

:

Chapter **19** *d* and *f*-Block Elements

d-Block elements

A transition element may be defined as an element whose atom in the ground state or ion in common oxidation state has *incomplete sub-shell, has electron* **1** *to* **9**. It is called transition element due to fact that it is lying between most electropositive (*s*-block) and most electronegative (*p*-block) elements and represent a transition from them. The *general electronic configuration* of these element is $(n-1)^{1 \text{ to } 10} ns^{0 \text{ to } 2}$.

The definition of transition metal excludes Zn, Cdand Hg because they have complete *d*- orbital. Their common oxidation state is $Zn^{++}, Cd^{++}, Hg^{++}$. They also do not show the characteristics of transition element. Element of group 3 (*Sc*, *Y*, *La* and *Ac*) and group 12 (Zn, Cd, Hg) are called **non typical transition element**.

Element	Symbo l	At. N	lo.	Electronic configuration
Scandium	Sc	21	dr	$[Ar] 3d^{1}4s^{2}$
Titanium	Ti	22	filled up	$[Ar] 3d^2 4s^2$
Vanadium	V	23		$[Ar] 3d^34s^2$
Chromiu	Cr^*	24	are	$[Ar] 3d^54s^1$
m Manganes e	Mn	25	3 <i>d</i> -orbitals	$[Ar] 3d^54s^2$
Iron	Fe	26	ŝ	$[Ar] 3d^{6}4s^{2}$

Table : 19.1 First transition or 3d series :

Cobalt	Со	27	$[Ar] 3d^7 4s^2$
Nickel	Ni	28	$[Ar] 3d^84s^2$
Copper	Cu*	29	$[Ar] 3d^{10}4s^{1}$
Zinc	Zn	30	$[Ar] 3d^{10}4s^2$

Table : 19.2 Second transition or 4d-series

Element	Symbol	At. No.	Electronic configuratio n			
Yttrium	Y	39	$[Kr] 4d^{1}5s^{2}$			
Zirconium	Zr	40	$[Kr] 4d^25s^2$			
Niobium	Nb^*	41 fn p	$[Kr] 4d^45s^1$			
Molybdenum	Mo^{*}	41 In pellij	$[Kr] 4d^55s^1$			
Technetium	Тс	43 ¹ are	$[Kr] 4d^55s^2$			
Ruthenium	Ru*		$[Kr] 4d^{7}5s^{1}$			
Rhodium	Rh^*	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$[Kr] 4d^85s^1$			
Palladium	Pd^*	46 ⁰ - <i>p</i> t	$[Kr] 4d^{10}5s^{0}$			
Silver	Ag^{*}	47	$[Kr] 4d^{10}5s^{1}$			
Cadmium	Cd	48	$[Kr] 4d^{10}5s^2$			
Table	Table : 19.3 Third transition or 5 <i>d</i> -series :					

			-	
Element	Symbo l	At. No.		Electronic configuration
Lanthanu m	La	57	rbitals filled	[Xe] 5d ¹ 6s ²
Hafnium	Hf	72	<i>d</i> -orl are fi	$[Xe] 4f^{14}5d^26s^2$
Tantalum	Та	73	5d a	[Xe] 4f ¹⁴ 5d ³ 6s ²

Tungsten	W	74	$[Xe] 4f^{14}5d^46s^2$
Rhenium	Re	75	$[Xe] 4f^{14}5d^56s^2$
Osmium	Os	76	$[Xe] 4f^{14}5d^66s^2$
Iridium	Ir	77	$[Xe] 4f^{14}5d^76s^2$
Platinum	Pt^*	78	$[Xe] 4f^{14}5d^{10}6s^{0}$
Gold	Au*	79	$[Xe] 4f^{14}5d^{10}6s^!$
Mercury	Hg	80	$[Xe] 4f^{14}5d^{10}6s^2$

Element	Symbo l	At.	No.	Electronic configuration
Actinium	Ac	89		$[Rn] 6d^{1}7s^{2}$
Rutherfordiu	Rf	10		$[Rn] 5f^{14}6d^27s^2$
m		4		
Hahnium	На	10	d	$[Rn] 5f^{14}6d^37s^2$
		5	q	
Seaborgium	Sg	10	are filled up	$[Rn] 5f^{14}6d^47s^2$
		6	ef	
Bohrium	Bh	107		$[Rn] 5f^{14}6d^57s^2$
Hassium	Hs	10	5d-orbitals	$[Rn] 5f^{14}6d^67s^2$
		8	rbi *	
Meitnerium	Mt	10	o-p	$[Rn] 5f^{14}6d^77s^2$
		9	9	
Ununnilium	Uun	110		$[Rn] 5f^{14}6d^87s^2$
Unununium	Uuu	111		$[Rn] 5f^{14}6d^97s^2$
Unubium	Uub	112		$[Rn] 5f^{14}6d^{10}7s^2$

Table : 19.4 Fourth transition or 6d-series :

Elements marked with asterisk have anomalous configurations. These are attributed to factors like nuclear-electron and electron-electron forces and stability of half filled and full filled orbital.

All transition elements are d block elements but all d block elements are not transition elements.

Physico-Chemical Properties of d-Block Elements

(1) **Atomic radii :** The atomic, radii of 3*d*-series of elements are compared with those of the neighbouring *s* and *p*-block elements.

Κ	Са	Sc	Ti	V	Cr	Мn
227	197	144	132	122	117	117
Fe	Со	Ni	Си	Zn	Ga	Ge
117	116	115	117	125	135	122^*

* in pm units

The atomic radii of transition elements show the following characteristics,

(i) The atomic radii and atomic volumes of dblock elements in any series decrease with increase in the atomic number. The decrease however, is not regular. The atomic radii tend to reach minimum near at the middle of the series, and increase slightly towards the end of the series.

Explanation : When we go in any transition series from left, to right, the nuclear charge increases gradually by one unit at each elements. The added electrons enter the same penultimate shell, (inner dshell). These added electrons shield the outermost electrons from the attraction of the nuclear charge. The increased nuclear charge tends to reduce the atomic radii, while the added electrons tend to increase the atomic radii. At the beginning of the series, due to smaller number of electrons in the *d*-orbitals, the effect of increased nuclear charge predominates, and the atomic radii decrease. Later in the series, when the number of *d*-electrons increases, the increased shielding effect and the increased repulsion between the electrons tend to increase the atomic radii. Somewhere in the middle of the series, therefore the atomic radii tend to have a minimum value as observed.

(ii) The atomic radii increase while going down in each group. However, in the third transition series from hafnium (Hf) and onwards, the elements have atomic radii nearly equal to those of the second transition elements.

Explanation : The atomic radii increase while going down the group. This is due to the introduction of an additional shell at each new element down the group. Nearly equal radii of second and third transition series elements is due to a special effect called **lanthanide contraction**.

(2) **Ionic radii :** For ions having identical charges, the ionic radii decrease slowly with the increase in the atomic number across a given series of the transition elements.

Elements	Ionic	<i>Pm</i> :(<i>M</i> ³⁺)/ <i>pm</i> :
(<i>m</i>):	radius,(M ²⁺)/pm:	
Sc	-	81
Ti	90	76
V	88	74
Cr	84	69
Mn	80	66
Fe	76	64
Со	74	63
Ni	72	-
Си	69	-
Zn	74	-

Explanation : The gradual decrease in the values of ionic radius across the series of transition elements is due to the increase in the **effective nuclear charge**.

(3) **Ionisation energies :** The ionisation energies of the elements of first transition series are given below:

Elements	I_1	I_2	I ₃
Sc	632	1245	2450
Ti	659	1320	2721
V	650	1376	2873
Cr	652	1635	2994
Mn	716	1513	3258
Fe	762	1563	2963
Со	758	1647	3237
Ni	736	1756	3400
Си	744	1961	3560
Zn	906	1736	3838

* in $kJ mol^{-1}$

The following generalizations can be obtained from the ionisation energy values given above.

(i) The ionisation energies of these elements are high and in the most cases lie between those of s- and p-block elements. This indicates that the transition elements are less electropositive than s-block elements.

Explanation : Transition metals have smaller atomic radii and higher nuclear charge as compared to the alkali metals. Both these factors tend to increase the ionisation energy, as observed.

(ii) The ionisation energy in any transition series increases in the nuclear with atomic number; the increase however is not smooth and as sharp as seen in the case of s and p-block elements.

Explanation : The ionisation energy increases due to the increase in the nuclear charge with atomic number at the beginning of the series. Gradually, the shielding effect of the added electrons also increases. This **shielding effect** tends to decrease the attraction due to the nuclear charge. These two opposing factors lead to a rather gradual increase in the ionisation energies in any transition series.

(iii) The first ionisation energies of 5d-series of elements are much higher than those of the 3d and 4d series elements.

Explanation : In the 5*d*-series of transitions elements, after lanthanum (*La*), the added electrons go to the next inner 4*f* orbitals. The 4*f* electrons have poor shielding effect. As a result, the outermost electrons experience greater nuclear attraction. This leads to higher ionisation energies for the 5*d*- series of transition elements.

(4) **Metallic character :** All the transition elements are metals. These are hard, and good conductor of heat and electricity. All these metals are malleable, ductile and form alloys with other metals.

These elements occur in three types *e.g.*, face- centered cubic (*fcc*), hexagonal close-packed (*hcp*) and body-centered cubic (*bcc*), structures.

The transition elements shows both covalent as well as metallic bonding amongst their atoms.

Explanation : The ionisation energies of the transition elements are not very high. The outermost shell in their atoms have many vacant, **partially filled orbitals**. These characteristics make these elements metallic in character. The hardness of these metals, suggests the presence of covalent bonding in these metals. The presence of unfilled *d*-orbitals favour covalent bonding. Metallic bonding in these metals is indicated by the conducting nature of these metals. Therefore, it appears that there exists covalent and metallic bonding in transition elements.

(5) **Melting and boiling points :** The melting and boiling points of transition elements except *Cd* and *Hg*, are very high as compared to the s-block and *p*-block elements. The melting and boiling points **first increase**, pass through maxima and then **steadily decrease** across any transition series. The maximum occurs around middle of the series.

Explanation : Atoms of the transition elements are closely packed and held together by strong metallic bonds which have appreciable covalent character. This leads to high melting and boiling points of the transition elements.

The strength of the metallic bonds depends upon the number of unpaired electrons in the outermost shell of the atom. Thus, greater is the number of unpaired electrons stronger is the metallic bonding. In any transition element series, the number of unpaired electrons first increases from 1 to 5 and then decreases back to the zero .The maximum five unpaired electrons occur at Cr (3*d* series). As a result, the melting and boiling points first increase and then decrease showing maxima around the middle of the series.

The low melting points of *Zn*, *Cd*, and *Hg* may be due to the absence of **unpaired** *d*-electrons in their atoms.

(6) **Enthalpies of atomization :** Transition metals exhibit high enthalpies of atomization.

Explanation : This is because the atoms in these elements are closely packed and held together by strong metallic bonds. The metallic bond is formed as a result of the interaction of electrons in the outermost shell. Greater the number of valence electrons, stronger is the metallic bond.

