CHAPTER 11

THREE DIMENSIONAL GEOMETRY

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. What is the distance of point (a, b, c) from x-axis?
- 2. What is the angle between the lines 2x = 3y = -z and 6x = -y = -4z?
- 3. Write the equation of a line passing through (2, -3, 5) and parallel to line $\frac{x-1}{3} = \frac{y-2}{4} = \frac{z+1}{-1}$.
- 4. Write the equation of a line through (1, 2, 3) and perpendicular to $\vec{r} \cdot (\hat{i} \hat{i} + 3\hat{k}) = 5.$

5. What is the value of λ for which the lines $\frac{x-1}{2} = \frac{y-3}{5} = \frac{z-1}{\lambda}$ and $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z}{2}$ are perpendicular to each other.

 If a line makes angle α, β, and γ with co-ordinate axes, then what is the value of

 $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$?

7. Write line $\vec{r} = (\hat{i} - \hat{j}) + \lambda (2\hat{j} - \hat{k})$ into Cartesian form.

- 8. If the direction ratios of a line are 1, -2, 2 then what are the direction cosines of the line?
- 9. Find the angle between the planes 2x 3y + 6z = 9 and xy plane.
- 10. Write equation of a line passing through (0, 1, 2) and equally inclined to co-ordinate axes.
- 11. What is the perpendicular distance of plane 2x y + 3z = 10 from origin?
- 12. What is the *y*-intercept of the plane x 5y + 7z = 10?
- 13. What is the distance between the planes 2x + 2y z + 2 = 0 and 4x + 4y 2z + 5 = 0.
- 14. What is the equation of the plane which cuts off equal intercepts of unit length on the coordinate axes.
- 15. Are the planes x + y 2z + 4 = 0 and 3x + 3y 6z + 5 = 0 intersecting?
- 16. What is the equation of the plane through the point (1, 4, -2) and parallel to the plane -2x + y 3z = 7?

- 17. Write the vector equation of the plane which is at a distance of 8 units from the origin and is normal to the vector $(2\hat{i} + \hat{j} + 2\hat{k})$.
- 18. What is equation of the plane if the foot of perpendicular from origin to this plane is (2, 3, 4)?
- 19. Find the angles between the planes $\vec{r} \cdot (\hat{i} 2\hat{j} 2\hat{k}) = 1$ and $\vec{r} \cdot (3\hat{i} 6\hat{j} + 2\hat{k}) = 0$.
- 20. What is the angle between the line $\frac{x+1}{3} = \frac{2y-1}{4} = \frac{2-z}{-4}$ and the plane 2x + y 2z + 4 = 0?
- 21. If O is origin OP = 3 with direction ratios proportional to -1, 2, -2 then what are the coordinates of P?
- 22. What is the distance between the line $\vec{r} = 2\hat{i} 2\hat{j} + 3\hat{k} + \lambda(\hat{i} + \hat{j} + 4\hat{k})$ from the plane $\vec{r} \cdot (-\hat{i} + 5\hat{j} - \hat{k}) + 5 = 0$.
- 23. Write the line 2x = 3y = 4z in vector form.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

24. The line $\frac{x-4}{1} = \frac{2y-4}{2} = \frac{k-z}{-2}$ lies exactly in the plane

2x - 4y + z = 7. Find the value of k.

- 25. Find the equation of a plane containing the points (0, -1, -1), (-4, 4, 4) and (4, 5, 1). Also show that (3, 9, 4) lies on that plane.
- 26. Find the equation of the plane which is perpendicular to the plane $\overrightarrow{r} \cdot (5\hat{i} + 3\hat{j} + 6\hat{k}) + 8 = 0$ & which is containing the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 4$ and $\overrightarrow{r} \cdot (2\hat{i} + \hat{j} \hat{k}) + 5 = 0$.
- 27. If l_1 , m_1 , n_1 , and l_2 , m_2 , n_2 are direction cosines of two mutually perpendicular lines, show that the direction cosines of line perpendicular to both of them are

