
1

Learning Objectives

Aft er the completion of this chapter, the
student will be able to:

• Understand Function Specifi cation.

• Parameters (and arguments).

• Interface Vs Implementation.

• Pure functions.

• Side - eff ects (impure functions).

Introduction1.1

 Th e most important criteria in
writing and evaluating the algorithm is the
time it takes to complete a task. To have
a meaningful comparison of algorithms,
the duration of computation time must be
independent of the programming language,
compiler, and computer used. As you
aware that algorithms are expressed using
statements of a programming language. If a
bulk of statements to be repeated for many
numbers of times then subroutines are used
to fi nish the task.

 Subroutines are the basic building
blocks of computer programs. Subroutines
are small sections of code that are used to
perform a particular task that can be used
repeatedly. In Programming languages these
subroutines are called as Functions.

Unit
CHAPTER 1

FUNCTION
I

Function with respect to
Programming language

1.2

 A function is a unit of code that is
oft en defi ned within a greater code structure.
Specifi cally, a function contains a set of
code that works on many kinds of inputs,
like variants, expressions and produces a
concrete output.

1.2.1 Function Specification

 Let us consider the example a:= (24).
a:= (24) has an expression in it but (24)
is not itself an expression. Rather, it is a
function defi nition. Defi nitions bind values
to names, in this case the value 24 being
bound to the name ‘a’. Defi nitions are not
expressions, at the same time expressions are
also not treated as defi nitions. Defi nitions
are distinct syntactic blocks. Defi nitions can
have expressions nested inside them, and
vice-versa.

1.2.2 Parameters (and arguments)

 Parameters are the variables in a
function defi nition and arguments are
the values which are passed to a function
defi nition.

1. Parameter without Type

 Let us see an example of a function
defi nition:

XII Std - CS EM Chapter-1.indd 1 24-01-2020 12:38:55

2 3XII Std Computer Science Function

(requires: b>=0)
(returns: a to the power of b)
let rec pow a b:=
 if b=0 then 1
 else a * pow a (b-1)

 In the above function definition
variable ‘b’ is the parameter and the value
which is passed to the variable ‘b’ is the
argument. The precondition (requires) and
postcondition (returns) of the function
is given. Note we have not mentioned any
types: (data types). Some language compiler
solves this type (data type) inference
problem algorithmically, but some require
the type to be mentioned.

 In the above function definition if
expression can return 1 in the then branch,
shows that as per the typing rule the
entire if expression has type int. Since the
if expression is of type ‘int’, the function's
return type also be ‘int’. ‘b’ is compared to
0 with the equality operator, so ‘b’ is also
a type of ‘int’. Since ‘a’ is multiplied with
another expression using the * operator, ‘a’
must be an int.

2. Parameter with Type

 Now let us write the same function
definition with types for some reason:

(requires: b> 0)
(returns: a to the power of b)
let rec pow (a: int) (b: int) : int :=
 if b=0 then 1
 else a * pow a (b-1)

 When we write the type annotations

for ‘a’ and ‘b’ the parentheses are
mandatory. Generally we can leave out
these annotations, because it's simpler to
let the compiler infer them. There are times
we may want to explicitly write down types.
This is useful on times when you get a type
error from the compiler that doesn't make
sense. Explicitly annotating the types can
help with debugging such an error message.

 The syntax to define functions is close
to the mathematical usage: the definition is
introduced by the keyword let, followed by
the name of the function and its arguments;
then the formula that computes the image
of the argument is written after an = sign. If
you want to define a recursive function: use
“let rec” instead of “let”.

Syntax: The syntax for function definitions:

let rec fn a1 a2 ... an := k

 Here the ‘fn’ is a variable indicating
an identifier being used as a function
name. The names ‘a1’ to ‘an’ are variables
indicating the identifiers used as parameters.
The keyword ‘rec’ is required if ‘fn’ is to be
a recursive function; otherwise it may be
omitted.

 A function definition which call
itself is called recursive function.

Note

For example: let us see an example to check
whether the entered number is even or odd.