(7) **Oxidation states :** Most of the transition elements exhibit several oxidation states *i.e.*, they show variable valency in their compounds. Some common oxidation states of the first transition series elements are given below in table,

Outer Ele. Conjt. and O. S. jor 3u- elements				
Elements	Outer electronic configuration	Oxidation states		
Sc	$3d^1 4s^2$	+ 2, + 3		
Ti	$3d^2 4s^2$	+ 2, + 3, + 4		
V	$3d^3 4s^2$	+ 2,+ 3,+ 4,+ 5		
Cr	$3d^5 4s^1$	+ 1, + 2, + 3, + 4, + 5, + 6		
Mn	$3d^54s^2$	+ 2, + 3, + 4, + 5, + 6, + 7		
Fe	$3d^64s^2$	+ 2, + 3, + 4, + 5, + 6		
Со	$3d^74s^2$	+ 2, + 3, + 4		
Ni	$3d^84s^2$	+ 2, + 3, + 4		
Си	$3d^{10}4s^1$	+ 1,+ 2		
Zn	$3d^{10}4s^2$	+ 2		

Outer	Ele	Confi	and	0	S	for 3	ed-	elements	
Julei	Lic.	congr.	anu	υ.	σ.	101 3	su-	elements	

Explanation : The outermost electronic configuration of the transition elements is $(n - 1)d^{1-1}$ $^{10}ns^2$. Since, the energy levels of (n-1)d and *ns*-orbitals are quite close to each other, hence both the *ns* and (*n*-1) *d*-electrons are available for bonding purposes. Therefore, the number of oxidation states show by these elements depends upon the number of delectrons it has. For example, Sc having a configuration $3d^{1}4s^{2}$ may show an oxidation state of + 2 (only s-electrons are lost) and + 3 (when delectron is also lost). The highest oxidation state which an elements of this group might show is given by the total number of ns and (n - 1) delectrons.

The relative stability of the different oxidation states depends upon the factors such as, electronic configuration, nature of bonding, stoichiometry, lattice energies and solvation energies. The highest oxidation states are found in fluorides and oxides because fluorine and oxygen are the most electronegative elements. The highest oxidation state shown by any transition metal is eight. The oxidation state of eight is shown by **Ru** and **Os**.

An examination of the common oxidation states reveals the following conclusions.

(i) The variable oxidation states shown by the transition elements are due to the participation of outer *ns* and inner (*n*-1)*d*-electrons in bonding.

(ii) Except scandium, the most common oxidation state shown by the elements of first transition series is +2. This oxidation state arises from the loss of two 4s electrons. This means that after scandium, *d*-orbitals become more stable than the *s*-orbital.

(iii) The highest oxidation states are observed in fluorides and oxides. The highest oxidation state shown by any transition elements (by *Ru* and *Os*) is 8.

(iv) The transition elements in the + 2 and + 3oxidation states mostly form ionic bonds. In compounds of the higher oxidation states (compound formed with fluorine or oxygen), the bonds are essentially covalent. For example, in permanganate ion MnO_4^- , all bonds formed between manganese and oxygen are covalent.

(v) Within a group, the maximum oxidation state increases with atomic number. For example, iron shown the common oxidation state of + 2 and + 3, but ruthenium and osmium in the same group form compounds in the +4, +6 and +8 oxidation states.

(vi) Transition metals also form compounds in low oxidation states such as +1 and 0. For example, nickle in, nickel tetracarbonyl, Ni(CO)₄ has zero oxidation state. Similarly Fe in (Fe(CO)₅ has zero

oxidation state.

The bonding in the compounds of transition metals in low oxidation states is not always very simple.

(vii) Ionisation energies and the stability of oxidation states : The values of the ionisation energies can be used in estimating the relative stability of various transition metal compounds (or ions). For Ni^{2+} example, compounds are found to be thermodynamically more stable than Pt^{2+} , whereas Pt^{4+} compounds are more stable than Ni^{4+} compounds. The relative stabilities of Ni^{2+} relative to Pt^{2+} and that of Pt^{4+} relative to Ni^{4+} can be explained as follows,

The first four ionisation energies of Ni and Pt

5 5		5 5
(IE_1+IE_2)	(IE_3+IE_4)	Etotal, kJ mol ⁻¹
kJmol⁻¹,	kJmol ⁻¹ ,	$(= IE_1 + IE_2 + IE_3 +$
		<i>IE</i> ₄)
2490	8800	11290
2660	6700	9360
	<i>kJmol</i> ⁻¹ , 2490	kJmol ⁻¹ , kJmol ⁻¹ , 2490 8800

Thus, the ionisation of Ni to Ni^{2+} requires lesser energy (2490 $kJ \mod^{-1}$) as compared to the energy required for the production of Pt^{2+} (2660 kimol⁻¹). Therefore, Ni²⁺ compounds are thermodynamically more stable than Pt^{2+} compounds.

On the other hand, formation of Pt^{4+} requires lesser energy (9360 $kJ mol^{-1}$) as compared to that required for the formation of $Ni^{4+}(11290 \text{ kJ mol}^{-1})$. Therefore, Pt^{4+} compounds are more stable than Ni⁴⁺ compounds.

This is supported by the fact that $[PtCl_6]^{2-}$ complex ion is known, while the corresponding ion for nickel is not known. However, other factors which affect the stability of a compound are,

(a) Enthalpy of sublimation of the metal.

(b) Lattice and the solvation energies of the compound or ion.

(viii) Transition elements like *Sc*, *Y*, *La* and *Ac* do not show variable valency.

(8) **Electrode potentials** (E°) : Standard electrode potentials of some half-cells involving 3*d*-series of transition elements and their ions in aqueous solution are given in table,

Elements	Ion	Electrode reaction	<i>E</i> °/ volt
Sc	Sc ³⁺	$Sc^{3^+}+ 3e^- \rightarrow Sc$	- 2.10
Ti	Ti^{2+}	Ti^{2+} + $2e^- \rightarrow Ti$	- 1.60
V	V^{2^+}	V^{2+} + $2e^- \rightarrow V$	- 1.20
Cr	Cr ³⁺	$Cr^{3^+} + 3e^- \rightarrow Cr$	- 0.71
Mn	Mn^{2+}	Mn^{2+} + 2 $e^- \rightarrow Mn$	- 1.18
Fe	<i>Fe</i> ²⁺	$Fe^{2+} + 2e^- \rightarrow Fe$	- 0.44
Со	<i>Co</i> ²⁺	$Co^{2^+} + 2e^- \rightarrow Co$	- 0.28
Ni	Ni^{2+}	$Ni^{2+} + 2e^- \rightarrow Ni$	- 0.24
Си	Cu ²⁺	$Cu^{2+} + 2e^- \rightarrow Cu$	+ 0.34
Zn	Zn^{2+}	$Zn^{2+} + 2e^- \rightarrow Zn$	- 0.76

Standard electrode potentials for 3d-elements

The negative values of E° for the first series of transition elements (except for Cu^{2+}/Cu) indicate that,

(i) These metals should liberate hydrogen from dilute acids i.e., the reactions,

 $M + 2H^+ \rightarrow M^{2+} + H_2$ (g); $2M + 6H^+ \rightarrow 2M^{3+} + 3H_2(g)$

are favourable in the forward direction. In actual practice however, most of these metals react with dilute acids very slowly. Some of these metals get coated with a **thin protective layer** of oxide. Such an oxide layer prevents the metal to react further.

(ii) These metals should act as good reducing agents. There is no regular trend in the E° values. This is due to irregular variation in the ionisation and sublimation energies across the series.

Relative stabilities of transition metal ions in different oxidation states in aqueous medium can be predicted from the electrode potential data. To illustrate this, let us consider the following,

 $M(s) \rightarrow M(g)$; $\Delta H_1 =$ Enthalpy of sublimation, ΔH_{sub}

Δ**Π**sub

 $M(g) \rightarrow M^+(g) + e^-$; ΔH_2 = Ionisation energy, IE

 $M^+(g) \rightarrow M^+(aq)$; $\Delta H_3 =$ Enthalpy of hydration, ΔH_{hyd}

Adding these equations one gets,

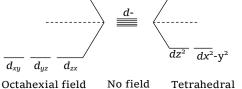
$$M(s) \to M^{+}(aq) + e^{-}$$
$$\Delta H = \Delta H_{1} + \Delta H_{2} + \Delta H_{3} = \Delta H_{sub} + IE + \Delta H_{hvd}$$

The ΔH represents the enthalpy change required to bring the solid metal M to the monovalent ion in aqueous medium, $M^+(aq)$.

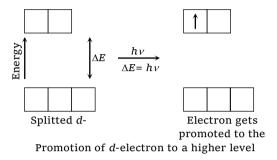
The reaction, $M(s) \rightarrow M^+(aq) + e^-$, will be favourable only if ΔH is negative. More negative is the value is of ΔH , more favourable will be the formation of that cation from the metal. Thus, the oxidation state for which ΔH value is more negative will be stable in the solution.

Electrode potential for a M^{n+}/M half-cell is a measure of the tendency for the reaction, $M^{n+}(aq) + ne^- \rightarrow M(s)$

Thus, this reduction reaction will take place if the electrode potential for M^{n+}/M half- cell is positive. The reverse reaction, $M(s) \rightarrow M^{n+}(aq) + ne^{-}$


Involving the formation of $M^{n+}(aq)$ will occur if the electrode potential is negative, *i.e.*, the tendency for the formation of $M^{n+}(aq)$ from the metal M will be more if the corresponding E° value is more negative. In other words, the oxidation state for which E° value is more negative (or less positive) will be more stable in the solution.

When an elements exists in more than one oxidation states, the standard electrode potential (E°) values can be used in the predicting the relative stabilities of different oxidation states in aqueous solutions. The following rule is found useful.


The oxidation state of a cation for which $\Delta H = (\Delta H_{sub} + lE + \Delta H_{hyd})$ or E° is more negative (for less positive) will be more stable.

(9) **Formation of coloured ions :** Most of the compound of the transition elements are coloured in the solid state and /or in the solution phase. The compounds of transition metals are coloured due to the presence of unpaired electrons in their *d*-orbitals.

Explanation : In an isolated atom or ion of a transition elements, all the five *d*-orbitals are of the same energy (they are said to be regenerate). Under the influence of the combining anion (*s*), or electronrich molecules, the five *d*-orbitals split into two (or sometimes more than two) levels of different energies. The difference between the two energy levels depends upon the nature of the combining ions, but corresponds to the energy associated with the radiations in the visible region $\frac{1}{dz^2} \sqrt{\frac{1}{dz^2}} \sqrt{\frac{1}{$

The splitting of *d*-orbital energy levels in (a) an octahedral, (b) a tetrahedral, geometry. This splitting is termed as the crystal field splitting.

The transition metals in elements form or in the ionic form have one or more unpaired electrons. When visible light falls on the sample, the electrons from the lower energy level get promoted to a higher energy level due to the absorption of light of a characteristic wavelength (or colour). This wavelength (or colour) of the absorbed light depends upon the energy difference of the two levels. Rest of the light gets transmitted. The transmitted light has a colour complementary to the absorbed colour. Therefore, the compound or the solution appears to be of the complementary colour. For example, $Cu(H_2O)_6^{2+}$ ions absorb red radiation, and appear **blue-green** (blue-green is complementary colour to red). Hydrated Co^{2+} ions absorb radiation in the blue-green region, and therefore, appear red in sunlight. Relationship between the colour of the absorbed radiation and that of the transmitted light is given in table

Relationship between the colours of the absorbed and transmitted light: the complementary colours.

Colour of the		Colour of the		
Absorbed	Transmitt	Absorbed Transmit		
light	ed light	light	ed light	
IR	White	Blue-green	Red	
Red	Blue-green	Blue	Orange	
Orange	Blue	Indigo	Yellow	
Yellow	Indigo	Violet	Yellow-	
			green	
Yellow-	Violet	UV	White	
green				
Green	Purple			

However, if radiations of all the wavelengths (or colours) except one are absorbed, then the colour of the substance will be the colour of the transmitted radiation. For example, if a substance absorbs all colours except green, then it would appear green to the eyes.

The transition metal ions which have completely filled *d*-orbitals are colourless, as there are no vacant *d*-orbitals to permit promotion of the electrons. Therefore, Zn^{2+} ($3d^{10}$), $Cd^2 + (4d^{10})$ and $Hg^{2+}(5d^{10})$ Sc³⁺, Ti^{4+} , Cu^+ ions and Zn, Cd, Hg are colourless and diamagnetic. The transition metal ions which have completely empty *d*-orbitals are also colourless, Thus, Sc^{3+} and Ti^{4+} ions are colourless, unless a coloured anion is present in the compound.

