \frac{-14}{26}$$

Question 2. Add:

(i)
$$\frac{-2}{5}$$
 and $\frac{3}{7}$ (ii) $\frac{-5}{6}$ and $\frac{4}{9}$
(iii) -3 and $\frac{2}{3}$ (iv) $\frac{-5}{9}$ and $\frac{7}{18}$
(v) $\frac{-7}{24}$ and $\frac{-5}{48}$ (vi) $\frac{1}{-18}$ and $\frac{5}{-27}$
(vii) $\frac{-9}{25}$ and $\frac{1}{-75}$ (viii) $\frac{13}{-16}$ and $\frac{-11}{24}$
(ix) $\frac{-9}{-16}$ and $\frac{-11}{8}$

(i)
$$\frac{-2}{5}$$
 and $\frac{3}{7}$

$$= \frac{-2 \times 7}{5 \times 7} + \frac{3 \times 5}{7 \times 5}$$
(: L.C.M. of 5 and 7 = 35)

$$= \frac{-14}{35} + \frac{15}{35}$$

$$= \frac{-14 + 15}{35} = \frac{1}{35}$$
(ii) $\frac{-5}{6}$ and $\frac{4}{9} = \frac{-5}{6} + \frac{4}{9}$

$$= \frac{-5 \times 6}{6 \times 6} + \frac{4 \times 4}{9 \times 4}$$
(: L.C.M. of 6 and 9 = 36)

$$= \frac{-30}{36} + \frac{16}{36}$$

$$= \frac{-30 + 16}{36} = \frac{-14}{36}$$
(iii) -3 and $\frac{2}{3} = \frac{-3}{1} + \frac{2}{3}$

$$= \frac{-3 \times 3}{1 \times 3} + \frac{2 \times 1}{3 \times 1}$$
(: L.C.M. of 1 and 3 = 3)
$$= \frac{-9}{3} + \frac{2}{3}$$

$$= \frac{-9 + 2}{3} = \frac{-7}{3}$$
(iv) $\frac{-5}{9}$ and $\frac{7}{18} = \frac{-5}{9} + \frac{7}{18}$

$$= \frac{-5 \times 2}{9 \times 2} + \frac{7 \times 1}{18 \times 1}$$
(: L.C.M. of 9 and 18 = 18)
$$= \frac{-10}{18} + \frac{7}{18} = \frac{-10 + 7}{18} = \frac{-3}{18}$$
(v) $\frac{-7}{24}$ and $\frac{-5}{48}$

$$= \frac{-7 \times 2}{24 \times 2} + \frac{-5 \times 1}{48 \times 1}$$
(: L.C.M. of 24 and 48 = 48)
$$= \frac{-14}{48} + \frac{-5}{48}$$

$$= \frac{(-14) + (-5)}{48} = \frac{-14 - 5}{48} = \frac{-19}{48}$$
(vi) $\frac{1}{-18}$ and $\frac{5}{-27} = \frac{-1}{18} + \frac{-5}{27}$

$$= \frac{-1 \times 3}{18 \times 3} + \frac{-5 \times 2}{27 \times 2}$$

(: L.C.M. of 18 and 27 = 54)
$$= \frac{-3}{54} + \frac{-10}{54}$$

$$= \frac{(-3) + (-10)}{54} = \frac{-3 - 10}{54} = \frac{-13}{54}$$

(vii) $\frac{-9}{25}$ and $\frac{1}{-75} = \frac{-9}{25} + \frac{-1}{75}$
$$= \frac{-9 \times 3}{25 \times 3} + \frac{-1 \times 1}{75 \times 1}$$

(: L.C.M. of 25 and 75 = 75)
$$= \frac{-27}{75} + \frac{-1}{75}$$

$$= \frac{(-27) + (-1)}{75} = \frac{-27 - 1}{75} = \frac{-28}{75}$$

(viii) $\frac{13}{-16}$ and $\frac{-11}{24} = \frac{-13}{16} + \frac{-11}{24}$
$$= \frac{-13 \times 3}{16 \times 3} + \frac{-11 \times 2}{24 \times 2}$$

(: L.C.M. of 16 and 24 = 48)
$$= \frac{-39}{48} + \frac{-22}{48}$$

$$= \frac{(-39) + (-22)}{48} = \frac{-39 - 22}{48} = \frac{-61}{48}$$

(ix)
$$\frac{-9}{-16}$$
 and $\frac{-11}{8} = \frac{9}{16} + \frac{-11}{8}$

$$= \frac{9 \times 1}{16 \times 1} + \frac{-11 \times 2}{8 \times 2}$$
(: L.C.M. of 16 and 8 = 16)

$$= \frac{9}{16} + \frac{-22}{16}$$
9 + (-22) 9 - 22 -13

$$=$$
 16 $=$ 16 $=$ 16

Question 3.

Evaluate: (i) $\frac{-2}{5} + \frac{3}{5} + \frac{-1}{5}$ (ii) $\frac{-8}{9} + \frac{4}{9} + \frac{-2}{9}$ (iii) $\frac{5}{-24} + \frac{-1}{8} + \frac{3}{16}$ (iv) $\frac{-7}{6} + \frac{4}{-15} + \frac{-4}{-30}$ (v) $-2 + \frac{2}{5} + \frac{-2}{15}$ (vi) $\frac{-11}{12} + \frac{5}{16} + \frac{-3}{8}$

$$(i) \frac{-2}{5} + \frac{3}{5} + \frac{-1}{5}$$

$$= \frac{-2+3-1}{5} = \frac{0}{5} = 0$$

$$(ii) \frac{-8}{9} + \frac{4}{9} + \frac{-2}{9}$$

$$= \frac{-8+4-2}{9} = \frac{-10+4}{9} = \frac{-6}{9}$$

$$(iii) \frac{5}{-24} + \frac{-1}{8} + \frac{3}{16}$$

$$= \frac{-5\times2}{24\times2} + \frac{-1\times6}{8\times6} + \frac{3\times3}{16\times3}$$

$$(\because \text{ L.C.M. of 8, 16, 24 = 48})$$

$$= \frac{-10}{48} + \frac{-6}{48} + \frac{9}{48}$$

$$= \frac{-10-6+9}{48} = \frac{-16+9}{48} = \frac{-7}{48}$$

$$(iv) \frac{-7}{6} + \frac{4}{-15} + \frac{-4}{-30}$$

$$= \frac{-7}{6} + \frac{-4}{15} + \frac{4}{30}$$

$$= \frac{-7 \times 5}{6 \times 5} + \frac{-4 \times 2}{15 \times 2} + \frac{4 \times 1}{30 \times 1}$$

$$(\because L.C.M. \text{ of } 6, 15 \text{ and } 30 = 30)$$

$$= \frac{-35}{30} + \frac{-8}{30} + \frac{4}{30}$$

$$= \frac{-35 - 8 + 4}{30} = \frac{-43 + 4}{30} = \frac{-39}{30}$$

$$(v) -2 + \frac{2}{5} + \frac{-2}{15}$$

$$= \frac{-2}{1} + \frac{2}{5} + \frac{-2}{15}$$

$$= \frac{-2 \times 15}{1 \times 15} + \frac{2 \times 3}{5 \times 3} + \frac{-2 \times 1}{15 \times 1}$$

$$(\because L.C.M. \text{ of } 1, 5 \text{ and } 15 = 15)$$

$$= \frac{-30}{15} + \frac{6}{15} + \frac{-2}{15}$$

$$= \frac{-30 + 6 - 2}{15} = \frac{-32 + 6}{15} = \frac{-26}{15}$$

$$(vi) \frac{-11}{12} + \frac{5}{16} + \frac{-3}{8}$$

$$= \frac{-11 \times 4}{12 \times 4} + \frac{5 \times 3}{16 \times 3} + \frac{-3 \times 6}{8 \times 6}$$

$$(\because \text{ L.C.M. of 8, 12 and 16 = 48})$$

$$= \frac{-44}{48} + \frac{15}{48} + \frac{-18}{48}$$

$$= \frac{-44 + 15 - 18}{48} = \frac{-62 + 15}{48} = \frac{-47}{48}$$

Question 4.