XII Std - CS EM Chapter-1.indd 2 24-01-2020 12:38:55

2 3XII Std Computer Science Function

(requires: x>= 0)
 let rec even x :=
 x=0 || odd (x-1)
 return ‘even’
(requires: x>= 0)
 let odd x :=
 x<>0 && even (x-1)
 return ‘odd’

The syntax for function types:

x → y
x1 → x2 → y
x1 → ... → xn → y

 The ‘x’ and ‘y’ are variables indicating
types. The type x → y is the type of a function
that gets an input of type ‘x’ and returns an
output of type ‘y’. Whereas x1 → x2 → y is
a type of a function that takes two inputs,
the first input is of type ‘x1’ and the second
input of type ‘x2’, and returns an output of
type ‘y’. Likewise x1 → … → xn → y has
type ‘x’ as input of n arguments and ‘y’ type
as output.

 All functions are static
definitions. There is no dynamic
function definitions.

Note

Interface Vs Implementation1.3

 An interface is a set of action that an
object can do. For example when you press
a light switch, the light goes on, you may
not have cared how it splashed the light. In
Object Oriented Programming language,
an Interface is a description of all functions
that a class must have in order to be a new

interface. In our example, anything that
"ACTS LIKE" a light, should have function
definitions like turn_on () and a turn_off
(). The purpose of interface is to allow the
computer to enforce the properties of the
class of TYPE T (whatever the interface is)
must have functions called X, Y, Z, etc.

 A class declaration combines the
external interface (its local state) with an
implementation of that interface (the code
that carries out the behaviour). An object is
an instance created from the class.

The interface defines an object’s visibility to
the outside world.

The difference between interface and
implementation is

Interface Implementation

Interface just
defines what
an object can
do, but won’t
actually do it

Implementation
carries out the
instructions defined
in the interface

 In object oriented programs classes are
the interface and how the object is processed
and executed is the implementation.

1.3.1 Characteristics of interface

• The class template specifies the interfaces
to enable an object to be created and
operated properly.

• An object's attributes and behaviour is
controlled by sending functions to the
object.

For example, let's take the example of
increasing a car’s speed.

XII Std - CS EM Chapter-1.indd 3 24-01-2020 12:38:55

4 5XII Std Computer Science Function

getSpeed

ENGINE

Pull Fuel

Return

required
speed

No

Yes

 The person who drives the car
doesn't care about the internal working. To
increase the speed of the car he just presses
the accelerator to get the desired behaviour.
Here the accelerator is the interface between
the driver (the calling / invoking object) and
the engine (the called object).

 In this case, the function call would
be Speed (70): This is the interface.

 Internally, the engine of the car is
doing all the things. It's where fuel, air,
pressure, and electricity come together to
create the power to move the vehicle. All of
these actions are separated from the driver,
who just wants to go faster. Thus we separate
interface from implementation.

 Let us see a simple example, consider
the following implementation of a function
that finds the minimum of its three
arguments:

let min 3 x y z :=
 if x < y then
 if x < z then x else z
 else
 if y < z then y else z

Pure functions1.4

 Pure functions are functions which
will give exact result when the same
arguments are passed. For example the
mathematical function sin (0) always results
0. This means that every time you call the
function with the same arguments, you will
always get the same result. A function can
be a pure function provided it should not
have any external variable which will alter
the behaviour of that variable.

Let us see an example

let square x
 return: x * x

 The above function square is a pure
function because it will not give different
results for same input.

 There are various theoretical
advantages of having pure functions. One
advantage is that if a function is pure, then
if it is called several times with the same
arguments, the compiler only needs to
actually call the function once. Lt’s see an
example

let i: = 0;
 if i <strlen (s) then
 -- Do something which doesn't affect s
 ++i

XII Std - CS EM Chapter-1.indd 4 24-01-2020 12:38:55

4 5XII Std Computer Science Function

 If it is compiled, strlen (s) is called
each time and strlen needs to iterate over
the whole of ‘s’. If the compiler is smart
enough to work out that strlen is a pure
function and that ‘s’ is not updated in the
loop, then it can remove the redundant
extra calls to strlen and make the loop to
execute only one time. From these what we
can understand, strlen is a pure function
because the function takes one variable as a
parameter, and accesses it to find its length.
This function reads external memory but
does not change it, and the value returned
derives from the external memory accessed.