Colours and the outer- electronic configurations of the some important ions of the first transition series elements are given bellow,

Ion	Outer configurati on	Number of unpaired electrons	Colour of the ion
<i>Sc</i> ³⁺	3d ^o	0	Colourles s
<i>Ti</i> ³⁺	$3d^1$	1	Purple
Ti ⁴⁺	3d ^o	0	Colourles s
$V^{3^{+}}$	3d ²	2	Green
<i>Cr</i> ³⁺	3d ³	3	Violet
Mn^{2+}	3d ⁵	5	Light pink
<i>Mn</i> ³⁺	$3d^4$	4	Violet
<i>Fe</i> ²⁺	3d ⁶	4	Green
<i>Fe</i> ³⁺	$3d^5$	5	Yellow
<i>Co</i> ³⁺	3d ⁷	3	Pink
Ni^{2+}	3d ⁸	2	Green
Cu ²⁺	3d ⁹	1	Blue
Cu+	3 <i>d</i> ¹⁰	0	Colourles s
Zn ²⁺	3 <i>d</i> ¹⁰	0	Colourles s

(10) **Magnetic properties :** Most of the transition elements and their compounds show **paramagnetism**. The paramagnetism first increases in any transition element series, and then decreases. The maximum paramagnetism is seen around the middle of the series. The paramagnetism is described in **Bohr Magneton** (BM) units. The paramagnetic moments of some common ions of first transition series are given below in Table

Explanation : A substance which is attracted by magnetic filed is called paramagnetic substance. The substances which are repelled by magnetic filed are,

The magnetic moment of any transition element or its compound/ion is given by (assuming no contribution from the orbital magnetic moment).

$$\mu_s = \sqrt{4S(S+1)}$$
 $BM = \sqrt{n(n+2)}$ BM

where, S is the total spin $(n \times s)$: n is the number of unpaired electrons and s is equal to $\frac{1}{2}$ (representing the spin of an unpaired electron).

From the equation given above, the magnetic moment (μ_s) increases with an increase in the number of unpaired electrons.

Magnetic moments of some ions of the 3d-series elements

Ion	Outer configuratio n	No. of unpaired electrons	Magnetic moment (BM)	
			Calculated	observe d
<i>Sc</i> ³⁺	3d ^o	0	0	0
Ti^{3^+}	$3d^1$	1	1.73	1.75
Ti^{2+}	$3d^2$	2	2.84	2.86
V^{2+}	$3d^3$	3	3.87	3.86
Cr^{2+}	$3d^4$	4	4.90	4.80
Mn^{2+}	$3d^5$	5	5.92	5.95
Fe^{2+}	$3d^6$	4	4.90	5.0-5.5
<i>Co</i> ²⁺	$3d^7$	3	3.87	4.4-5.2
Ni^{2+}	$3d^8$	2	2.84	2.9-3.4
Cu ²⁺	$3d^9$	1	1.73	1.4-2.2
Zn^{2+}	$3d^{10}$	0	0	0

In *d*-obitals belonging to a particular energy level, there can be at the maximum five unpaired electrons in d^5 cases. Therefore, paramagnetism in any transition series first increases, reaches a maximum value for d^5 cases and then decreases thereafter.

(11) Formation of complex ions : Transition metals and their ions show strong tendency for complex formation. The cations of transition elements (*d*-block elements) form complex ions with certain molecules containing one or more lone-pairs of electrons, viz., *CO*, *NO*, *NH*₃ etc., or with anions such as, F^- , CL^- , CN^- etc. A few typical complex ions are,

 $[Fe(CN)_6]^{4-}, [Cu(NH_3)_4]^{2+}, [Y(H_2O)_6]^{2+},$

 $[Ni(CO)_4], [Co(NH_3)_6]^{3+} [FeF_6]^{3-}$

Explanation : This complex formation tendency is due to,

(i) Small size and high nuclear charge of the transition metal cations.

(ii) The availability to vacant inner *d*-orbitals of suitable energy.

(12) **Formation of interstitial compounds :** Transition elements form a few interstitial compounds with elements having small atomic radii, such as hydrogen, boron, carbon and nitrogen. The small atoms of these elements get entrapped in between the void spaces (called interstices) of the metal lattice. Some characteristics of the interstitial compound are,

(i) These are non-stoichiometric compounds and cannot be given definite formulae.

(ii) These compounds show essentially the same chemical properties as the parent metals, but differ in physical properties such as density and hardness. Steel and cast iron are hard due to the formation of interstitial compound with carbon. Some non-stoichimetric compounds are, $VSe_{0.98}$ (Vanadium selenide), $Fe_{0.94}O$ and titanium nitride.

Explanation: Interstital compounds are hared and dense. This is because, the smaller atoms of lighter elements occupy the interstices in the lattice, leading to a more closely packed structure. Due to greater electronic interactions, the strength of the metallic bonds also increases.

(13) **Catalytic properties :** Most of the transition metals and their compounds particularly oxides have good catalytic properties. Platinum, iron, vanadium pentoxide, nickel, etc., are important catalysts. Platinum is a general catalyst. Nickel powder is a good catalyst for hydrogenation of unsaturated organic compound such as, hydrogenation of oils some typical industrial catalysts are,

(i) Vanadium pentoxide (V_2O_5) is used in the Contact process for the manufacture of sulphuric acid,

(ii) Finely divided iron is used in the Haber's process for the synthesis of ammonia.

Explanation : Most transition elements act as good catalyst because of,

(i) The presence of vacant *d*-orbitals.

(ii) The tendency to exhibit variable oxidation states.

(iii) The tendency to form reaction intermediates with reactants.

(iv) The presence of defects in their crystal lattices.

(14) **Alloy formation :** Transition metals form alloys among themselves. The alloys of transition metals are hard and high metals are high melting as compared to the host metal. Various steels are alloys of iron with metals such as chromium, vanadium, molybdenum, tungsten, manganese etc.

Explanation : The atomic radii of the transition elements in any series are not much different from each other. As a result, they can very easily replace each other in the lattice and form solid solutions over an appreciable composition range. Such solid solutions are called alloys.

(15) **Chemical reactivity :** The *d*-block elements (transition elements) have lesser tendency to react, *i.e.*, these are less reactive as compared to *s*-block elements.

Explanation : Low reactivity of transition elements is due to,

(i) Their high ionisation energies.

(ii) Low heats of hydration of their ions.

(iii) Their high heats of sublimation.

Chromium containing compounds

Potassium dichromate, $(K_2Cr_2O_7)$

Potassium dichromate is one of the most important compound of chromium, and also among dichromates. In this compound Cr is in the hexavalent (+6) state.

Preparation : It can be prepared by any of the following methods,

(i) *From potassium chromate* : Potassium dichromate can be obtained by adding a calculated amount of sulphuric acid to a saturated solution of potassium chromate.

$$\begin{array}{ccc} 2K_2CrO_4 &+ H_2SO_4 \rightarrow & K_2Cr_2O_7 &+ K_2SO_4 + H_2O_7\\ (potassium \ chromate & potassium \ dichromate \\ (yellow) & (orange) \end{array}$$

 $K_2Cr_2O_7$ Crystals can be obtained by concentrating the solution and crystallisation.

(ii) *Manufacture from chromite ore* : $K_2Cr_2O_7$ is generally manufactured from chromite ore ($FeCr_2O_4$). The process involves the following steps.

(a) *Preparation of sodium chromate* : Finely powdered chromite ore is mixed with soda ash and quicklime. The mixture is then roasted in a reverberatory furnace in the presence of air. Yellow mass due to the formation of sodium chromate is obtained.

$$4FeCr_{2}O_{4} + O_{2} \rightarrow 2Fe_{2}O_{3} + 4Cr_{2}O_{3}$$

$$4Cr_{2}O_{3} + 8Na_{2}CO_{3} + 6O_{2} \rightarrow 8Na_{2}CrO_{4} + 8CO_{2}(g)$$

$$4FeCr_{2}O_{4} + 8Na_{2}CO_{3} + 7O_{2} \rightarrow 2Fe_{2}O_{3} + 8CO_{2}(g) + 8Na_{2}CrO_{4}$$

The yellow mass is extracted with water, and filtered. The filtrate contains sodium chromate.

The reaction may also be carried out by using NaOH instead of Na_2CO_3 . The reaction in that case is,

 $4FeCr_2O_4 + 16NaOH + 7O_2 \rightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8H_2O$

(b) Conversion of chromate into dichromate : Sodium chromate solution obtained in step (a) is treated with concentrated sulphuric acid when it is converted into sodium dichromate.

$$2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O$$
 sodium chromate

On concentration, the less soluble sodium sulphate, $Na_2SO_4.10H_2O$ crystallizes out. This is filtered hot and allowed to cool when sodium dichromate, $Na_2Cr_2O_7.2H_2O$, separates out on standing.

(c) Concentration of sodium dichromate to potassium dichromate : Hot concentrated solution of sodium dichromate is treated with a calculated amount of potassium chloride. When potassium dichromate being less soluble crystallizes out on cooling.

$$Na_2Cr_2O_7 + 2KCl \rightarrow K_2Cr_2O_7 + 2NaCl$$

sod.dichromate pot.dichromate

Physical properties

(i) Potassium dichromate forms orange-red coloured crystals.

(ii) It melts at 699 *K*.

(iii) It is very stable in air (near room temperature) and is generally, used as a primary standard in the volumetric analysis.

(iv) It is soluble in water though the solubility is limited.

Chemical properties

(i) *Action of heat* : Potassium dichromate when heated strongly. Decomposes to give oxygen.

 $4K_2Cr_2O_7(s) \xrightarrow{\Delta} 4K_2CrO_4(s) + 2Cr_2O_3(s) + 3O_2$

(ii) Action of acids

(a) In cold, with concentrated H_2SO_4 , red crystals of chromium trioxide separate out.

 $K_2Cr_2O_7(aq) + conc.H_2SO_4 \rightarrow KHSO_4(aq) + 2CrO_3(s) + H_2O$

On heating a dichromate-sulphuric acid mixture, oxygen gas is given out.

$$2K_2Cr_2O_7 + 8H_2SO_4 \rightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$$

(b) With *HCl*, on heating chromic chloride is formed and Cl_2 is liberated.

$$K_2Cr_2O_{7(aq)} + 14 HCl(aq) \rightarrow 2CrCl_{3(aq)} + 2KCl(aq) + 7H_2O + 3Cl_2(g)$$

(iii) *Action of alkalies* : With alkalies, it gives chromates. For example, with *KOH*,

$$K_{2}Cr_{2}O_{4} + 2KOH \rightarrow 2K_{2}CrO_{4} + H_{2}O$$
orange
$$yellow$$
yellow

On acidifying, the colour again changes to orangered owing to the formation of dichromate.

:

$$2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$$

Actually, in dichromate solution, the $Cr_2O_7^{2-}$ ions are in equilibrium with CrO_4^{2-} ions.

$$Cr_2O_7^{2-} + H_2O \Rightarrow 2CrO_4^{2-} + 2H^+$$

(iv) **Oxidising nature :** In neutral or in acidic solution, potassium dichromate acts as an excellent oxidising agent, and $Cr_2O_7^{2-}$ gets reduced to Cr^{3+} . The standard electrode potential for the reaction,

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{+3} + 7H_2O$$
 is +1.31V.