$$m_1n_2 - n_1m_2, n_1l_2 - l_1n_2, l_1m_2 - m_1l_2.$$

- 28. Find vector and Cartesian equation of a line passing through a point with position vectors $2\hat{i} + \hat{j} + \hat{k}$ and which is parallel to the line joining the points with position vectors $-\hat{i} + 4\hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 29. Find the equation of the plane passing through the point (3, 4, 2) and (7, 0, 6) and is perpendicular to the plane 2x 5y = 15.
- 30. Find equation of plane through line of intersection of planes $\vec{r} \cdot (2\hat{i} + 6\hat{j}) + 12 = 0$ and $\vec{r} \cdot (3\hat{i} \hat{j} + 4\hat{k}) = 0$ which is at a unit distance from origin.
- 31. Find the image of the point (3, -2, 1) in the plane 3x y + 4z = 2.
- 32. Find the equation of a line passing through (2, 0, 5) and which is parallel to line 6x 2 = 3y + 1 = 2z 2.
- 33. Find image (reflection) of the point (7, 4, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}.$
- 34. Find equations of a plane passing through the points (2, -1, 0) and (3, -4, 5) and parallel to the line 2x = 3y = 4z.
- 35. Find distance of the point (-1, -5, -10) from the point of intersection of line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x - y + z = 5.
- 36. Find equation of the plane passing through the points (2, 3, -4) and (1, -1, 3) and parallel to the *x*-axis.
- 37. Find the distance of the point (1, -2, 3) from the plane x y + z = 5, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$.
- 38. Find the equation of the plane passing through the intersection of two plane 3x 4y + 5z = 10, 2x + 2y 3z = 4 and parallel to the line x = 2y = 3z.
- 39. Find the distance between the planes 2x + 3y 4z + 5 = 0 and $\overrightarrow{r} \cdot (4\hat{i} + 6\hat{j} 8\hat{k}) = 11$.
- 40. Find the equations of the planes parallel to the plane x 2y + 2z 3 = 0 whose perpendicular distance from the point (1, 2, 3) is 1 unit.

41. Show that the lines $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and

 $\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ intersect each other. Find the point of intersection.

42. Find the shortest distance between the lines

$$\overrightarrow{r} = \widehat{l} + 2\widehat{j} + 3\widehat{k} + \lambda (2\widehat{i} + 3\widehat{j} + 4\widehat{k}) \text{ and}$$
$$\overrightarrow{r} = (2\widehat{i} + 4\widehat{j} + 5\widehat{k}) + \lambda (3\widehat{i} + 4\widehat{j} + 5\widehat{k}).$$

- 43. Find the distance of the point (-2, 3, -4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x + 12y 3z + 1 = 0.
- 44. Find the equation of plane passing through the point (-1, -1, 2) and perpendicular to each of the plane $\overrightarrow{r} \cdot (2\hat{i} + 3\hat{j} - 3\hat{k}) = 2$ and $\overrightarrow{r} \cdot (5\hat{i} - 4\hat{j} + \hat{k}) = 6$.

45. Find the equation of a plane passing through (-1, 3, 2) and parallel to each of the line
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.

46. Show that the plane $\overrightarrow{r} \cdot (\hat{i} - 3\hat{j} + 5\hat{k}) = 7$ contains the line $\overrightarrow{r} = (\hat{i} + 3\hat{j} + 3\hat{k}) + \lambda (3\hat{i} + \hat{j}).$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

47. Check the coplanarity of lines

$$\overrightarrow{r} = (-3\hat{i} + \hat{j} + 5\hat{k}) + \lambda(-3\hat{i} + \hat{j} + 5\hat{k})$$
$$\overrightarrow{r} = (-\hat{i} + 2\hat{j} + 5\hat{k}) + \mu(-\hat{i} + 2\hat{j} + 5\hat{k})$$

If they are coplanar, find equation of the plane containing the lines.

48. Find shortest distance between the lines :

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

49. Find shortest distance between the lines :

$$\overrightarrow{r} = (1 - \lambda)\hat{i} + (\lambda - 2)\hat{j} + (3 - 2\hat{\lambda})\hat{k}$$
$$\overrightarrow{r} = (\mu + 1)\hat{i} + (2\mu - 1)\hat{j} + (2\mu + 1)\hat{k}.$$