Evaluate:

 $(i) -\frac{11}{18} + \frac{-3}{9} + \frac{2}{-3}$ $(ii) \frac{-9}{4} + \frac{13}{3} + \frac{25}{6}$ $(iii) -5 + \frac{5}{-8} + \frac{-5}{-12}$ $(iv) -\frac{2}{3} + \frac{5}{2} + 2$ $(v) 5 + \frac{-3}{4} + \frac{-5}{8}$

$$(i) -\frac{11}{18} + \frac{-3}{9} + \frac{2}{-3}$$

$$= \frac{-11}{18} + \frac{-3}{9} + \frac{-2}{3}$$

$$= \frac{-11 \times 1}{18 \times 1} + \frac{-3 \times 2}{9 \times 2} + \frac{-2 \times 6}{3 \times 6}$$
(: L.C.M. of 3, 9 and 18 = 18)
$$= \frac{-11}{18} + \frac{-6}{18} + \frac{-12}{18}$$

$$= \frac{-11 - 6 - 12}{18} = \frac{-29}{18}$$

$$(ii) \frac{-9}{4} + \frac{13}{3} + \frac{25}{6}$$

$$= \frac{-9 \times 6}{4 \times 6} + \frac{13 \times 8}{3 \times 8} + \frac{25 \times 4}{6 \times 4}$$
(: L.C.M. of 4, 3 and 6 = 24)
$$= \frac{-54}{24} + \frac{104}{24} + \frac{100}{24}$$

$$= \frac{-54 + 104 + 100}{24} = \frac{150}{24} = \frac{25}{6}$$

$$(iii) -5 + \frac{5}{-8} + \frac{-5}{-12}$$

$$= \frac{-5}{1} + \frac{-5}{8} + \frac{5}{12}$$

$$= \frac{-5 \times 24}{1 \times 24} + \frac{-5 \times 3}{8 \times 3} + \frac{5 \times 2}{12 \times 2}$$
(: L.C.M. of 1, 8 and 12 = 24)
$$= \frac{-120}{24} + \frac{-15}{24} + \frac{10}{24}$$

$$= \frac{-120 - 15 + 10}{24} = \frac{-125}{24}$$

$$(iv) -\frac{2}{3} + \frac{5}{2} + 2$$

$$= -\frac{2}{3} + \frac{5}{2} + \frac{2}{1}$$

$$= \frac{-2 \times 2}{3 \times 2} + \frac{5 \times 3}{2 \times 3} + \frac{2 \times 6}{1 \times 6}$$
(: L.C.M. of 3, 2 and 1 = 6)
$$= \frac{-4}{6} + \frac{15}{6} + \frac{12}{6}$$

$$= \frac{-4 + 15 + 12}{6} = \frac{23}{6}$$
$$(v) 5 + \frac{-3}{4} + \frac{-5}{8}$$

$$= \frac{5}{1} + \frac{-3}{4} + \frac{-5}{8}$$

$$= \frac{5 \times 8}{1 \times 8} + \frac{-3 \times 2}{4 \times 2} + \frac{-5 \times 1}{8 \times 1}$$

$$(\because \text{ L.C.M. of } 1, 4 \text{ and } 8 = 8)$$

$$= \frac{40}{8} + \frac{-6}{8} + \frac{-5}{8}$$

$$=\frac{40-6-5}{8}=\frac{40-11}{8}=\frac{29}{8}$$

Question 5. Subtract :

(i) $\frac{2}{9}$ from $\frac{5}{9}$ (ii) $\frac{-6}{11}$ from $\frac{-3}{-11}$ (iii) $\frac{-2}{15}$ from $\frac{-8}{15}$ (iv) $\frac{11}{18}$ from $\frac{-5}{18}$ (v) $\frac{-4}{11}$ from -2

(i)
$$\frac{2}{9}$$
 from $\frac{5}{9}$

$$= \frac{5}{9} - \frac{2}{9} = \frac{5-2}{9} = \frac{3}{9} = \frac{1}{3}$$
(ii) $\frac{-6}{11}$ from $\frac{-3}{-11}$

$$= \frac{3}{11} - \left(-\frac{6}{11}\right)$$

$$= \frac{3}{11} + \frac{6}{11} = \frac{3+6}{11} = \frac{9}{11}$$
(iii) $\frac{-2}{15}$ from $\frac{-8}{15}$

$$= \frac{-8}{15} - \left(\frac{-2}{15}\right)$$

$$= \frac{-8}{15} + \frac{2}{15} = \frac{-8+2}{15} = \frac{-6}{15} = \frac{-2}{5}$$
(iv) $\frac{11}{18}$ from $\frac{-5}{18}$

$$= \frac{-5}{18} - \frac{11}{18} = \frac{-5-11}{18} = \frac{-16}{18} = \frac{-8}{9}$$
(v) $\frac{-4}{11}$ from -2

$$= \frac{-2}{1} - \left(\frac{-4}{11}\right) = \frac{-2\times11}{1\times11} + \frac{4\times1}{11\times1}$$

$$= \frac{-22}{11} + \frac{4}{11} = \frac{-22+4}{11} = \frac{-18}{11}$$

Question 6. Subtract :

(i)
$$-\frac{3}{10}$$
 from $\frac{1}{5}$ (ii) $\frac{-6}{25}$ from $\frac{-8}{5}$
(iii) $\frac{-7}{4}$ from -2 (iv) $\frac{-16}{21}$ from 1
(v) $\frac{-8}{15}$ from 0 (vi) 0 from $\frac{-3}{8}$
(vii) -2 from $\frac{-3}{10}$ (viii) $\frac{5}{8}$ from $\frac{-5}{16}$
(ix) 4 from $-\frac{3}{13}$

$$(i) -\frac{3}{10} \text{ from } \frac{1}{5}$$

$$= \frac{1}{5} - \left(-\frac{3}{10}\right)$$

$$= \frac{1 \times 2}{5 \times 2} + \frac{3}{10}$$

$$= \frac{2}{10} + \frac{3}{10} = \frac{2+3}{10} = \frac{5}{10}$$

$$(ii) \frac{-6}{25} \text{ from } \frac{-8}{5}$$

$$= \frac{-8}{5} - \left(\frac{-6}{25}\right)$$

$$= \frac{-8 \times 5}{5 \times 5} + \frac{6}{25} = \frac{-40}{25} + \frac{6}{25}$$

$$= \frac{-40+6}{25} = \frac{-34}{25}$$

$$(iii) \frac{-7}{4} \text{ from } -2$$

$$= \frac{-2}{1} - \left(\frac{-7}{4}\right)$$

$$= \frac{-2 \times 4}{1 \times 4} + \frac{7}{4} = \frac{-8}{4} + \frac{7}{4}$$

$$= \frac{-8 + 7}{4} = \frac{-1}{4}$$
(iv) $\frac{-16}{21}$ from 1
$$= \frac{1}{1} - \left(\frac{-16}{21}\right)$$