This indicates that dichromate ion is a fairly strong oxidising agent, especially in strongly acidic solutions. That is why potassium dichromate is widely used as an oxidising agent, for quantitative estimation of the reducing agents such as, Fe^{2+} . It oxidises,

(a) Ferrous salts to ferric salts

$$\begin{split} & K_2 CrO_7 + 4H_2 SO_4 \rightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + 4H_2 O + 3[O] \\ \\ & 2FeSO_4 + H_2 SO_4 + [O] \rightarrow Fe_2 [SO_4]_3 + H_2 O \times 3 \\ \\ & K_2 Cr_2 O_7 + 6FeSO_4 + 7H_2 SO_4 \rightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + 3Fe_2 (SO_4)_3 + 7H_2 O \\ \end{split}$$

Ionic equation

 $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$

(b) Sulphites to sulphates and arsenites to arsenates.

$$\begin{split} & K_2 C r_2 O_7 + 4 H_2 S O_4 \rightarrow K_2 S O_4 + C r_2 (S O_4)_3 + 4 H_2 O + 3 [O] \\ & N a_2 S O_3 + [O] \rightarrow N a_2 S O_4] \times 3 \end{split}$$

 $K_2 Cr_2 O_7 + 4H_2 SO_4 + 3Na_2 SO_3 \rightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + 3Na_2 SO_4 + 4H_2 O_4 + 2Na_2 SO_4 + 2Na$

Ionic equation

 $Cr_2 O_7^{2-} + 8 H^+ + 3SO_3^{2-} \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$

Similarly, arsenites are oxidised to arsenates.

$$Cr_2O_7^{2-} + 8H^+ + 3AsO_3^{3-} \rightarrow 2Cr^{3+} + 3AsO_4^{3-} + 4H_2O$$

(c) Hydrogen halides to halogens.

$$K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3[O]$$

 $2HX + O \rightarrow H_2O + X_2] \times 3$

 $K_2Cr_2O_7 + 4H_2SO_4 + 6HX \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3X_2$

where, X may be Cl, Br, I. Ionic equation

 $Cr_2O_7^{2-} + 8H^+ + 6HX \rightarrow 2Cr^{3+} + 3X_2 + 7H_2O$ (d) Iodides to iodine

$$K_{2}Cr_{2}O_{7} + H_{2}SO_{4} \rightarrow K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 4H_{2}O + 3[O]$$

$$2KI + H_{2}O + [O] \rightarrow 2KOH + I_{2}] \times 3$$

$$2KOH + H_{2}SO_{4} \rightarrow K_{2}SO_{4} + 2H_{2}O] \times 3$$

$$K_{2}Cr_{2}O_{7} + 7H_{2}SO_{4} + 6KI \rightarrow 4K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 3I_{2} + 7H_{2}O$$

Ionic equation

$$Cr_2O_7^{2^-} + 14H^+ + 6\Gamma \rightarrow 2Cr^{3^+} + 7H_2O + 3I_2$$

Thus, when *KI* is added to an acidified solution of $K_2Cr_2O_7$ iodine gets liberated.

(e) It oxidises
$$H_2S$$
 to S.
 $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3[O]$
 $H_2S + [O] \rightarrow H_2O + S] \times 3$
 $K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3S$
Ionic equation

 $Cr_2O_7^{2-} + 8H^+ + 3H_2S \rightarrow 2Cr^{3+} + 3S + 7H_2O$

(v) *Formation of insoluble chromates* : With soluble salts of lead, barium etc., potassium dichromate gives insoluble chromates. Lead chromate is an important yellow pigment.

$$2Pb(NO_3)_2 + K_2Cr_2O_7 + H_2O \rightarrow 2PbCrO_4 + 2KNO_3 + 2HNO_3$$

(vi) **Chromyl chloride test :** When potassium dichromate is heated with conc. H_2SO_4 in the presence of a soluble chloride salt, the orange-red vapours of chromyl chloride (CrO_2Cl_2) are formed.

$$\begin{array}{c} K_2Cr_2O_7 + 4 \operatorname{NaCl} + 6H_2SO_4 \xrightarrow{heat} \\ 2 KHSO_4 + 4 \operatorname{NaHSO}_4 + \frac{2 CrO_2Cl_2}{chromyl \ chloride} \\ (orange-red vapours) \end{array}$$

Chromyl chloride vapours when passed through water give yellow-coloured solution containing chromic acid.

$$CrO_2Cl_2 + 2H_2O \rightarrow 2HCl + H_2CrO_4$$

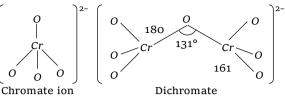
 $Chromic \ acid.(yellow \ solution)$

Chromyl chloride test can be used for the detection of chloride ion is any mixture.

Uses : Potassium dichromate is used as,

(i) An oxidising agent

:


(ii) In chrome tanning

(iii) The raw meterial for preparing large number of chromium compounds

(iv) Primary standard in the volumetric analysis.

Structures of Chromate and Dichromate Ions

Chromates and dichromates are the salts of chromic acid (H_2CrO_4). In solution, these ions exist in equilibrium with each other. Chromate ion has four oxygen atoms arranged tetrahedrally around *Cr* atom. (see Fig). Dichromate ion involves a *Cr*-*O*-*Cr* bond as shown in Fig.

The structure of chromate (CrO^{2-}_{4}) and dichromate

Manganese containing compound

Potassium Permanganate, (KMnO₄)

Potassium permanganate is a salt of an unstable acid $HMnO_4$ (permanganic acid). The Mn is an +7 state in this compound.

Preparation : Potassium permanganate is obtained from pyrolusite as follows.

Conversion of pyrolusite to potassium manganate : When manganese dioxide is fused with potassium hydroxide in the presence of air or an oxidising agent such as potassium nitrate or chlorate, potassium manganate is formed, possibly via potassium manganite.

$$MnO_{2} + 2KOH \xrightarrow{fixed} K_{2}MnO_{3} + 4H_{2}O] \times 2$$

$$2K_{2}MnO_{3} + O_{2} \rightarrow 2K_{2}MnO_{4} + 2H_{2}O$$

 $\begin{array}{ccc} 2MnO_2 &+ 4KOH + O_2 & \xrightarrow{fused} & 2K_2MnO_4 &+ 2H_2O \\ pyrolusite & & potassium manganate \\ & & \left[dark - green \ mass \right] \end{array}$

Oxidation of potassium manganate to potassium permanganate : The potassium manganate so obtained is oxidised to potassium permanganate by either of the following methods.

By chemical method : The fused dark-green mass is extracted with a small quantity of water. The filtrate is warmed and treated with a current of ozone, chlorine or carbon dioxide. Potassium manganate gets oxidised to potassium permanganate and the hydrated manganese dioxide precipitates out. The reactions taking place are,

When CO₂ is passed

$$\begin{array}{l} 3K_2MnO_4 + 2H_2O \rightarrow 2KMnO_4 + MnO_2 \downarrow +4KOH \\ \text{potassium manganate} \end{array} \\ 2CO_2 + 4KOH \rightarrow 2K_2CO_3 + 2H_2O \end{array}$$

When chlorine or ozone is passed

$$2K_2MnO_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$$

$$2K_2MnO_4 + O_3 + H_2O \rightarrow 2KMnO_4 + 2KOH + O_2(g)$$

The purple solution so obtained is concentrated and dark purple, needle-like crystals having metallic lustre are obtained. *Electrolytic method* : Presently, potassium manganate (K_2MnO_4) is oxidised electrolytically. The electrode reactions are,

At anode:
$$2MnO_4^{2-} \rightarrow 2MnO_4^{-} + 2e^{-}$$

green $green \rightarrow H_2(g)$

The purple solution containing $KMnO_4$ is evaporated under controlled condition to get crystalline sample of potassium permanganate.

Physical properties

 $KMnO_4$ crystallizes as dark purple crystals with greenish luster (m.p. 523 K).

It is soluble in water to an extent of $6.5g \ per \ 100g$ at room temperature. The aqueous solution of $KMnO_4$ has a purple colour.

Chemical properties : Some important chemical reactions of *KMnO*₄ are given below,

Action of heat : *KMnO*⁴ is stable at room temperature, but decomposes to give oxygen at higher temperatures.

$$2KMnO_4(s) \xrightarrow{heat} K_2MnO_4(s) + MnO_2 + O_2(g)$$

Oxidising actions : $KMnO_4$ is a powerful agent in neutral, acidic and alkaline media. The nature of reaction is different in each medium. The oxidising character of $KMnO_4$ (to be more specific, of MnO_4^-) is indicated by high positive reduction potentials for the following reactions.

Acidic medium

 $MnO_{4}^{-} + 8H^{+} + 5e^{-} \Rightarrow Mn^{2+} + 4H_{2}O \quad E^{o} = 1.51V$

Alkaline medium

 $MnO_4^- + 2H_2O + 3e^- \Rightarrow MnO_2 + 4OH^- E^o = 1.23 V$

In strongly alkaline solutions and with excess of MnO_4^- , the reaction is $MnO_4^- + e^- \Rightarrow MnO_4^{2-} = 0.56 V$

There are a large number of oxidation-reduction reactions involved in the chemistry of manganese compounds. Some typical reactions are,

In the presence of excess of reducing agent in acidic solutions permanganate ion gets reduced to manganous ion, e.g., $5E^{2+} + M^{2+} + 6E^{3+} + M^{2+} + 4H^{2+}$

$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

An excess of reducing agent in alkaline solution reduces permanganate ion only to manganese dioxide e.g.,

$$3NO_2^- + MnO_4^- + 2OH^- \rightarrow 3NO_3^- + MnO_2^- + H_2O$$

In faintly acidic and neutral solutions, manganous ion is oxidised to manganese oxidised to manganese dioxide by permanganate.

 $2MnO_4^- + 3Mn^{+2} + 2H_2O \rightarrow 5MnO_2 + 4H^+$

In strongly basic solutions, permangante oxidises manganese dioxide to manganate ion.

$$MnO_2 + 2MnO_4^- + 4OH^- \rightarrow 3MnO_4^{2-} + 2H_2O$$

In acidic medium, KMnO₄ oxidises,

Ferrous salts to ferric salts

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$

$$2FeSO_4 + H_2SO_4 + [O] \rightarrow Fe_2(SO_4)_3 + H_2O] \times 5$$

$$2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4 + 5Fe_2(SO_4)_3 + 5F$$

Ionic equation

 $2MnO_4^- + 16H^+ + 10Fe^{2+} \rightarrow 2Mn^{2+} + 10Fe^{3+} + 8H_2O$

The reaction forms the basis of volumetric estimation of Fe^{2+} in any solution by $KMnO_4$.

Oxalic acid to carbon dioxide

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$

 $(COOH)_2 + [O] \rightarrow 2CO_2 + H_2O] \times 5$

$$2KMnO_4 + 3H_2SO_4 + 5(COOH)_2 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O_2 + 8H$$

Ionic equation

 $2MnO_{4}^{-} + 6H^{+} + 5(COOH)_{2} \rightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O_{2} + 8H_{2}O_{2$

Sulphites to sulphates

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$

```
Na_2SO_3 + [O] \rightarrow Na_2SO_4] \times 5
```

 $2KMnO_4 + 3H_2SO_4 + 5Na_2SO_3 \rightarrow K_2SO_4 + 2MnSO_4 + 5Na_2SO_4 + 3H_2O$

Ionic equation

 $2MnO_4^- + 6H^+ + 5SO_3^{2-} \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$

Iodides to iodine in acidic medium

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$

 $2KI + H_2O + [O] \rightarrow I_2 + 2KOH \times 5$

 $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O] \times 5$

 $2K\!M\!nO_4 + 8H_2SO_4 + 10K\!I \rightarrow 6K_2SO_4 + 2M\!nSO_4 + 5I_2 + 8H_2O$

Ionic equation $2MnO_4^- + 16H^+ + 10I^- \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$

7 2

Hydrogen peroxide to oxygen

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$ $H_2O_2 + [O] \rightarrow H_2O + O_2 \uparrow \times 5$

 $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$

Manganous sulphate (*MnSO*₄) to manganese dioxide (*MnO*₂) $2KMnO_4 + H_aO \rightarrow 2KOH + 2MnO_a + 3[O]$

$$2KMnO_4 + H_2O \rightarrow 2KOH + 2MnO_2 + 3[O]$$
$$MnSO_4 + H_2O + [O] \rightarrow MnO_2 + H_2SO_4 \times 3$$

 $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$

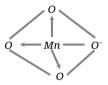
 $2KMnO_4 + 3MnSO_4 + 2H_2O \rightarrow 5MnO_2 + K_2SO_4 + 2H_2SO_4$

Ionic equation

 $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^+$

Ammonia to nitrogen

$$2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + 3[O]$$


$$2NH_3 + 3[O] \rightarrow N_2(g) + 3H_2O$$

$$2KMnO_4 + 2NH_3 \rightarrow 2MnO_2 + 2KOH + 2H_2O + N_2(g)$$

Uses : *KMnO*₄ is used,

(i) As an oxidising agent. (ii) As a disinfectant against disease-causing germs. (iii) For sterilizing wells of drinking water. (iv) In volumetric estimation of ferrous salts, oxalic acid etc. (v) Dilute alkaline $KMnO_4$ solution known as **Baeyer's reagent**.