- 50. A variable plane is at a constant distance βp from the origin and meets the coordinate axes in *A*, *B* and *C*. If the centroid of ΔABC is (α, β, γ) , then show that $\alpha^{-2} + \beta^{-2} + \gamma^{-2} = p^{-2}$.
- 51. A vector \overrightarrow{n} of magnitude 8 units is inclined to *x*-axis at 45°, *y* axis at 60° and an acute angle with *z*-axis. If a plane passes through a point $(\sqrt{2}, -1, 1)$ and is normal to \overrightarrow{n} , find its equation in vector form.
- 52. Find the foot of perpendicular from the point $2\hat{i} \hat{j} + 5\hat{k}$ on the line $\vec{r} = (11\hat{i} 2\hat{j} 8\hat{k}) + \lambda (10\hat{i} 4\hat{j} 11\hat{k})$. Also find the length of the perpendicular.
- 53. A line makes angles $\alpha,\ \beta,\ \lambda,\ \delta$ with the four diagonals of a cube. Prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$$

54. Find the equation of the plane passing through the intersection of planes 2x + 3y - z = -1 and x + y - 2z + 3 = 0 and perpendicular to the plane 3x - y - 2z = 4. Also find the inclination of this plane with *xy*-plane.

ANSWERS

1. $\sqrt{b^2 + c^2}$ 2. 90° 3. $\frac{x-2}{3} = \frac{y+3}{4} = \frac{z-5}{-1}$. 4. $\overrightarrow{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + 3\hat{k})$ 5. $\lambda = 2$ 6. 2 7. $\frac{x-1}{0} = \frac{y+1}{2} = \frac{z}{-1}$. 8. $\pm \frac{1}{\sqrt{3}}, \pm \frac{2}{\sqrt{3}}, \pm \frac{2}{\sqrt{3}}$

9.	cos ⁻¹ (6/7).		
10.	$\frac{x}{a} = \frac{y-1}{a} = \frac{z-2}{a}, \ a \in R - \{0\}$	0}	
11.	$\frac{10}{\sqrt{14}}$	12.	-2
13.	<u>1</u> 6	14.	x + y + z = 1
15.	No	16.	-2x + y - 3z = 8
17.	$\overrightarrow{r} \cdot (2\hat{i} + \hat{j} + 2\hat{k}) = 24$	18.	2x + 3y + 4z = 29
19.	$\cos^{-1}\left(\frac{11}{21}\right)$	20.	0 (line is parallel to plane)
21.	(-1, 2, -2)	22.	$\frac{10}{3\sqrt{3}}$
23.	$\vec{r} = \vec{o} + \lambda (6\hat{i} + 4\hat{j} + 3\hat{k})$		
24.	<i>k</i> = 7	25.	5x - 7y + 11z + 4 = 0.
26.	\overrightarrow{r} \cdot $\left(-51\hat{i}-15\hat{j}+50\hat{k}\right)=173$		
28.	$\overrightarrow{r} = (2\hat{i} - \hat{j} + \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$	- ƙ) a	and $\frac{x-2}{2} = \frac{y+1}{-2} = \frac{z-1}{1}$.
29.	x - 2y + 3z = 1		
30.	$\vec{r} \cdot (8\hat{i} + 4\hat{j} + 8\hat{k}) + 12 = 0 \text{ or}$	\overrightarrow{r} · ($-4\hat{i} + 8\hat{j} - 8\hat{k} + 12 = 0$
31.	(0, -1, -3)	32.	$\frac{x-2}{1} = \frac{y}{2} = \frac{z-5}{3}.$
33.	$\left(\frac{47}{7}, -\frac{18}{7}, \frac{43}{7}\right)$	34.	29x - 27y - 22z = 85
35.	13	36.	7y + 4z = 5

37.	1	38.	x - 20y + 27z = 14
39.	$\frac{21}{2\sqrt{29}}$ units.		
40.	x - 2y + 2z = 0 or $x - 2y + 2z = 2$	= 6	
41.	$\left(\frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$	42.	$\frac{1}{\sqrt{6}}$
43.	$\frac{17}{2}$	44.	$\overrightarrow{r} \cdot \left(9\hat{i} + 17\hat{j} + 23\hat{k}\right) = 20$
45.	2x - 7y + 4z + 15 = 0		
47.	x-2y+z=0	48.	<u>16</u> 7
49.	$\frac{8}{\sqrt{29}}$	51.	$\overrightarrow{r} \cdot \left(\sqrt{2}\hat{i} + \hat{j} + \hat{k}\right) = 2$
52.	$\hat{i} + 2\hat{j} + 3\hat{k}, \sqrt{14}$		
54.	$7x + 13y + 4z = 9$, $\cos^{-1}\left(\frac{4}{\sqrt{23^2}}\right)$	$\overline{\overline{4}}$.	