$$= \frac{1}{1} + \frac{16}{21} = \frac{1 \times 21 + 16}{21}$$

$$= \frac{21 + 16}{21} = \frac{37}{21}$$
(v) $\frac{-8}{15}$ from 0
$$= 0 - \left(\frac{-8}{15}\right)$$

$$= 0 + \frac{8}{15} = \frac{8}{15}$$
(vi) 0 from $\frac{-3}{8}$

$$= \frac{-3}{8} - 0 = \frac{-3}{8}$$

$$(vii) -2 \text{ from } \frac{-3}{10}$$

$$= \frac{-3}{10} - \left(\frac{-2}{1}\right)$$

$$= \frac{-3}{10} + \frac{2}{1} = \frac{-3 + 2 \times 10}{10} = \frac{17}{10}$$

$$(viii) \frac{5}{8} \text{ from } \frac{-5}{16}$$

$$= \frac{-5}{16} - \left(\frac{5}{8}\right)$$

$$= \frac{-5}{16} - \frac{5 \times 2}{8 \times 2} = \frac{-5}{16} - \frac{10}{16}$$

$$= \frac{-5 - 10}{16} = \frac{-15}{16}$$

$$(ix) 4 \text{ from } -\frac{3}{13}$$

$$= -\frac{3}{13} - \frac{4}{1} = \frac{-3 - 4 \times 13}{13}$$

$$= \frac{-3 - 52}{13} = \frac{-55}{13}$$

Question 7.

The sum of two rational numbers is $\frac{11}{24}$. If one of them is $\frac{3}{8}$, find the other.

Solution:

$$\therefore$$
 Sum of two rational number = $\frac{11}{24}$

and one of them = $\frac{3}{8}$

$$\therefore$$
 The other rational number = $\frac{11}{24} - \frac{3}{8}$

$$= \frac{11}{24} - \frac{3 \times 3}{8 \times 3} = \frac{11}{24} - \frac{9}{24}$$
$$= \frac{11 - 9}{24} = \frac{2}{24}$$

Question 8.

The sum of two rational numbers is $\frac{-7}{11}$. If one of them is $\frac{13}{24}$, find the other. Solution:

$$\therefore$$
 Sum of two rational number = $\frac{-7}{12}$

One of them =
$$\frac{13}{24}$$

 \therefore Other rational number = $\frac{-7}{12} - \frac{13}{24}$

$$= \frac{-7 \times 2}{12 \times 2} - \frac{13}{24}$$
$$= \frac{-14}{24} - \frac{13}{24}$$
$$= \frac{-14 - 13}{24} = \frac{-27}{24}$$

Question 9.

The sum of two rational numbers is -4. If one of them is $-\frac{13}{12}$, find the other.

Solution:

 \therefore Sum of two rational number = -4

and one of them =
$$-\frac{13}{12}$$

$$\therefore$$
 Other rational number = $-4 - \left(-\frac{13}{12}\right)$

$$= -4 + \frac{13}{12}$$
$$= \frac{-4 \times 12 + 13}{12} = \frac{-48 + 13}{12} = \frac{-35}{12}$$

Question 10.

What should be added to $-\frac{3}{6}$ to get $-\frac{11}{24}$?

Let the required rational number be x

Other number =
$$-\frac{3}{16}$$

Sum of two number = $\frac{11}{24}$
According to question,
 $-\frac{3}{16} + x = \frac{11}{24}$
 $\Rightarrow x = \frac{11}{24} + \frac{3}{16}$
 $x = \frac{11 \times 2}{24 \times 2} + \frac{3 \times 3}{16 \times 3}$
(\because L.C.M. of 16 and 24 = 48)
 $x = \frac{22}{48} + \frac{9}{48}$
 $x = \frac{22 + 9}{48} = \frac{31}{48}$

Question 11.

What should be added to $\frac{-3}{5}$ to get 2?

Solution:

Let the required rational number be x

Other number =
$$\frac{-3}{5}$$

Sum of two number = 2
According to question,
 $\frac{-3}{5} + x = 2$
 $\Rightarrow x = 2 + \frac{3}{5}$
 $= \frac{2 \times 5 + 3}{5} = \frac{10 + 3}{5} = \frac{13}{5}$

Question 12.

What should be subtracted from $\frac{-4}{5}$ to get 1?

Solution:

Let the required rational number = x

Other number = $\frac{-4}{5}$

Difference of two number = 1 According to question,

$$\therefore \frac{-4}{5} - x = 1$$

$$\Rightarrow \frac{-4}{5} - 1 = x$$

$$\Rightarrow x = \frac{-4 - 1 \times 5}{5} = \frac{-4 - 5}{5} = \frac{-9}{5}$$

Question 13.

The sum of two numbers is $-\frac{6}{5}$. If one of them is -2, find the other.

Solution:

$$\therefore$$
 Sum of two rational number = $-\frac{6}{5}$

and one of them = -2

$$\therefore$$
 Other rational number = $-\frac{6}{5} - \left(-\frac{2}{1}\right)$

$$=\frac{-6+2\times5}{5}=\frac{-6+10}{5}=\frac{4}{5}$$

Question 14.

What should be added to $\frac{-7}{12}$ to get $\frac{3}{8}$?

Solution:

Let the required rational number be = x

Other number
$$= \frac{-7}{12}$$

Sum of two numbers $= \frac{3}{8}$
 $\therefore \frac{-7}{12} + x = \frac{3}{8}$
 $\Rightarrow x = \frac{3}{8} - \frac{-7}{12}$
 $= \frac{3 \times 3}{8 \times 3} + \frac{7 \times 2}{12 \times 2}$
(\because L.C.M. of 8 and 12 = 24)
 $= \frac{9}{24} + \frac{14}{24}$
 $= \frac{9 + 14}{24} = \frac{23}{24}$

Question 15.

What should be subtracted from $\frac{5}{9}$ to get $\frac{9}{5}$?

Solution:

Let the first number be x

Other number = $\frac{5}{9}$

Difference of two number = $\frac{9}{5}$

According to question,

$$\therefore \frac{5}{9} - x = \frac{9}{5}$$

$$x = \frac{5}{9} - \frac{9}{5}$$

$$x = \frac{5 \times 5}{9 \times 5} - \frac{9 \times 9}{5 \times 9}$$
(\therefore L.C.M. of 9 and 5 = 45)
$$x = \frac{25}{45} - \frac{81}{45}$$

$$x = \frac{25 - 81}{45} = -\frac{56}{45}$$

EXERCISE 2 (D)

Question 1. Evaluate:

(i)
$$\frac{5}{4} \times \frac{3}{7}$$
 (ii) $\frac{2}{3} \times -\frac{6}{7}$
(iii) $\left(\frac{-12}{5}\right) \times \left(\frac{10}{-3}\right)$ (iv) $\frac{-45}{39} \times \frac{-13}{15}$
(v) $3\frac{1}{8} \times \left(-2\frac{2}{5}\right)$ (vi) $2\frac{14}{25} \times \left(\frac{-5}{16}\right)$
(vii) $\left(\frac{-8}{9}\right) \times \left(\frac{-3}{16}\right)$ (viii) $\left(\frac{5}{-27}\right) \times \left(\frac{-9}{20}\right)$

(i)
$$\frac{5}{4} \times \frac{3}{7} = \frac{5 \times 3}{4 \times 7} = \frac{15}{28}$$