Structure of Permanganate Ion (MnO₄⁻) : Mn in MnO_4^- is in +7 oxidation state. Mn^{7+} exhibits sp^3 hybridisation in this ion. The structure of MnO_4^- is, shown in fig.

Strucutre of MnO_4^- ion

Iron and its Compounds

(1) **Ores of iron :** Haematite Fe_2O_3 , Magnetite (Fe_3O_4) , Limonite $(Fe_2O_3.3H_2O)$, Iron pyrites (FeS_2) , Copper pyrities $(CuFeS_2)$ etc.

(2) **Extraction :** Cast iron is extracted from its oxides by reduction with carbon and carbon monoxide in a blast furnace to give pig iron.

Roasting : Ferrous oxide convert into ferric oxide.

$$Fe_2O_3$$
. $3H_2O \rightarrow Fe_2O_3 + 3H_2O$; $2FeCO_3 \rightarrow 2FeO + 2CO_2$
 $4FeO + O_2 \rightarrow 2Fe_2O_2$

Smelting : Reduction of roasted ore of ferric oxide carried out in a blast furnace.

(i) The reduction of ferric oxide is done by carbon and carbon monoxide (between 1473*k* to 1873*k*)

 $2C + O_2 \rightarrow 2CO$

(ii) $Fe_2O_3 + 3CO \xrightarrow{673 \text{ K}} 2Fe + 3CO_2$. It is a reversible and exothermic reaction. Hence according to *Le*chatelier principle more iron will be produced in the furnace at lower temp. $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$ (it is not reversible)

(iii)
$$FeO + C \xrightarrow[endothermic]{1073 K} Fe + CO$$

reaction

The gases leaving at the top of the furnace contain up to 28% *CO* and are burnt in **cowper's stove** to preheat the air for blast

Varieties of iron : The three commercial varieties of iron differ in their carbon contents. These are;

(1) **Cast iron or Pig-iron :** It is most impure form of iron and contains highest proportion of carbon (2.5-4%).

(2) Wrought iron or Malleable iron : It is the purest form of iron and contains minimum amount of carbon (0.12-0.25%).

(3) **Steel :** It is the most important form of iron and finds extensive applications. Its carbons content (Impurity) is mid-way between cast iron and wrought iron. *It contains* 0.2-1.5% *carbon. Steels containing* 0.2-0.5% *of carbon are known as mild steels, while those containing* 0.5-1.5% *carbon are known as hard steels.*

Steel is generally manufactured from cast iron by three processes, *viz*, (i) Bessemer Process which involves the use of a large pear-shaped furnace (vessel) called Bessemer converter, (ii) L.D. process and (iii) open hearth process, Spiegeleisen (an alloy of *Fe*, *Mn* and *C*) is added during manufacture of steel.

Heat treatment of steels : Heat treatment of steel may be defined as the process of carefully heating the steel to high temperature followed by cooling to the room temperature under controlled conditions. Heat treatment of steel is done for the following two purposes,

(i) To develop certain special properties like hardness, strength, ductility etc. without changing the chemical composition.

(ii) To remove some undesirable properties or gases like entrapped gases, internal stresses and strains. The various methods of heat treatment are,

(a) *Annealing* : It is a process of heating steel to redness followed by slow cooling.

(b) *Quenching or hardening* : It is a process of heating steel to redness followed by sudden cooling by plunging the red hot steel into water or oil.

(c) *Tempering* : It is a process of heating the hardened or quenched steel to a temperature much below redness (473–623*K*) followed by slow cooling.

(d) *Case-hardening*: It is a process of giving a thin coating of hardened steel to wrought iron or to a strong and flexible mild steel by heating it in contact with charcoal followed by quenching in oil.

(e) *Nitriding* : It is a process of heating steels at about $700 \ ^{o}C$ in an atmosphere of ammonia. This process imparts a hard coating of iron nitride on the surface of steel.

Properties of steel : The properties of steel depend upon its carbon contents. With the increase in carbon content, the hardness of steel increases while its ductility decreases.

(i) Low carbon or soft steels contain carbon upto 0.25%.

(ii) Medium carbon steels or mild steels contain 0.25-0.5% carbon.

(iii) High carbon or hard steels contains 0.1 – 1.5 percent carbon.

(iv) Alloy steels or special steels are alloys of steel with *Ni*, *Cr*, *Co*, *W*, *Mn*, *V* etc., For example

(a) Stainless steel (Fe = 73%, Cr = 18%, Ni = 8% + *C*) is resistant to corrosion and is used for making ornamental pieces, cutlery etc.

(b) Invar (Fe = 64%, Ni = 36%) has small coefficient of expansion and is used for making metre scales, pendulum rods and watches.

(c) Manganese steel (Fe = 86%, $Mn \ 13\% +$ carbon) is very hard and resistant to wear and hence is used for making rock drills, safes etc.

(d) Tungsten steel (Fe = 94%, W = 5% + carbon) is quite hard and is used for making high speed cutting tools.

(e) Permalloy (Fe = 21%, Ni = 78% + carbon) is strongly magnetised by electric current but loses magnetism when current is cut off. It is used for making electromagnets, ocean cables etc.

Properties of iron

(1) Dry or moist air has no action on pure iron but impure iron when exposed to moist air is covered with a layer of rust $Fe_2O_3 + Fe(OH)_3$. However, finely divided pure iron burns in air or oxygen forming Fe_3O_4 (magnetic oxide of iron).

$$3Fe + 2O_2 \rightarrow Fe_3O_4$$

(2) Iron decomposes steam at red heat

$$3Fe + 4H_2O \xrightarrow{\text{Red heat}} Fe_3O_4 + 4H_2$$

Steam

(3) Action of acids : Iron reacts with dil. *HCl* and dil. H_2SO_4 liberating hydrogen. with hot conc. H_2SO_4 , it gives SO_2 , with dil. *HNO*₃, it gives NH_4NO_3 and moderately conc. *HNO*₃ reacts with iron forming NO_2 .

Cold conc. HNO_3 makes iron passive due to the deposit of a thin layer of iron oxide (Fe_3O_4) on the surface.

Hot conc. *HNO*₃ reacts with iron liberating *NO*.

 $Fe + 4HNO_3$ (hot conc.) $\rightarrow Fe(NO_3)_3 + NO + 2H_2O$

(4) Iron does not react with alkalies.

(5) It displaces less electropositive metals (*e.g.*, *Cu*, *Ag* etc.) from their salts

 $CuSO_4 + Fe \rightarrow FeSO_4 + Cu$

(6) Finely divided iron combines with *CO* forming penta carbonyl

 $Fe + 5CO \rightarrow Fe(CO)_5$

(7) Iron does not form amalgam with Hg.

(8) Iron is the most abundant and most widely used transition metal.

Compounds of iron

(1) **Oxides of Iron :** Iron forms three oxides FeO, Fe_2O_3 (Haematite), Fe_3O_4 (magnetite also called magnetic oxide or load stone).

(i) *Ferrous oxide, FeO* : It is a black powder, basic in nature and reacts with dilute acids to give ferrous salts.

 $FeO + H_2SO_4 \rightarrow FeSO_4 + H_2O$; It is used in glass industry to impart green colour to glass.

(ii) *Ferric oxide* Fe_2O_3 : It is a reddish brown powder, not affected by air or water; amphoteric in nature and reacts both with acids and alkalis giving salts. It can be reduced to iron by heating with *C* or *CO*.

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$; $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

It is used as red pigment to impart red colour to external walls and as a polishing powder by jewellers.

(iii) *Ferrosoferricoxide* $Fe_3O_4(FeO.Fe_2O_3)$: It is more stable than FeO and Fe_2O_3 , magnetic in nature and dissolves in acids giving a mixture of iron (II) and iron (III) salts.

 $Fe_3O_4 + 4H_2SO_4$ (dil) $\rightarrow FeSO_4 + Fe_2(SO_4)_3 + 4H_2O_4$

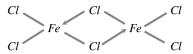
(2) **Ferrous sulphide** FeS: It is prepared by heating iron filing with sulphur. With dilute H_2SO_4 , it gives H_2S . $FeS + H_2SO_4$ (dil) $\rightarrow FeSO_4 + H_2S$ \uparrow

(3) **Ferric chloride** $FeCl_3$: (i) **preparation** : It is prepared by treating $Fe(OH)_3$ with HCl

 $Fe(OH)_3 + 3HCl \rightarrow FeCl_3 + 3H_2O$

The solution on evaporation give yellow crystals of $\mathit{FeCl}_3.6H_2O$

(ii) **Properties** : (a) Anhydrous FeCl₃ forms reddish-black deliquescent crystals.


(b) $FeCl_3$ is hygroscopic and dissolves in H_2O giving brown acidic solution due to formation of HCl

$$FeCl_3 + 3H_2O \rightarrow Fe(OH)_3 + 3HCl$$
(Brown)

(c) Due to oxidising nature Fe^{3+} ions $FeCl_3$ is used in etching metals such as copper

$$2Fe^{3+} + Cu \rightarrow 2Fe^{2+} + Cu^{2+}(aq)$$

(d) In vapour state $FeCl_3$ exists as a dimer, Fe_2Cl_6

(e) $FeCl_3$ is used as stypic to stop bleeding from a cut.

(4) **Ferrous sulphate,** $FeSO_4$, $7H_2O$ (Green vitriol): It is prepared as follow,

 $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$

(i) One pressure to moist air crystals become brownish due to oxidation by air.

 $4FeSO_4 + 2H_2O + O_2 \rightarrow 4Fe(OH)SO_4$

(ii) On heating, crystals become anhydrous and on strong heating it decomposes to Fe_2O_3 , SO_2 and SO_3 .

$$FeSO_{4}.7H_{2}O \xrightarrow{\text{heat}} FeSO_{4} + 7H_{2}O$$

$$2FeSO_{4} \xrightarrow{Strong} Fe_{2}O_{3} + SO_{2} + SO_{3}$$

(iii) It can reduce acidic solution of $KMnO_4$ and $K_2Cr_2O_7$

(iv) It is generally used in double salt with ammonium sulphate.

$$(NH_4)_2SO_4 + FeSO_4 + 6H_2O \rightarrow FeSO_4.(NH_4)_2SO_4.6H_2O$$
Mohr's salt

Mohr's salt is resistant to atmospheric oxidation.

(v) It is used in the ring test for nitrate ions where it gives brown coloured ring of compound $FeSO_4$. NO.

$$FeSO_4 + NO \rightarrow FeSO_4.NO$$

(vi) $FeSO_4$ is used in manufacture of blue black ink.

(vii) $FeSO_4 + H_2O_2$ is known as a name of **Fenton's reagent.**

(5) **Mohr's salt** $FeSO_4.(NH_4)_2SO_4.6H_2O$: It is a double salt and is prepared by crystallising a solution containing equivalent amounts of $FeSO_4.7H_2O$ and $(NH_4)_2SO_4$. It may be noted that Mohr's salt contains only Fe^{2+} ions without any trace of Fe^{3+} ions. In contrast $FeSO_4.7H_2O$ always contains some Fe^{3+} ions due to aerial oxidation of Fe^{2+} ions. Mohr salt is, therefore, used as a primary standard in volumetric analysis since a standard solution of Fe^{2+} ions can be obtained directly by weighing a known amount of the Mohr salt.