 Evaluation of pure
functions does not cause any side
effects to its output

Note

1.4.1 Impure functions

 The variables used inside the
function may cause side effects though the
functions which are not passed with any
arguments. In such cases the function is
called impure function. When a function
depends on variables or functions outside
of its definition block, you can never be
sure that the function will behave the same
every time it’s called. For example the
mathematical function random() will give
different outputs for the same function call.

let Random number
let a := random()
 if a > 10 then
 return: a
 else
 return: 10

 Here the function Random is impure
as it is not sure what will be the result when
we call the function.

1.4.2 Side-effects (Impure functions)

 As you are aware function has side
effects when it has observable interaction
with the outside world. There are situations
our functions can become impure though
our goal is to make our functions pure.
Just to clarify remember that side effect is
not a necessary bad thing.Sometimes they
are useful (especially outside functional
programming paradigm).

Modify variable outside a function

 One of the most popular groups of
side effects is modifying the variable outside
of function.

For example

let y: = 0
(int) inc (int) x:
 y: = y + x;
 return (y)

 In the above example the value of y
get changed inside the function definition
due to which the result will change each
time. The side effect of the inc () function is
it is changing the data of the external visible
variable ‘y’. As you can see some side effects
are quite easy to spot and some of them may
tricky. A good sign that our function impure
(has side effect) is that it doesn’t take any
arguments and it doesn’t return any value.

 From all these examples and
definitions what we can understand about
the main differences between pure and
impure functions are

XII Std - CS EM Chapter-1.indd 5 24-01-2020 12:38:55

6 7XII Std Computer Science Function

Pure Function Impure Function

The return value of
the pure functions
solely depends
on its arguments
passed. Hence, if
you call the pure
functions with
the same set of
arguments, you
will always get
the same return
values.

They do not have
any side effects.

The return value
of the impure
functions does
not solely depend
on its arguments
passed. Hence,
if you call the
impure functions
with the same
set of argu ments,
you might get
the different
return values
For example,
random(), Date().

They do not
modify the
arguments which
are passed to them

They may modify
the arguments
which are passed
to them

 Now let’s see the example of a pure
function to determine the greatest common
divisor (gcd) of two positive integer numbers.

let rec gcd a b :=
 if b <> 0 then gcd b (a mod b) else return a;

output
 gcd 13 27;;
 - : int = 1
 gcd 20536 7826;;
 - : int = 2

 In the above example program ‘gcd’ is
the name of the function which recursively
called till the variable ‘b’ becomes ‘0’.
Remember b and (a mod b) are two
arguments passed to ‘a’ and ‘b’ of the gcd
function.

1.4.3 Chameleons of Chromeland
problem using function

 Recall the In the Chameleons of
Chromeland problem what you have studied
in class XI. suppose two types of chameleons
are equal in number. Construct an algorithm
that arranges meetings between these two
types so that they change their color to the
third type. In the end, all should display the
same color.

 Let us represent the number of
chameleons of each type by variables a, b
and c, and their initial values by A, B and C,
respectively. Let a = b be the input property.

 The input – output relation is a =
b = 0 and c = A + B + C. Let us name the
algorithm monochromatize. The algorithm
can be specified as

monochromatize (a, b, c)

-- inputs : a = A, b = B, c = C, a = b
-- outputs : a = b = 0, c = A+B+C

 In each iterative step, two chameleons
of the two types (equal in number) meet and
change their colors to the third one. For
example, if A, B, C = 4, 4, 6, then the series
of meeting will result in

iteration a b c

0 4 4 4

1 3 3 8

2 2 2 10

3 1 1 12

4 0 0 14

XII Std - CS EM Chapter-1.indd 6 24-01-2020 12:38:55

6 7XII Std Computer Science Function

 In each meeting, a and b each
decreases by 1, and c increases by 2. The
solution can be expressed as an iterative
algorithm.

monochromatize (a, b, c)
 -- inputs : a = A, b=B, c=C, a=b
 -- outputs : a = b = 0, c = A+B+C
while a>0
 a, b, c := a-1, b-1, c+2

The algorithm is depicted in the flowchart
as below

a, b, c

a > 0

a, b, c
a = b = 0, c = A + B + C

a, b, c := a - 1, b - 1, c+2

False

True

a = b, a = A, b = B, c = C

Now let us write this algorithm using
function

let rec monochromatize a b c :=
 if a > 0 then
 a, b, c := a-1, b-1, c+2
 else
 a:=0, b:=0, c:= a + b + c
 return c