(ii) $\frac{2}{3} \times -\frac{6}{7} = \frac{2 \times -6}{3 \times 7} = \frac{2 \times -2}{7} = \frac{-4}{7}$
(iii) $\left(\frac{-12}{5}\right) \times \left(\frac{10}{-3}\right)$
 $= \frac{(-12) \times 10}{5 \times (-3)} = 4 \times 2 = 8$
(iv) $\frac{-45}{39} \times \frac{-13}{15}$
 $= \frac{(-45) \times (-13)}{39 \times 15} = \frac{(-3) \times (-1)}{3 \times 1}$
 $= \frac{3}{3} = 1$
(v) $3\frac{1}{8} \times \left(-2\frac{2}{5}\right)$
 $= \frac{3 \times 8 + 1}{8} \times \left(-\frac{2 \times 5 + 2}{5}\right)$
 $= \frac{25}{8} \times \left(-\frac{12}{5}\right) = \frac{25 \times (-12)}{8 \times 5}$
 $= \frac{5 \times (-3)}{2 \times 1} = \frac{-15}{2}$

$$(vi) \ 2\frac{14}{25} \times \left(\frac{-5}{16}\right)$$

$$= \frac{2 \times 25 + 14}{25} \times \left(\frac{-5}{16}\right)$$

$$= \frac{64}{25} \times \left(\frac{-5}{16}\right)$$

$$= \frac{64 \times (-5)}{25 \times 16} = \frac{4 \times (-1)}{5 \times 1} = -\frac{4}{5}$$

$$(vii) \ \left(\frac{-8}{9}\right) \times \left(\frac{-3}{16}\right)$$

$$= \frac{(-8) \times (-3)}{9 \times 16} = \frac{(-1) \times (-1)}{3 \times 2} = \frac{1}{6}$$

$$(viii) \ \left(\frac{5}{-27}\right) \times \left(\frac{-9}{20}\right)$$

$$= \frac{5 \times (-9)}{(-27) \times 20} = \frac{1 \times 1}{3 \times 4} = \frac{1}{12}$$

Question 2.

Multiply:

(i) $\frac{3}{25}$ and $\frac{4}{5}$ (ii) $1\frac{1}{8}$ and $10\frac{2}{3}$ (iii) $6\frac{2}{3}$ and $\frac{-3}{8}$ (iv) $\frac{-13}{15}$ and $\frac{-25}{26}$ (v) $1\frac{1}{6}$ and 18(vi) $2\frac{1}{14}$ and -7(vii) $5\frac{1}{8}$ and -16(viii) 35 and $\frac{-18}{25}$ (ix) $6\frac{2}{3}$ and $-\frac{3}{8}$ (x) $3\frac{3}{5}$ and -10(xi) $\frac{27}{28}$ and -14(xii) -24 and $\frac{5}{16}$

(i)
$$\frac{3}{25}$$
 and $\frac{4}{5}$

$$= \frac{3}{25} \times \frac{4}{5} = \frac{3 \times 4}{25 \times 5} = \frac{12}{125}$$
(ii) $1\frac{1}{8}$ and $10\frac{2}{3}$

$$= \frac{9}{8} \times \frac{32}{3} = \frac{9 \times 32}{8 \times 3} = 3 \times 4 = 12$$
(iii) $6\frac{2}{3}$ and $\frac{-3}{8}$

$$= \frac{20}{3} \times \frac{(-3)}{8} = \frac{20 \times (-3)}{3 \times 8}$$

$$= \frac{5 \times (-1)}{1 \times 2} = \frac{-5}{2}$$
(iv) $\frac{-13}{15}$ and $\frac{-25}{26}$

$$= \frac{-13 \times -25}{15 \times 26} = \frac{-1 \times -5}{3 \times 2} = \frac{5}{6}$$
(v) $1\frac{1}{6}$ and 18

$$= \frac{7}{6} \times 18 = 7 \times 3 = 21$$
(vi) $2\frac{1}{14}$ and -7

$$= \frac{2 \times 14 + 1}{14} \times (-7) = \frac{29}{14} \times (-7)$$

$$= \frac{29 \times (-1)}{2} = \frac{-29}{2}$$
(vii) $5\frac{1}{8}$ and -16

$$= \frac{41}{8} \times (-16) = 41 \times -2 = -82$$

(viii) 35 and
$$\frac{-18}{25}$$

= $35 \times \frac{-18}{25} = \frac{35 \times (-18)}{25} = \frac{7 \times (-18)}{5}$
= $\frac{-126}{5} = -25\frac{1}{5}$
(ix) $6\frac{2}{3}$ and $-\frac{3}{8}$
= $\frac{20}{3} \times \frac{-3}{8} = \frac{20 \times (-3)}{3 \times 8}$
= $\frac{5 \times (-1)}{1 \times 2} = \frac{-5}{2} = -2\frac{1}{2}$
(x) $3\frac{3}{5}$ and -10
= $\frac{3 \times 5 + 3}{5} \times (-10)$
= $\frac{18}{5} \times (-10) = 18 \times (-2) = -36$
(xi) $\frac{27}{28}$ and -14
= $\frac{27}{28}$ and (-14)
= $\frac{27 \times (-1)}{2} = \frac{-27}{2} = -13\frac{1}{2}$
(xii) -24 and $\frac{5}{16}$
= $\frac{-24 \times 5}{16} = \frac{-3 \times 5}{2}$
= $\frac{-15}{2} = -7\frac{1}{2}$

Question 3. Evaluate:

$$(i) \left(-6 \times \frac{5}{18}\right) - \left(-4\frac{2}{9}\right)$$

$$(ii) \left(\frac{7}{8} \times \frac{8}{7}\right) + \left(\frac{-5}{9}\right) \times \left(\frac{6}{-25}\right)$$

$$(iii) \left(\frac{11}{-9} \times \frac{21}{44}\right) + \left(\frac{-5}{9}\right) \times \left(\frac{63}{-100}\right)$$

$$(iv) \left(\frac{-5}{9} \times \frac{6}{-25}\right) + \left(\frac{24}{21} \times \frac{7}{8}\right)$$

$$(v) \left(\frac{-35}{39} \times \frac{-13}{7}\right) - \left(\frac{7}{90} \times \frac{-18}{14}\right)$$

$$(vi) \left(\frac{-4}{5} \times \frac{3}{2}\right) + \left(\frac{9}{-5} \times \frac{10}{3}\right) - \left(\frac{-3}{2} \times \frac{-1}{4}\right)$$

$$(i) \left(-6 \times \frac{5}{18}\right) - \left(-4\frac{2}{9}\right)$$
$$= \left(-1 \times \frac{5}{3}\right) - \left(\frac{-(4 \times 9 + 2)}{9}\right)$$
$$\frac{3}{3} + \frac{3,9}{1,3}$$
$$1,1$$
$$1.C.M. = 9$$
$$= \frac{-5}{3} - \left(\frac{-38}{9}\right)$$
$$= \frac{-5}{3} + \frac{38}{9} = \frac{-5 \times 3}{3 \times 3} + \frac{38 \times 1}{9 \times 1}$$
$$= \frac{-15 + 38}{9} \Rightarrow \frac{23}{9} = 2\frac{5}{9}$$
$$(ii) \left(\frac{7}{8} \times \frac{8}{7}\right) + \left(\frac{-5}{9}\right) \times \left(\frac{6}{-25}\right)$$
$$= \left(\frac{7}{8} \times \frac{8}{7}\right) + \left(\frac{-5}{9} \times \frac{6}{(-25)}\right)$$
$$= \frac{1}{1} + \frac{1 \times 2}{3 \times 5} = \frac{1}{1} + \frac{2}{15}$$
$$= \frac{15 + 2}{15} = \frac{17}{15} = 1\frac{2}{15}$$