It acts as a reducing agent and as such reduces acidified $KMnO_4$ and $K_2Cr_2O_7$ solutions.

$$MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_{2}O$$

$$Cr_{2}O_{7}^{2-} + 6Fe^{2+} + 14H^{+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$

(from molers salt)

Copper and its Compounds

(1) **Ores :** Copper pyrites (chalcopyrite) $CuFeS_2$, Cuprite (ruby copper) Cu_2O , Copper glance (Cu_2S) , Malachite $[Cu(OH)_2, CuCO_3]$, Azurite $[Cu(OH)_2, 2CuCO_3]$

(2) **Extraction :** Most of the copper (about 75%) is extracted from its sulphide ore, copper pyrites.

Concentration of ore : Froth floatation process.

Roasting : Main reaction :

 $2CuFeS_2 + O_2 \rightarrow Cu_2S + 2FeS + SO_2$.

Side reaction : $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

 $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$. **Smelting :** $FeO + SiO_2 \rightarrow FeSiO_3$ (slag)

 $Cu_2O + FeS \rightarrow FeO + Cu_2S$

The mixture of copper and iron sulphides melt together to form '**matte**' ($Cu_2S + FeS$) and the slag floats on its surface.

Conversion of matte into Blister copper (Bessemerisation) : Silica is added to matte and a hot blast of air is passed $FeO + SiO_2 \rightarrow FeSiO_3$ (slag). Slag is removed. By this time most of iron sulphide is removed. $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$

Blister copper : Which contain about 98% pure copper and 2% impurities (*Ag*, *Au*, *Ni*, *Zn* etc.)

Properties of copper : It has reddish brown colour. It is highly malleable and ductile. It has high electrical conductivity and high thermal conductivity. Copper is second most useful metal (first being iron). It undergoes displacement reactions with lesser reactive metals e.g. with Ag. It can displace Ag from $AgNO_3$. The finally divided Ag as obtained is black in colour

finally divided Ag so obtained is black in colour.

Copper shows oxidation states of +1 and +2. Whereas copper (I) salts are colourless, copper (II) salts are blue in colour. *Cu* (I) salts are less stable and hence are easily oxidised to *Cu* (II) salts $(2Cu^+ \rightarrow Cu^{2+} + Cu)$. This reaction is called **disproportionation**.

(1) In presence of atmospheric CO_2 and moisture, copper gets covered with a green layer of basic copper carbonate (green layer) which protects the rest of the metal from further acton.

$$Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2CuCO_3$$
(green layer)

(2) In presence of oxygen or air, copper when heated to redness (below 1370*K*) first forms red cuprous oxide which changes to black cupric oxide on

further heating. If the temperature is too high, cupric oxide changes back to cuprous oxide

$$4Cu + O_2 \xrightarrow{\text{Below 1370 K}} 2Cu_2O \xrightarrow{O_2} 4CuO$$
(Red) Above 1370 K (Black)
$$CuO + Cu \xrightarrow{\text{High temp.}} Cu_2O$$

(3) Action of acids. Non oxidising dil. acids such as $HCl_{1}H_{2}SO_{4}$ have no action on copper. However, copper dissolves in these acids in presence of air.

 $Cu + 2HCl + \frac{1}{2}O_{2}(air) \rightarrow CuCl_{2} + H_{2}O$ With dil. *HNO*₃, *Cu* liberates *NO* (nitric oxide) $3Cu + 8HNO_{3} \rightarrow 3Cu(NO_{3})_{2} + 2NO + 4H_{2}O$ With conc. *HNO*₃, copper gives *NO*₂ $Cu + 4HNO_{3} \rightarrow Cu(NO_{3})_{2} + 2NO_{2} + 2H_{2}O$ With hot conc. $H_{2}SO_{4}$, copper gives SO_{2} $Cu + 2H_{2}SO_{4} \rightarrow CuSO_{4} + SO_{2} + 2H_{2}O$

Compounds of Copper

(1) Halides of copper : Copper (II) chloride, $CuCl_2$ is prepared by passing chlorine over heated copper. Concentrated aqueous solution of $CuCl_2$ is dark brown but changes first to green and then to blue on dilution.

On heating, it disproportionates to copper (I) chloride and chlorine

$$2CuCl_2 \xrightarrow{\text{Heat}} 2CuCl + Cl_2$$

It is used as a catalyst in the **Daecon's process** for the manufacture of chlorine.

Copper (I) chloride, CuCl is a white solid insoluble in water. It is obtained by boiling a solution of $CuCl_2$ with excess of copper turnings and conc. HCl.

$$CuCl_2 + Cu \xrightarrow{HCl} 2CuCl$$

It dissolves in conc. *HCl* due to the formation of complex *H*[*CuCl*₂]

$$CuCl + HCl \rightarrow H[CuCl_2]$$

It is used as a catalyst alongwith NH_4Cl in the preparation of synthetic rubber.

(2) **Cuprous oxide** Cu_2O : It is a reddish brown powder insoluble in water but soluble in ammonia solution, where it forms diammine copper (I) ion. $Cu^+ + 2NH_3 \rightarrow [Cu(NH_3)_2]^+$. It is used to impart red colour to glass in glass industry.

(3) **Cupric oxide** CuO : It is dark black, hygroscopic powder which is reduced to Cu by hydrogen, CO etc. It is used to impart light blue colour to glass. It is prepared by heating copper nitrate.

$$2Cu(NO_3)_2 \xrightarrow{\Delta} 2CuO + 4NO_2 + O_2$$

(4) **Copper sulphate** $CuSO_4.5H_2O$ (Blue vitriol) : It is prepared by action of dil H_2SO_4 on copper scrap in presence of air. $2Cu + 2H_2SO_4 + O_2 \rightarrow CuSO_4 + 2H_2O$ (air)

(i) On heating this blue salt becomes white due to loss of water of crystallization.

$$CuSO_4.5H_2O \xrightarrow{503K} CuSO_4 + 5H_2O$$

Blue White

At about 1000 K, $CuSO_4$ decomposes to give CuO and SO_3 .

$$CuSO_4 \xrightarrow{1000 K} CuO + SO_3$$

(ii) It gives a deep blue solution of tetrammine copper (II) sulphate with NH_4OH .

$$Cu_2SO_4 + 4NH_4OH, \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{\text{Blue colour}}$$

(iii) With *KCN* it first gives yellow precipitate of *CuCN* which decomposes of give $Cu_2(CN)_2$. $Cu_2(CN)_2$ dissolves in excess of *KCN* to give $K_3[Cu(CN)_4]$

$$2CuSO_4 + 4KCN \rightarrow Cu_2(CN)_2 + 2K_2SO_4 + (CN)_2$$

(iv) With KI it gives white ppt. of Cu_2I_2

 $4KI + 2CuSO_4 \rightarrow 2K_2SO_4 + \frac{Cu_2I_2}{White ppt.} + I_2$

(v) With $K_4[Fe(CN)_6]$, $CuSO_4$ gives a reddish brown ppt. of $Cu_2[Fe(CN)_6]$

$$2CuSO_4 + K_4[Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + 2K_2SO_4$$

Reddish brown ppt.

Uses : For electroplating and electrorefining of copper. As a mordant in dyeing. For making Bordeaux mixture (11 parts lime as milk of lime + 16 parts copper sulphate in 1,000 parts of water). It is an excellent fungicide. For making green pigments containing copper carbonate and other compounds of copper. Like Verdigris which is $Cu(CH_3COO)_2Cu(OH)_2$ *i.e.* basic copper acetate and is used as a green pigment in paints. As a fungicide in starch paste for book binding work.

(5) **Cupric sulphide** CuS: It is prepared as follows: $Cu(NO_3)_2 + H_2S \rightarrow CuS + 2HNO_3$. Black ppt.

(6) **Basic copper carbonates :** Because of lower solubility of the hydroxide, the normal carbonate does not exist. Two basic copper carbonates occur in nature viz **malachite** $CuCO_3.Cu(OH)_2$ which has a fine green colour, and **azurite**, $2CuCO_3,Cu(OH)_2$ which is deep blue in colour.

Malachite is prepared by heating a mixture of $CuSO_4$ solution and limestone in a sealed tube at 423 – 443 *K*

$$2CuSO_4 + 2CaCO_3 + H_2O \xrightarrow{423-443K} CuCO_3Cu(OH)_2$$

Malachite

 $+2CaSO_4 + CO_2$

At lower temperature *azurite* is formed

$$3CuSO_4 + 3CaCO_3 + H_2O \xrightarrow{<423 K} 2CuCO_3.Cu (OH)_2$$

 $+3CaSO_4 + CO_2$

On heating, both decompose to give black cupric oxide, water and ${\it CO}_2$.

They are used as green and blue painter's pigments under the name 'malachite green' and azurite blue'.

Silver and its Compounds

(1) **Ores :** Argentite (silver glance) Ag_2S , Horn silver (AgCl), Ruby silver (Pyrargyrite) $3Ag_2S.Sb_2S_3$.

(2) **Extraction :** *Cyanide process or Mac Arthus*-*Forrest cyanide process* : This method depends on the fact that silver, its sulphide or chloride, forms soluble complex with alkali cyanides in the silver. This implies that silver compounds will dissolve in solution of alkali cyanides in the presence of blast of air.

$$4Ag + 8NaCN + 2H_2O + O_2 \rightleftharpoons 4Na[Ag(CN)_2] + 4NaOH$$

air
or
$$4Ag + 8CN^- + 2H_2O + O_2 \rightleftharpoons 4[Ag(CN)_2]^- + 4OH^-$$
$$Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S$$
$$AgCl + 2NaCN \rightleftharpoons Na[Ag(CN)_2] + NaCl.$$

The reaction with the sulphide is reversible and accumulation of Na_2S must be prevented. A free excess of air is continuously passed through the solution which oxidizes Na_2S into sulphate and thiosulphate.

$$2Na_{2} + 2O_{2} + H_{2}O \rightarrow Na_{2}S_{2}O_{3} + 2NaOH$$

$$Na_{2}S_{2}O_{3} + 2NaOH + 2O_{2} \rightarrow 2Na_{2}SO_{4} + H_{2}O$$

$$2Na[Ag(CN)_{2}] + 4NaOH + Zn \rightarrow Na_{2}ZnO_{2} + MaOH + Zn \rightarrow Na_{2}ZnO_{2} + MaOH + Zn \rightarrow Na_{2}ZnO_{2} + MaOH$$

 $4NaCN + 2H_2O + 2Ag$

(3) Extraction of Ag from argentiferrous lead (*PbS* + Ag_2S)- Parke's Process : It is based upon the following facts (i) Molten Zn and Pb are immiscible, zinc forms the upper layer (ii) Ag is more soluble in molten Zn (iii) Zn-Ag alloy solidifies earlier than molten Pb (IV) Zn being volatile can be separated from Ag by distillation. Ag is purified by cupellation.

Properties of Silver: Silver is a white lustrous metal, best conductor of heat and electricity. Being soft, it is alloyed. The silver alloy used for making jewellery contain 80% Ag and 20% Cu. The composition of a silver alloy is expressed as its purity i.e. the amount of Ag present in 1000 parts of the alloy Ag does not react with dilute HCl or dil. H_2SO_4 and aqua regia but reacts with dil. HNO₃ and conc. HNO₃

forming *NO* and *NO*₂ respectively. Chlorine also reacts with A_g to form A_gCl .

$$2Ag + Cl_2 \rightarrow 2AgCl$$

Hot conc. H_2SO_4 reacts with Ag forming SO_2 like Cu

Compounds of Silver:

(1) **Silver oxide** (Ag_2O) : It is unstable and decomposes into Ag and O_2 on slow heating.

$$2Ag_2O \rightarrow 4Ag + O_2$$

(2) Silver halides (AgF, AgCl, AgBr and Agl) : Only AgF is soluble in H_2O . A_gCl is insoluble in H_2O but dissolves in NH_4OH , $Na_2S_2O_3$ and KCN solutions. AgBr is partly soluble whereas Agl is completely insoluble in NH_4OH . Except A_gF , all the remaining three silver halides are photosensitive.

$$\begin{split} AgCl + 2NH_4OH &\rightarrow [Ag(NH_3)_2]Cl + 2H_2O\\ \text{Diamine silver(I)chloride} \\ AgCl + 2KCN &\rightarrow K[Ag(CN)_2] + KCl\\ \text{Pot. Dicy anoargentate (I)} \\ AgCl + 2Na_2S_2O_3 &\rightarrow Na_3[Ag(S_2O_3)_2] + NaCl\\ \text{Sod. Dithiosulp hato argentate (I)} \end{split}$$

(3) **Silver nitrate** $(AgNO_3)$: Silver nitrate $(AgNO_3)$ is called lunar caustic silver nitrate on *heating above* its m.p. (485 *K*) decomposes to silver nitrite but on heating to red heat gives silver.