• Algorithms are expressed using statements of a programming language
• Subroutines are small sections of code that are used to perform a particular task that

can be used repeatedly
• A function is a unit of code that is often defined within a greater code structure
• A function contains a set of code that works on many kinds of inputs and produces a

concrete output
• Definitions are distinct syntactic blocks
• Parameters are the variables in a function definition and arguments are the values

which are passed to a function definition through the function definition.
• When you write the type annotations the parentheses are mandatory in the function

definition
• An interface is a set of action that an object can do
• Interface just defines what an object can do, but won’t actually do it
• Implementation carries out the instructions defined in the interface
• Pure functions are functions which will give exact result when the same arguments

are passed
• The variables used inside the function may cause side effects though the functions

which are not passed with any arguments. In such cases the function is called impure
function

Points to remember:

XII Std - CS EM Chapter-1.indd 7 24-01-2020 12:38:55

8 9XII Std Computer Science Function

Evaluation

Part - I
Choose the best answer (1 Mark)

1. The small sections of code that are used to perform a particular task is called

(A) Subroutines (B) Files (C) Pseudo code (D) Modules

2. Which of the following is a unit of code that is often defined within a greater code
structure?

(A) Subroutines (B) Function (C) Files (D) Modules

3. Which of the following is a distinct syntactic block?

(A) Subroutines (B) Function (C) Definition (D) Modules

4. The variables in a function definition are called as

(A) Subroutines (B) Function (C) Definition (D) Parameters

5. The values which are passed to a function definition are called

(A) Arguments (B) Subroutines (C) Function (D) Definition

6. Which of the following are mandatory to write the type annotations in the function
definition?

(A) Curly braces (B) Parentheses (C) Square brackets (D) indentations

7. Which of the following defines what an object can do?

(A) Operating System (B) Compiler (C) Interface (D) Interpreter

8. Which of the following carries out the instructions defined in the interface?

(A) Operating System (B) Compiler (C) Implementation (D) Interpreter

9. The functions which will give exact result when same arguments are passed are called

(A) Impure functions (B) Partial Functions

(C) Dynamic Functions (D) Pure functions

Hands on Practice

1. Write algorithmic function definition to find the minimum among 3 numbers.

2. Write algorithmic recursive function definition to find the sum of n natural numbers.

XII Std - CS EM Chapter-1.indd 8 24-01-2020 12:38:56

8 9XII Std Computer Science Function

10. The functions which cause side effects to the arguments passed are called

(A) impure function (B) Partial Functions

(C) Dynamic Functions (D) Pure functions

Part - II

Answer the following questions (2 Marks)
1. What is a subroutine?
2. Define Function with respect to Programming language.
3. Write the inference you get from X:=(78).
4. Differentiate interface and implementation.
5. Which of the following is a normal function definition and which is recursive function

definition
 i) let rec sum x y:
 return x + y
 ii) let disp :
 print ‘welcome’
 iii) let rec sum num:
 if (num!=0) then return num + sum (num-1)
 else
 return num

Part - III

Answer the following questions (3 Marks)

1. Mention the characteristics of Interface.

2. Why strlen is called pure function?

3. What is the side effect of impure function. Give example.

4. Differentiate pure and impure function.

5. Wha happens if you modify a variable outside the function? Give an example.

XII Std - CS EM Chapter-1.indd 9 24-01-2020 12:38:56

10 PBXII Std Computer Science Function

Part - IV

Answer the following questions (5Marks)

1. What are called Parameters and write a note on

(i) Parameter without Type (ii) Parameter with Type

2. Identify in the following program

let rec gcd a b :=
 if b <> 0 then gcd b (a mod b) else return a

i) Name of the function

ii) Identify the statement which tells it is a recursive function

iii) Name of the argument variable

iv) Statement which invoke the function recursively

v) Statement which terminates the recursion

3. Explain with example Pure and impure functions.

4. Explain with an example interface and implementation.

REFERENCES

1. Data Structures and Algorithms in Python By Michael T.Goodrich, RobertoTamassia and
Michael H. Goldwasser.

2. Data Structure and Algorithmic Thinking in Python By Narasimha Karumanchi

3. https://www.python.org

XII Std - CS EM Chapter-1.indd 10 24-01-2020 12:38:56

	XII Std - CS EM Introduction Pages
	XII Std - CS EM Chapter-1