$$(iii) \left(\frac{11}{-9} \times \frac{21}{44}\right) + \left(\frac{-5}{9}\right) \times \left(\frac{63}{-100}\right)$$
$$= \left(\frac{11}{-9} \times \frac{21}{44}\right) + \left(\frac{5}{9} \times \frac{63}{100}\right)$$
$$= -\frac{1\times7}{3\times4} + \frac{1\times7}{1\times20} = -\frac{7}{12} + \frac{7}{20}$$
$$= -\frac{7\times5}{12\times5} + \frac{7\times3}{20\times3}$$
$$(\because \text{ L.C.M. of 12 and 20 = 60)}$$
$$= -\frac{35}{60} + \frac{21}{60} = \frac{-35+21}{60} = \frac{-14}{60}$$
$$(iv) \left(\frac{-5}{9} \times \frac{6}{-25}\right) + \left(\frac{24}{21} \times \frac{7}{8}\right)$$
$$\left(\frac{5}{9} \times \frac{6}{25}\right) + \left(\frac{24}{21} \times \frac{7}{8}\right)$$
$$= \frac{2}{3\times5} + 1 = \frac{2}{15} + 1$$
$$= \frac{2+15}{15} = \frac{17}{15} = 1\frac{2}{15}$$
$$(v) \left(\frac{-35}{39} \times \frac{-13}{7}\right) - \left(\frac{7}{90} \times \frac{-18}{14}\right)$$
$$= \left(\frac{-35}{39} \times \frac{(-13)}{7}\right) - \left(\frac{7}{90} \times \frac{-18}{14}\right)$$
$$= \frac{(-5)\times(-1)}{3\times1} - \left(\frac{1\times(-1)}{5\times2}\right)$$
$$= \frac{5}{3} - \left(\frac{-1}{10}\right)$$
$$= \frac{5\times10}{30} = \frac{53}{30} = 1\frac{23}{30}$$

$$(vi) \left(\frac{-4}{5} \times \frac{3}{2}\right) + \left(\frac{9}{-5} \times \frac{10}{3}\right) - \left(\frac{-3}{5} \times \frac{-1}{4}\right)$$
$$= \left(\frac{-2 \times 3}{5 \times 1}\right) + \left(\frac{3 \times 2}{-1 \times 1}\right) - \left(\frac{-3 \times (-1)}{2 \times 4}\right)$$
$$= \left(\frac{-6}{5}\right) + \left(\frac{-6}{1}\right) - \left(\frac{3}{8}\right)$$
$$= \frac{-6 \times 8}{5 \times 8} - \frac{6 \times 40}{1 \times 40} - \frac{3 \times 5}{8 \times 5}$$
$$= \frac{-48 - 240 - 15}{40}$$
$$= \frac{-288 - 15}{40} = \frac{303}{40} = 5\frac{3}{40}$$

Question 4.

Find the cost of $3\frac{1}{2}$ m cloth, if one metre cloth costs ₹325 $\frac{1}{2}$.

Cost of 1 metre cloth = ₹325
$$\frac{1}{2}$$

= $\frac{2 \times 325 + 1}{2} = \frac{650 + 1}{2} = ₹ \frac{651}{2}$
Now cost of $3\frac{1}{2}m\left(\frac{2 \times 3 + 1}{2} = \frac{7}{2}\right)m$
= $\frac{651}{2} \times \frac{7}{2} = \frac{651 \times 7}{2 \times 2}$
= $\frac{4557}{4} = ₹1139\frac{1}{4}$

Question 5.

A bus is moving with a speed of 65 $\frac{1}{2}$ km per hour. How much distance will it cover in 1 $\frac{1}{3}$ hours.

Solution:

Speed of bus per hour =
$$65\frac{1}{2}$$

= $\frac{2 \times 65 + 1}{2} = \frac{130 + 1}{2} = \frac{131}{2}$ km
Time taken = $1\frac{1}{3}$ hour = $\frac{4}{3}$ hour
= $\frac{131}{2} \times \frac{4}{3} \Rightarrow \frac{131}{1} \times \frac{2}{3}$
Distance covered = Speed × Time
= $\frac{131}{2} \times \frac{4}{3}$
= $\frac{131 \times 2}{1 \times 3} = \frac{262}{3} = 87\frac{1}{3}$ km

Question 6.

Divide:

(i)
$$\frac{15}{28}$$
 by $\frac{3}{4}$
(ii) $\frac{-20}{9}$ by $\frac{-5}{9}$
(iii) $\frac{16}{-5}$ by $\frac{-8}{7}$
(iv) -7 by $\frac{-14}{5}$
(v) -14 by $\frac{7}{-2}$
(vi) $\frac{-22}{9}$ by $\frac{11}{18}$
(vii) 35 by $\frac{-7}{9}$
(viii) $\frac{21}{44}$ by $-\frac{11}{9}$

(i)
$$\frac{15}{28}$$
 by $\frac{3}{4}$

$$= \frac{15}{28} \div \frac{3}{4} \Rightarrow \frac{15}{28} \times \frac{4}{3}$$

$$= \frac{5}{28} \div \frac{1}{1} = \frac{5}{7}$$
(ii) $\frac{-20}{9}$ by $\frac{-5}{9} = \frac{-20}{9} \div \frac{-5}{9}$
(ii) $\frac{-20}{9}$ by $\frac{-5}{9} = \frac{-4}{-1} = \frac{4}{1} = 4$
(iii) $\frac{16}{-5}$ by $\frac{-8}{7}$

$$= \frac{16}{-5} \div \frac{-8}{7} \Rightarrow \frac{16}{-5} \div \frac{7}{-8}$$

$$= \frac{2}{-5} \times \frac{7}{-1}$$

$$= \frac{2 \times 7}{-5 \times (-1)} = \frac{14}{5} = 2\frac{4}{5}$$
(iv) -7 by $\frac{-14}{5}$
 $= -7 \div \frac{-14}{5} \Rightarrow -7 \times \frac{5}{-14} \Rightarrow 1 \times \frac{5}{2}$
 $= \frac{1 \times 5}{2} = \frac{5}{2} = 2\frac{1}{2}$
(v) -14 by $\frac{7}{-2}$

$$= -14 \div \frac{7}{-2} \Rightarrow -14 \times \frac{-2}{7}$$

$$= \frac{-2 \times (-2)}{1 \times 1} = 4$$

$$(vi) \quad \frac{-22}{9} \text{ by } \frac{11}{18}$$

$$= \frac{-22}{9} \div \frac{11}{18} \Rightarrow \frac{-22}{9} \times \frac{18}{11}$$

$$= \frac{-2}{1} \times \frac{2}{1}$$

$$= \frac{-2 \times 2}{1 \times 1} = \frac{-4}{1} = -4$$

$$(vii) \quad 35 \text{ by } \frac{-7}{9}$$

$$= 35 \div \frac{-7}{9} \Rightarrow 35 \times \frac{9}{-7}$$

$$= 5 \times \frac{9}{-1}$$

$$= \frac{5 \times 9}{-1} = \frac{45}{-1} = -45$$

$$(viii) \quad \frac{21}{44} \text{ by } -\frac{11}{9}$$

$$= \frac{21}{44} \div \left(-\frac{11}{9}\right) \Rightarrow \frac{21}{44} \times -\frac{9}{11}$$

$$= \frac{21 \times (-9)}{44 \times 11} = -\frac{189}{484}$$

Question 7.