 $2 AgNO_{3} \xrightarrow{\text{Above 485 K}} 2 AgNO_{2} + O_{2}$ $2 AgNO_{3} \xrightarrow{\text{Red heat}} 2 Ag + 2NO_{2} + O_{2}$

When treated with *alkali*, $AgNO_3$ forms *silver* oxide which in case of NH_4OH dissolves to form complex ion.

 $2 AgNO_3 + 2NaOH \rightarrow Ag_2O + 2NaNO_3 + H_2O$ $2 AgNO_3 + 2NH_4OH \rightarrow Ag_2O + 2NH_4NO_3 + H_2O$ $Ag_2O + 4 NH_4OH \rightarrow 2[Ag(NH_3)_2]OH + 3H_2O$ Diamine silver hydroxide

AgNO₃ reacts with iodine in two ways

$$6 AgNO_3$$
 (excess) $+ 3l_2 + 3H_2O \rightarrow AglO_3 + 5AgI + 6HNO_3$
 $5 AgNO_2 + 3l_2$ (excess)

$$+ 3H_2O \rightarrow HIO_3 + 5Agl + 5HNO_3$$

In contact with organic matter (skin, cloth, paper etc.) $AgNO_3$ is reduced to metallic silver (black)

 $2 AgNO_3 + H_2O \rightarrow 2 Ag + 2HNO_3 + [O] \rightarrow \text{oxidises}$ organic matter

 $AgNO_3$ gives different coloured ppt. with different anions like $Cl^-, Br^-, \Gamma, S^{2-}, S_2O_3^{2-}, CrO_4^{2-}, PO_4^{3-}$ etc.

 $\ensuremath{\textit{AgNO}_3}$ is used in the preparation of ink and hair dyes.

Photography : The photographic plate is coated with a colloidal gelatinised solution of A_gBr . During exposure, A_gBr is reduced to metallic silver.

$$2 AgBr \rightarrow 2 Ag + Br_2$$

The exposed film is developed. The developer used is an alkaline solution of hydroquinone or quinol which reduces some of the exposed *AqBr* to black silver.

$$\begin{array}{c} C_6H_4(OH)_2 + 2\,AgBr \rightarrow 2\,Ag + C_6H_4O_2 + 2\,HB_4\\ \text{Quinol} & \text{Quinone} \end{array}$$

The film is finally fixed by dipping in a solution of sodium thiosulphate or hypo which removes unchanged *AgBr* as complex ion.

$$AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$$

After taking a print of the photograph it is finally toned by dipping in a dilute solution of gold chloride to impart a beautiful golden colour or it is dipped in potassium chloro platinate K_2PtCl_6 solution to get a shining grey tinge.

 $AuCl_3 + 3Ag \rightarrow 3AgCl + Au$

Gold and its Compounds

(1) **Occurrence of gold :** Gold is mainly found in native state either as vein gold, placer gold or alluvial gold. It is also present to a small extent in the combined state as sulphide, telluride and arsenosulphide. It is considered to be the king of metal.

Some important ores of gold are:

(i) Calaverite, *AuTe*₂ (ii) Sylvanite, *AuAgTe*₂ and

(iii) Bismuth aurite, $BiAu_2$

(2) **Extraction of gold :** (i) *Mac-Arthur-Forest Cyanide process* : The powdered gold ore, after concentration by *Froth-floatation process*, is roasted to remove easily oxidisable impurities of tellurium, arsenic and sulphur. The roasted ore is then treated with a dilute solution of *KCN* in presence of atmospheric oxygen when gold dissolves due to the formation of an aurocyanide complex.

$$4 Au + 8 KCN + 2 H_2O + O_2 \rightarrow 4 K[Au(CN)_2] + 4 KOH$$

Solution

The metal is then extracted by adding zinc dust.

$$2 K [Au(CN)_2] + Zn \rightarrow K_2 [Zn(CN)_4] + 2Au \downarrow_{\text{ppt.}}$$

(ii) **Plattner's chlorine process :** The roasted ore is moistened with water and placed in wooden vats with false perforated bottoms. It is saturated with current of chlorine, gold chloride thus formed is leached with water and the solution is treated with a reducing agent such as $FeSO_4$ or H_2S to precipitate gold.

$$\begin{aligned} AuCl_3 + 3FeSO_4 &\rightarrow Au \downarrow +FeCl_3 + Fe_2(SO_4)_3 \\ 2AuCl_3 + 3H_2S &\rightarrow 6HCl + 3S + 2Au \downarrow \end{aligned}$$

The impure gold thus obtained contains impurities of Ag and Cu. The removal of Ag and Cu from gold is called parting. This is done by heating impure gold with conc. H_2SO_4 (or HNO_3) when Ag and Cu dissolve leaving behind Au.

$$\begin{aligned} Cu+2H_2SO_4 &\rightarrow CuSO_4+SO_2+2H_2O\\ 2Ag+2H_2SO_4 &\rightarrow Ag_2SO_4+SO_2+2H_2O \end{aligned}$$

Properties of Gold: Gold is a yellow, soft and heavy metal. Gold and *Ag* are called noble metals since they are not attacked by atmospheric oxygen. However, *Ag* gets tarnished when exposed to air containing traces of H_2S . Gold is malleable, ductile and a good conductor of heat and electricity.

Pure gold is soft. It is alloyed with Ag or Cu for making jewellery. Purity of gold is expressed in terms of carats. Pure gold is 24 carats. Gold '14 carats' means that it is an alloy of gold which contains 14 parts by weight of pure gold and 10 parts of copper per 24 parts by weight of the alloy. Thus the percentage of gold in

'14 carats" of gold is =
$$\frac{100}{24} \times 14 = 58.3\%$$

Most of the jewellery is made from 22 carat gold (91.66% pure gold). Gold is quite inert. It does not react with oxygen, water and acids but dissolves in aqua regia

$$3HCl + HNO_{3} \rightarrow NOCl + 2H_{2}O + 2Cl] \times 3$$

$$Au + 3 Cl \rightarrow AuCl_{3}] \times 2$$

$$2Au + 9 HCl + 3 HNO_{3} \rightarrow 2AuCl_{3} + 6H_{2}O + 3NOCl$$
Auric chloride Nitrosylchloride

Oxidation states of gold: The principal oxidation states of gold are + 1 and + 3 though + 1 state is more stable than + 3.

Compounds of gold

(1) Auric chloride, $AuCl_3$: It is prepared by passing dry Cl_2 over finely divided gold powder at 573 K

$$2Au + 3Cl_2 \xrightarrow{573 K} 2AuCl_3$$

It is a red coloured crystalline solid soluble in water and decomposes on heating to give gold (I) chloride and Cl_2

$$AuCl_3 \xrightarrow{\text{Heat}} AuCl + Cl_2$$

It dissolves in conc. *HCl* forming chloroauric acid $AuCl_3 + HCl \rightarrow H[AuCl_4]$

Chloroauric acid is used in photography for toning silver prints and as an antidote for snake poisoning.

(2) **Aurous sulphide**, Au_2S : It is prepared when H_2S is passed through an acidified solution of potassium aurocyanide, $K[Au(CN)_2]$

$$2K[Au(CN)_2] + H_2S \rightarrow Au_2S + 2KCN + 2HCN$$

It is a dark brown solid, not attached by dilute mineral acids and hence is probably the most stable gold compound.

Zinc and its Compounds

(1) **Occurrence of zinc:** Zinc does not occur in the native form since it is a reactive metal. The chief ores of zinc are (i) Zinc blende (*ZnS*) (ii) Calamine or zinc spar (*ZnCO*₃) and (iii) Zincite (*ZnO*)

(2) **Extraction of zinc** : Zinc blende, after concentration by Froth floatation process, is roasted in air to convert it into ZnO. In case of calamine, ore is calcined to get ZnO. The oxide thus obtained is mixed with crushed coke and heated at 1673 K in fire clay retorts (Belgian Process) when ZnO gets reduced to metallic zinc. Being volatile at this temperature, the metal distils over and is condensed leaving behind Cd, Pb and Fe as impurities. The crude metal is called spelter. The metal may be refined either by electrolysis or by fractional distillation.

Properties of Zn : Zinc is more reactive than mercury. It is a good conductor of heat and electricity. Zinc readily combines with oxygen to form *ZnO*. Pure zinc does not react with non-oxidising acids (*HCl* or H_2SO_4) but the impure metal reacts forming Zn^{2+} ions and evolving H_2 gas.

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

Hot and conc. H_2SO_4 attacks zinc liberating SO_2

gas

$$Zn + 2H_2SO_4 \rightarrow ZnSO_4 + SO_2 + 2H_2O$$

Zinc also reacts with both dilute (hot and cold) HNO_3 and conc. HNO_3 liberating nitrous oxide (N_2O) , ammonium nitrate (NH_4NO_3) and nitrogen dioxide (NO_2) respectively.

 $4Zn + 10HNO_3$ (warm, dilute) \rightarrow

$$4 Zn(NO_3)_2 + N_2O + 5H_2O$$

$$4Zn + 10HNO_3$$
 (coldvery dilute) \rightarrow

$$4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$$

and

 $conc.) \rightarrow Zn(NO_3)_2 + 2NO_2 + 2H_2O$

 $Zn + 4HNO_3$ (hot

Zinc dissolves in hot concentrated *NaOH* forming the soluble sod. Zincate

 $Zn + 2NaOH + 2H_2O \rightarrow Na_2[Zn(OH)_4] + H_2$

or
$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

(3) **Special varieties of zinc.** (i) *Zinc dust* : It is prepared by melting zinc and then atomising it with a blast of air.

(ii) **Granulated zinc :** It is prepared by pouring molten zinc into cold water.

Both these varieties of zinc are used as reducing agents in laboratory.

Compounds of zinc

(1) **Zinc oxide (Zinc white or Chinese white)**, **ZnO**: It is obtained by burning zinc in air or by heating zinc carbonate or zinc nitrate.

 $2Zn + O_2 \xrightarrow{\text{Heat}} 2ZnO$ $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$ $2Zn(NO_3)_2 \xrightarrow{\text{Heat}} 2ZnO + 4NO_2 + O_2$

It is a white powder but becomes yellow on heating and again white on cooling.

It is insoluble in water and is very light and hence commonly known as **philosopher's wool**.

It is amphoteric in nature. $ZnO+2HCl \rightarrow ZnCl_{2} + H_{2}O$ (Basic) $ZnO+2NaOH \rightarrow Na_{2}ZnO_{2} + H_{2}O$ (Acidic) or $ZnO+2NaOH + H_{2}O \rightarrow Na_{2}[Zn(OH)_{4}]$ Sol. tetrahydroxozincate (II)

It is reduced both by carbon and H_2 and is used as a white paint

 $ZnO + C \rightarrow Zn + CO$; $ZnO + H_2 \rightarrow Zn + H_2O$

(2) **Zinc chloride,** $ZnCl_2$: It is obtained when Zn metal, ZnO or $ZnCO_3$ is treated with dil. HCl. It crystallizes as $ZnCl_2.2H_2O$ and becomes anhydrous on heating. $ZnCl_2$ is highly deliquescent and is highly soluble in H_2O and also readily dissolves in organic solvents like acetone, alcohol, ether etc. its aqueous solution is acidic due to hydrolysis.