Evaluate:

(i)
$$3\frac{5}{12} + 1\frac{2}{3}$$
 (ii) $3\frac{5}{12} - 1\frac{2}{3}$
(iii) $\left(3\frac{5}{12} + 1\frac{2}{3}\right) \div \left(3\frac{5}{12} - 1\frac{2}{3}\right)$

(i)
$$3\frac{5}{12} + 1\frac{2}{3}$$

$$= \frac{12 \times 3 + 5}{12} + \frac{3 \times 1 + 2}{3}$$

$$= \frac{41}{12} + \frac{5}{3} \qquad (\because \text{ L.C.M. of } 12, 3 = 12)$$

$$= \frac{41 \times 1}{12 \times 1} + \frac{5 \times 4}{3 \times 4} = \frac{41}{12} + \frac{20}{12}$$

$$= \frac{41 + 20}{12} = \frac{61}{12} = 5\frac{1}{12}$$
(ii) $3\frac{5}{12} - 1\frac{2}{3}$

$$= \frac{12 \times 3 + 5}{12} - \frac{3 \times 1 + 2}{3}$$

$$= \frac{41}{12} - \frac{5}{3} \qquad (\because \text{ L.C.M. of } 12, 3 = 12)$$

$$= \frac{41 \times 1}{12 \times 1} - \frac{5 \times 4}{3 \times 4}$$

$$= \frac{41 - 20}{12} = \frac{21}{12} = \frac{7}{4} = 1\frac{3}{4}$$

$$(iii) \left(3\frac{5}{12}+1\frac{2}{3}\right) \div \left(3\frac{5}{12}-1\frac{2}{3}\right)$$
$$= \left(\frac{12\times3+5}{12}+\frac{3\times1+2}{3}\right)$$
$$\div \left(\frac{12\times3+5}{12}-\frac{3\times1+2}{3}\right)$$
$$\left(\frac{41}{12}+\frac{5}{3}\right) \div \left(\frac{41}{12}-\frac{5}{3}\right)$$
$$(\because \text{ L.C.M. of } 12, 3 = 12)$$
$$= \left(\frac{41+20}{12}\right) \div \left(\frac{41-20}{12}\right)$$
$$= \frac{61}{12} \div \frac{21}{12} \Rightarrow \frac{61}{12} \times \frac{12}{21}$$
$$= \frac{61}{21} = 2\frac{19}{21}$$

Question 8.

The product of two numbers is 14. If one of the numbers is $\frac{-8}{7}$, find the other.

Solution:

∴ Product of two numbers = 14
and one of these two numbers =
$$\frac{-8}{7}$$

The other number = $14 \div \frac{-8}{7}$
= $14 \times -\frac{7}{8} = -\frac{98}{8} = \frac{-49}{4}$

Question 9.

The cost of 11 pens is $\gtrless 3\frac{2}{3}$. Find the cost of one pen.

The cost of 11 pens = ₹ $3\frac{2}{3}$ = $\frac{3 \times 3 + 2}{3}$ = ₹ $\frac{11}{3}$ The cost of one pen = $\frac{11}{3} \div 11$ = $\frac{11}{3} \times \frac{1}{11}$ = ₹ $\frac{1}{3}$

Question 10.

If 6 identical articles can be bought for ₹2 $\frac{6}{17}$. Find the cost of each article.

Solution:

Cost of 6 articles = ₹2
$$\frac{6}{17}$$

= $\frac{2 \times 17 + 6}{17}$ = ₹ $\frac{40}{17}$
Cost of each article = $\frac{40}{17} \div 6$
= $\frac{40}{17} \times \frac{1}{6} = ₹\frac{20}{51}$

Question 11.

By what number should $\frac{-3}{8}$ be multiplied so that the product is $\frac{-9}{16}$?

Number =
$$\frac{-3}{8} \div \left(\frac{-9}{16}\right)$$

= $\frac{-3}{8} \times \frac{16}{-9} = \frac{2}{3} = 1\frac{1}{2}$

Question 12.

By what number should $\frac{-5}{7}$ be divided so -15 that the result is $\frac{-15}{28}$?

Solution:

Number =
$$\frac{-15}{28} \div \frac{-5}{7}$$

= $\frac{-15}{28} \times \frac{-7}{5} = \frac{3}{4}$

Question 13.

Evaluate :

$$\left(\frac{32}{15}+\frac{8}{5}\right) \div \left(\frac{32}{15}-\frac{8}{5}\right).$$

$$\left(\frac{32}{15} + \frac{8}{5}\right) \div \left(\frac{32}{15} - \frac{8}{5}\right)$$
$$\left(\frac{32 \times 1}{15 \times 1} + \frac{8 \times 3}{5 \times 3}\right) \div \left(\frac{32 \times 1}{15 \times 1} - \frac{8 \times 1}{5 \times 1}\right)$$
$$(\because \text{ L.C.M. of } 15, 5 = 15)$$
$$= \left(\frac{32 + 24}{15}\right) \div \left(\frac{32 - 24}{15}\right)$$
$$= \frac{56}{15} \div \frac{8}{15} \Rightarrow \frac{56}{15} \times \frac{15}{8} = 7$$

Question 14.

Seven equal piece are made out of a rope 5 of 21 $\frac{5}{7}$ m. Find the length of each piece.

Solution:

Length of 7 pieces of rope
$$\stackrel{*}{=} 21\frac{5}{7}$$
 m

$$= \frac{21 \times 7 + 5}{7} = \frac{152}{7}$$
Length of each piece $= \frac{152}{7} \div 7$

$$= \frac{152}{7} \times \frac{1}{7} = \frac{152}{49} = 3\frac{5}{49}$$
 m

EXERCISE 2 (E)

Question 1.

Evaluate:

 $(i) \ \frac{-2}{3} + \frac{3}{4} \qquad (ii) \ \frac{7}{-27} + \frac{11}{18}$ $(iii) \ \frac{-3}{8} + \frac{-5}{12} \qquad (iv) \ \frac{9}{-16} + \frac{-5}{-12}$ $(v) \ \frac{-5}{9} + \frac{-7}{12} + \frac{11}{18} \ (vi) \ \frac{7}{-26} + \frac{16}{39}$ $(vii) \ -\frac{2}{3} - \left(\frac{-5}{7}\right) \qquad (viii) \ -\frac{5}{7} - \left(-\frac{3}{8}\right)$ $(ix) \ \frac{7}{26} + 2 + \frac{-11}{13} \qquad (x) \ -1 + \frac{2}{-3} + \frac{5}{6}$

(i)
$$\frac{-2}{3} + \frac{3}{4}$$

 $\frac{3 \mid 3, 4}{4 \mid 1, 4}$
L.C.M. of 3 and 4 = 3 × 4 = 12
 $\Rightarrow \frac{-2 \times 4}{3 \times 4} + \frac{3 \times 3}{4 \times 3}$
(: L.C.M. of 3 and 4 = 12)
 $\Rightarrow \frac{-8 + 9}{12} = \frac{1}{12}$
(ii) $\frac{7}{-27} + \frac{11}{18}$
 $\frac{2 \mid 27, 18}{3 \mid 27, 9}$
 $\frac{3 \mid 9, 3}{3 \mid 3, 1 \mid}$
L.C.M. of 27 and 18 = 2 × 3 × 3 × 3 = 54
 $\Rightarrow \frac{7 \times 2}{-27 \times 2} + \frac{11 \times 3}{18 \times 3}$

$$(:: L.C.M. of -27 and 18 = 54)$$

$$\Rightarrow \frac{-14+33}{54} = \frac{19}{54}$$
(*iii*) $\frac{-3}{8} + \frac{-5}{12}$

$$\frac{2 \mid 8, 12}{2 \mid 4, 6}$$

$$\frac{2 \mid 8, 12}{3 \mid 1, 1}$$

L.C.M. of 8 and $12 = 2 \times 2 \times 2 \times 3 = 24$

د.

$$\Rightarrow \frac{-3 \times 3}{8 \times 3} + \frac{(-5 \times 2)}{12 \times 2}$$

(:: L.C.M. of 8, 12 = 24)

$$\Rightarrow \frac{-9-10}{24} = \frac{-19}{24}$$
(iv) $\frac{9}{-16} + \frac{-5}{-12}$ or $\frac{-5}{-12} = \frac{5}{12}$

$$\frac{2 | 16, 12}{2 | 8, 6}$$

$$\frac{2 | 2, 3}{3 | 1, 3}$$

$$\frac{3 | 1, 3}{1, 1}$$

L.C.M. of 16 and $12 = 2 \times 2 \times 2 \times 2 \times 3 = 48$ $\Rightarrow \frac{9 \times 3}{-16 \times 3} + \frac{5 \times 4}{12 \times 4}$ (:: L.C.M. of 16 and 12 = 48) $\Rightarrow \frac{-27+20}{48} = \frac{-7}{48}$ $(v) \frac{-5}{9} + \frac{-7}{12} + \frac{11}{18}$ $\begin{array}{r}
2 & 9, 12, 18 \\
2 & 9, 6, 9 \\
\hline
3 & 9, 3, 9 \\
\hline
3 & 3, 1, 3 \\
\hline
1, 1, 1
\end{array}$ L.C.M. of 9, 12 and $18 = 2 \times 2 \times 3 \times 3 = 36$ $\Rightarrow \frac{-5 \times 4}{9 \times 4} - \frac{7 \times 3}{12 \times 3} + \frac{11 \times 2}{18 \times 2}$ (:: L.C.M. of 9, 12 and 18 = 36) $\Rightarrow \frac{-20-21+22}{36}$ $\Rightarrow \frac{-41+22}{36} = \frac{-19}{36}$ $(vi) \frac{7}{-26} + \frac{16}{39}$ 2 26, 39 3 13, 39 13 13, 13 L.C.M. of 26 and $39 = 2 \times 3 \times 13 = 78$ $\Rightarrow \frac{-7 \times 3}{26 \times 3} + \frac{16 \times 2}{39 \times 2}$ (L.C.M. of -26 and 39 = 78) $\Rightarrow \frac{-21+32}{78} = \frac{11}{78}$

$$(vii) -\frac{2}{3} - \left(\frac{-5}{7}\right)$$

$$\Rightarrow -\frac{2}{3} + \frac{5}{7}$$

$$\frac{3 \mid 3, 7}{7 \mid 1, 7}$$

L.C.M. of 3 and 7 = 3 × 7 = 21

$$\Rightarrow \frac{-2 \times 7}{3 \times 7} + \frac{5 \times 3}{7 \times 3}$$

(:: L.C.M. of 3 and 7 = 21)

$$\Rightarrow \frac{-14 + 15}{21} = \frac{1}{21}$$

$$(viii) -\frac{5}{7} - \left(-\frac{3}{8}\right)$$

$$\Rightarrow -\frac{5}{7} + \frac{3}{8}$$

$$\frac{2|7, \frac{3}{7}}{2, \frac{7}{7}, \frac{2}{7}}{\frac{7}{7}, \frac{1}{1}}$$

L.C.M. of 7 and $8 = 2 \times 2 \times 2 \times 7 = 56$

$$\Rightarrow \frac{-5 \times 8}{7 \times 8} + \frac{3 \times 7}{8 \times 7}$$

(: LCM of 7 and $8 = 56$)

$$\Rightarrow \frac{-40 + 21}{56} = \frac{-19}{56}$$

(ix) $\frac{7}{26} + 2 + \frac{-11}{13}$

$$\Rightarrow \frac{7}{26} + \frac{2}{1} + \frac{-11}{13}$$

$$\Rightarrow \frac{2|26, 13}{13|\frac{13}{13}, \frac{13}{13}}$$

L.C.M. of 26 and $13 = 2 \times 13 = 26$

$$\Rightarrow \frac{7 \times 1}{26 \times 1} + \frac{2 \times 26}{1 \times 26} - \frac{11 \times 2}{13 \times 2}$$

(: L.C.M. of 26, $13 = 26$)

$$\Rightarrow \frac{7 + 52 - 22}{26}$$

$$\Rightarrow \frac{59-22}{26} = \frac{37}{26}$$
(x) $-1 + \frac{2}{-3} + \frac{5}{6}$

$$\frac{2|3,6}{3|3,3}$$
L.C.M. of 3 and $6 = 2 \times 3 = 6$

$$\Rightarrow \frac{-1 \times 6}{1 \times 6} - \frac{2 \times 2}{3 \times 2} + \frac{5 \times 1}{6 \times 1}$$
(:: L.C.M. of 3 and $6 = 6$)
$$= \frac{-6-4+5}{6}$$

$$=\frac{-10+5}{6}=\frac{-5}{6}$$

Question 2.

The sum of two rational numbers is $\frac{-3}{8}$. If one of them is $\frac{3}{16}$, find the other,

Solution:

Sum of two numbers =
$$\frac{-3}{8}$$

One number =
$$\frac{3}{16}$$

$$\therefore \text{ Second number} = \frac{-3}{8} - \frac{3}{16}$$

L.C.M. of 8 and $16 = 2 \times 2 \times 2 \times 2 = 16$

$$= \frac{-3 \times 2}{8 \times 2} - \frac{3 \times 1}{16 \times 1}$$

(:: L.C.M. of 8 and 16 = 16)

$$=\frac{-6-3}{16}=\frac{-9}{16}$$

$$\therefore$$
 Second number = $\frac{-9}{16}$

Question 3.

The sum of two rational numbers is -5. If one of them is $\frac{-52}{25}$, find the other.

Solution:

Sum of two numbers = -5

One number =
$$\frac{-52}{25}$$

Second number =
$$-5 - \left(\frac{-52}{25}\right)$$

$$= \frac{-5 \times 25}{1 \times 25} + \frac{52 \times 1}{25 \times 1}$$
$$= \frac{-125 + 52}{25} = \frac{-77}{25}$$

$$\therefore$$
 Second number = $\frac{-77}{25}$

Question 4.

What rational number should be added to $-\frac{3}{16}$ to get $\frac{11}{24}$

Solution:

Sum of two number =
$$\frac{11}{24}$$

One number =
$$-\frac{3}{16}$$

$$\therefore \text{ The required number} = \frac{11}{24} - \left(\frac{-3}{16}\right)$$

 $\Rightarrow \frac{11}{24} + \frac{3}{16}$ $\frac{2 | 24, 16}{2 | 12, 8}$ $\frac{2 | 6, 4}{2 | 3, 2}$ $\frac{3 | 3, 1}{3 | 3, 1}$

L.C.M. of 16 and 24 = 2 × 2 × 2 × 2 × 3 = 48 (: L.C.M. of 24, 16 = 48) = $\frac{11 \times 2}{24 \times 2} + \frac{3 \times 3}{16 \times 3}$ = $\frac{22 + 9}{48} = \frac{31}{48}$

ę.
Question 5.

What rational number should be added to $-\frac{3}{5}$ to get 2?

Solution:

The required number =
$$2 - \left(\frac{-3}{5}\right)$$

= $2 + \frac{3}{5}$

$$= \frac{2 \times 5}{1 \times 5} + \frac{3 \times 1}{5 \times 1}$$
$$= \frac{10 + 3}{5} = \frac{13}{5} = 2\frac{3}{5}$$

Question 6. What rational number should be subtracted from $-\frac{5}{12}$ to get $\frac{5}{24}$

Solution:

The required number =
$$\frac{-5}{12} - \frac{5}{24}$$

2	12, 24
2	6, 12
2	3,6
3	3, 3
	1, 1

L.C.M. of 12 and $24 = 2 \times 2 \times 2 \times 3 \times 3$

$$\Rightarrow \frac{-5 \times 6}{12 \times 6} - \frac{5 \times 3}{24 \times 3}$$

(:: L.C.M. of 12, 24 = 72)
-30 - 15 - 45 - 5

$$\Rightarrow \frac{-30-13}{72} = \frac{-43}{72} \text{ or } \frac{-3}{8}$$

Question 7.

What rational number should be subtracted from $\frac{5}{8}$ to get $\frac{8}{5}$?

Solution:

The required number = $\frac{5}{8} - \frac{8}{5}$ $\frac{2 \mid 8, 5}{2 \mid 4, 5}$ $\frac{2 \mid 2, 5}{5 \mid 1, 5}$ $\frac{5 \times 5}{8 \times 5} - \frac{8 \times 8}{5 \times 8}$ (L.C.M. of 8, 5 = 40) $\Rightarrow \frac{25 - 64}{40} = \frac{-39}{40}$

Question 8.

Evaluate:

(ii)
$$\left(\frac{7}{8} \times \frac{24}{21}\right) + \left(\frac{-5}{9} \times \frac{6}{-25}\right)$$

(ii) $\left(\frac{8}{15} \times \frac{-25}{16}\right) + \left(\frac{-18}{35} \times \frac{5}{6}\right)$
(iii) $\left(\frac{18}{33} \times \frac{-22}{27}\right) - \left(\frac{13}{25} \times \frac{-75}{26}\right)$
(iv) $\left(\frac{-13}{7} \times \frac{-35}{39}\right) - \left(\frac{-7}{45} \times \frac{9}{14}\right)$

Solution:

$$(i) \left(\frac{7}{8} \times \frac{24}{21}\right) + \left(\frac{-5}{9} \times \frac{6}{-25}\right)$$

$$\Rightarrow \frac{7 \times 24}{8 \times 21} + \frac{-5 \times 6}{9 \times (-25)}$$

$$\Rightarrow \frac{1 \times 3}{1 \times 3} + \frac{1 \times 2}{3 \times 5}$$

$$\Rightarrow \frac{3}{1 \times 3} + \frac{2}{15}$$

$$\stackrel{\frac{3}{5} \frac{3}{1,5}}{\frac{5}{1,1}}$$

(: L.C.M. of 3 and 15 = 15)

$$\Rightarrow \frac{3 \times 5}{3 \times 5} + \frac{2 \times 1}{15 \times 1}$$

$$\Rightarrow \frac{15 + 2}{15} = \frac{17}{15} = 1\frac{2}{15}$$

$$(ii) \left(\frac{8}{15} \times \frac{-25}{16}\right) + \left(\frac{-18 \times 5}{35 \times 6}\right)$$

$$\Rightarrow \frac{8 \times (-25)}{3 \times 2} + \left(\frac{-3 \times 1}{7 \times 1}\right)$$

$$\Rightarrow \frac{-5}{6} - \frac{3}{7}$$

$$\frac{2 \left| \frac{6,7}{7}}{\frac{7}{1,7}} \right|_{1,1}^{7}$$

L.C.M. of 6 and 7 = 2 \times 3 \times 7 = 42
(: L.C.M. of 6 and 7 = 42)

$$\Rightarrow \frac{-5 \times 7}{6 \times 7} - \frac{3 \times 6}{7 \times 6}$$

$$\Rightarrow \frac{-35 - 18}{42} = \frac{-53}{42}$$

(iii)
$$\left(\frac{18}{33} \times \frac{-22}{27}\right) - \left(\frac{13}{25} \times \frac{-75}{26}\right)$$

$$\Rightarrow \frac{18 \times (-22)}{33 \times 27} - \frac{13 \times (-75)}{25 \times 26}$$

$$\Rightarrow \frac{2 \times (-2)}{3 \times 3} - \frac{1 \times (-3)}{1 \times 2}$$

$$\Rightarrow \frac{-4}{9} - \left(\frac{-3}{2}\right)$$

$$\Rightarrow \frac{-4}{9} + \frac{3}{2}$$

$$\frac{2 | 9, 2}{3 | 9, 1}$$

$$\frac{3 | 3, 1}{| 1, 1}$$
L.C.M. of 9 and 2 = 2 × 3 × 3 = 18

$$\Rightarrow \frac{-4 \times 2}{9 \times 2} + \frac{3 \times 9}{2 \times 9} (\because \text{L.C.M. of 9 and } 2 = 18)$$

$$\Rightarrow \frac{-8 + 27}{18} = \frac{19}{18} = 1\frac{1}{18}$$
(iv) $\left(\frac{-13}{7} \times \frac{-35}{39}\right) - \left(\frac{-7}{45} \times \frac{9}{14}\right)$

$$\Rightarrow \frac{-13 \times (-35)}{7 \times 39} + \frac{7 \times 9}{45 \times 14}$$

$$\Rightarrow \frac{-1 \times (-5)}{1 \times 3} + \frac{1 \times 1}{5 \times 2}$$

$$\Rightarrow \frac{5}{3} + \frac{1}{10}$$

$$\frac{2|3, 10}{3|3, 5|} = \frac{1}{1, 1}$$

L.C.M. of 3 and $10 = 2 \times 3 \times 5 = 10$

$$\Rightarrow \frac{5 \times 10}{3 \times 10} + \frac{1 \times 3}{10 \times 3}$$
(:: L.C.M. of 3 and 10 = 30)
$$\Rightarrow \frac{50+3}{30} = \frac{53}{30} = 1\frac{23}{30}$$

Question 9.

The product of two rational numbers is 24. If one of them is $-\frac{36}{11}$, find the other.

Solution:

Product of two numbers = 24

One number =
$$\frac{-36}{11}$$

$$\therefore \text{ Second number} = 24 \div \left(\frac{-36}{11}\right)$$

$$= 24 \times \left(\frac{-11}{36}\right)$$
$$= 2 \times \frac{(-11)}{3} = \frac{-22}{3}$$

Question 10.

By what rational number should we multiply $\frac{20}{-9}$, so that the product may be $\frac{-5}{9}$? Solution:

Required number =
$$\frac{-5}{9} \div \left(\frac{20}{-9}\right)$$

 $\Rightarrow \frac{-5}{9} \times \left(\frac{-9}{20}\right) = \frac{1}{4}$
 \therefore Required number = $\frac{1}{4}$