 $ZnCl_2 + H_2O \rightarrow Zn(OH)Cl + HCl$

Anhydrous $ZnCl_2$ is used as a Lewis acid catalyst in organic reactions. Mixed with moist zinc oxide, it is used for filling teeth and its solution is used for preserving timber. Anhydrous $ZnCl_2$ used as a Lucas reagent with conc. *HCl*.

(3) **Zinc sulphide**, **ZnS** : It is a white solid. It is soluble in dil. *HCl* and thus does not get precipitated by H_2S in the acidic medium.

 $ZnS + 2HCl \rightarrow ZnCl_2 + H_2S$.

It is a constituent of lithopone $(ZnS + BaSO_4)$

(4) **Zinc sulphate**, $ZnSO_4.7H_2O$: It is commonly known as white vitriol and is obtained by the action of dil. H_2SO_4 on zinc metal, ZnO or $ZnCO_3$. On heating, it first loses six molecules of water of crystallization at

373 *K*. At 723 *K*, it becomes anhydrous and on further heating, it decomposes.

$$ZnSO_4.7H_2O \xrightarrow{373K} ZnSO_4.H_2O \xrightarrow{723K}$$

 $2ZnSO_4 \xrightarrow{1073 K} 2ZnO + 2SO_2 + O_2$

It is used to prepare lithopone $(BaSO_4 + ZnS)$, a white paint and also in galvanising iron.

 $ZnSO_4 + BaS \rightarrow ZnS + BaSO_4$

It is also used as an eye lotion.

Mercury and its compounds

(1) Occurrence and extraction of mercury : Cinnabar (*HgS*) is the only important ore of *Hg*. It is concentrated by froth floatation method and mercury is extracted from this ore by heating it in air at 773-873 *K* (auto reduction).

 $HgS + O_2 \xrightarrow{273-873 K} Hg + SO_2$

The mercury vapours thus obtained are condensed to give liquid metal. *Hg* thus obtained contains impurities of *Zn*, *Sn* and *Pb*. These are removed by treating the impure metal with dil HNO_3 , mercurous nitrate, $Hg_2(NO_3)_2$ thus formed react with metals present as impurities forming their nitrates which pass into solution leaving behind pure mercury. However, it is best purified by distillation under reduced pressure.

$$5Hg + 8HNO_3(dil.) \xrightarrow{\text{warm}} 3Hg_2(NO_3)_2 + 4H_2O + 2NO$$

 $Zn + Hg_2(NO_3)_2 \rightarrow Zn(NO_3)_2 + 2Hg$

Similar reaction is given by Pb and Sn.

Properties of mercury : Mercury is less reactive than *Zn*. It is a liquid at room temperature and has low thermal and electrical conductivity. Mercury forms dimeric mercury (I) ions, Hg_2^{+2} in which the two atoms are bonded by a covalent bond. It is slowly oxidised to *HgO* at about its boiling point. *Hg* does not react with dil. *HCl* or dil. H_2SO_4 but reacts with hot concentrated H_2SO_4 to form $HgSO_4$, it reacts with both warm dil. and conc. *HNO*₄ evolving *NO* and *NO*₂ respectively.

$$Hg + 2H_2SO_4$$
(hot, conc.) $\rightarrow HgSO_4 + SO_2 + 2H_2O$

 $Hg + 4HNO_3(\text{conc.}) \rightarrow Hg(NO_3)_2 + 2NO_2 + 2H_2O$

Hg does not react with steam or water hence can't form any hydroxide.

Compounds of mercury

(1) **Mercuric oxide,** *HgO* : It is obtained as a red solid by heating mercury in air or oxygen for a long time at 673 *K*

 $2Hg + O_2 \xrightarrow{673 K} 2HgO(\text{red})$

or by heating mercuric nitrate alone or in the presence of *Hg*

$$2Hg(NO_3)_2 \xrightarrow{\text{Heat}} 2HgO + 4NO_2 + O_2$$

When NaOH is added to a solution of $HgCl_2$, yellow precipitate of HgO are obtained.

$$Hg_2Cl_2 + 2NaOH \longrightarrow HgO \downarrow + H_2O + 2NaCl$$
(y ellow)

Red and yellow forms of *HgO* differ only in their particle size. On heating to 673 *K*, yellow form changes to red form.

$$HgO \xrightarrow{673 K} HgO$$

vellow red

It is used in oil paints or as a mild antiseptic in ointments.

(2) **Mercuric chloride**, $HgCl_2$: It is obtained by treating Hg with Cl_2 or by heating a mixture of NaCl and H_gSO_4 in presence of small amount of MnO_2 (which oxidises any Hg(I) salts formed during the reaction).

$$HgSO_{4} + 2NaCl \xrightarrow{\text{Heat}} HgCl_{2} + Na_{2}SO_{4}$$

It is a white crystalline solid and is commonly known as **corrosive sublimate**. It is a covalent compound since it dissolves in organic solvents like ethanol and ether.

It is extremely poisonous and causes death. Its best antidote is white of an egg.

When treated with stannous chloride, it is first reduced to white ppt. of mercurous chloride and then to mercury (black).

$$2HgCl_{2} + SnCl_{2} \rightarrow Hg_{2}Cl_{2} + SnCl_{4}$$

white ppt.
$$Hg_{2}Cl_{2} + SnCl_{2} \rightarrow 2Hg + SnCl_{4}$$

With ammonia it gives a white ppt. known as infusible white ppt.

 $HgCl_2 + 2NH_3 \rightarrow Hg(NH_2)Cl + NH_4Cl$

A dilute solution of H_gCl_2 is used as an antiseptic.

(3) **Mercuric iodide**, HgI_2 : It is obtained when a required amount of *KI* solution is added to a solution of $HgCl_2$.

$$HgCl_2 + 2KI \rightarrow HgI_2 + 2KCl_{(red)}$$

Below 400 K, HgI_2 is red but above 400 K, it turns yellowbove 400 \searrow

 $H_g I_2$ readily dissolves in excess of *KI* solution to form the $(H_g I_4)^{2-}$ complex ion.

$$\begin{array}{ccc} HgI_2 + 2KI & \rightarrow & K_2HgI_4 \\ \text{Red ppt.} & & \text{soluble colourless solution} \end{array}$$

An alkaline solution of $K_2[HgI_4]$ is called Nessler's reagent and is used to test NH_4^+ ions.

It gives a brown ppt. of $NH_2 - Hg - O - Hg - I$ (Iodide of Millon's base) with NH_4^+ ions.

 $2K_2[HgI_4] + NH_3 + 3KOH \rightarrow NH_2.HgO.Hgl + 7KI + 2H_2O$

It is used in ointments for treating skin infections.

(4) **Mercurous chloride**, Hg_2Cl_2 : It is obtained as under :

(a)
$$Hg_2(NO_3)_2 + 2NaCl \rightarrow Hg_2Cl_2 + 2NaNO_3$$

white ppt.

(b) $HgCl_2 + Hg \xrightarrow{\text{Heat in an iron retort}} Hg_2Cl_2$ (condenses on cooling)

It is purified by sublimation.

Mercurous chloride is also called calomel. It is a white powder insoluble in H_2O . On heating, it decomposes to give H_BCl_2 and Hg.

$$Hg_2Cl_2 \xrightarrow{\text{Heat}} HgCl_2 + Hg$$

It dissolves in chlorine water forming mercuric chloride.

$$Hg_2Cl_2 + Cl_2 \rightarrow 2HgCl_2$$

With ammonia, it turns black due to the formation of a mixture of finely divided black *Hg* and mercuric amino chloride.

$$Hg_2Cl_2 + 2NH_3 \rightarrow \underbrace{Hg + NH_2HgCl}_{(black)} + NH_4Cl$$

It is used to prepare standard calomel electrode and as a purgative in medicine.

(5) **Mercuric sulphide**, *HgS* : The solubility product of *HgS* is lower than that of *ZnS* and hence it gets precipitated as black solid when H_2S is passed through an acidic solution of any mercury (II) salt.

 $HgCl_2 + H_2S \rightarrow HgS + 2HCl$

It is insoluble in water and *HCl* but dissolves in aqua regia (1 part conc. HNO_3 + 3 parts conc. *HCl*)

$$\begin{aligned} 3HCl + HNO_3 &\to \underset{\text{Nitrosyl chloride}}{NOCl} + 2H_2O + \underset{\text{Nascent chlorine}}{2[Cl]} \\ HgS + 2|Cl| &\to HgCl_2 + S \downarrow \\ (\text{Soluble}) \end{aligned}$$

On sublimation, its colour changes to red and hence it is used as a red pigment.

(6) Mercuric sulphate, $HgSO_4$: It is obtained when HgS is treated with conc. H_2SO_4 .

$$Hg + 2H_2SO_4 \rightarrow HgSO_4 + SO_2 + 2H_2O$$

It is a white solid which decomposes on heating to give mercurous sulphate.

$$3HgSO_4 \xrightarrow{\Delta} Hg_2SO_4 + Hg + 2SO_2 + 2O_2$$

It is used as a catalyst in the hydration of alkynes to give aldehydes or ketones. It is also used as a cosmetic under the name **Vermillon** and in ayurvedic medicine as **makardhwaj**.

(7) **Amalgams :** Mercury forms alloys commonly known as amalgams, with all metals except iron and platinum. Hence it is transported in iron containers.

(8) **Alloy of transition metal :** See in table discuss earlier in metallurgy.

Lanthanides and Actinides

Lanthanides and actinides are collectively called f-block elements because last electron in them enters into f-orbitals of the antepenultimate (i.e., inner to penultimate) shell partly but incompletely filled in their elementary or ionic states. The name inner transition, elements is also given to them because they constitute transition series with in transition series (dblock elements) and the last electron enters into antepenultimate shell (n-2)f. In addition to incomplete d-subshell, their f-subshell is also incomplete. Thus, these elements have three incomplete outer shells i.e., (n-2), (n-1) and *n* shells and the general electronic configuration of *f*-block elements is (n-2) $f^{1-14} (n-1)d^{0-10}ns^2$.

(1) **Lanthanides :** The elements with atomic numbers 58 to 71 *i.e.* cerium to lutetium (which come immediately after lanthanum Z = 57) are called lanthanides or *lanthanones or rare earths*. These elements involve the filling of 4 *f*-orbitals. Their

general electronic configuration is, $[Xe]4f^{1-14}5d^{0-10}6s^2$. Promethium (*Pm*), atomic number 61 is the only synthetic (man made) radioactive lanthanide.

Properties of lanthanides

(i) These are highly dense metals and possess high melting points.

(ii) They form alloys easily with other metals especially iron. e.g. **misch metal** consists of a rare earth element (94–95%), iron (upto 5%) and traces of *S*, *C*, *Ca* and *Al*, pyrophoric alloys contain *Ce* (40–5%), *La* + neodymium (44%), *Fe* (4–5%), *Al* (0–5%) and the rest is *Ca*, *Si* and *C*. It is used in the preparation of ignition devices e.g., trace bullets and shells and flints for lighters and cigarette.

(iii) **Oxidation state** : Most stable oxidation state of lanthanides is +3. Oxidation states + 2 and + 4 also exist but they revert to +3 e.g. $Sm^{2+}, Eu^{2+}, Yb^{2+}$ lose electron to become +3 and hence are good reducing agents, where as Ce^{4+} , Pr^{4+} , Tb^{4+} in aqueous solution gain electron to become + 3 and hence are good oxidizing agents. There is a large gap in energy of 4 *f* and 5 *d* subshells and thus the number of oxidation states is limited.

(iv) **Colour** : Most of the trivalent lanthanide ions are coloured both in the solid state and in aqueous solution. This is due to the partly filled *f*-orbitals which permit f-f transition. The elements with xf electrons have a similar colour to those of (14 - x) electrons.

(v) Magnetic properties : All lanthanide ions with the exception of Lu^{3+} , Yb^{3+} and Ce^{4+} are paramagnetic because they contain unpaired electrons in the 4 f orbitals. These elements differ from the transition elements in that their magnetic moments do not obey the simple "**spin only**" formula $\mu_{eff} = \sqrt{n(n+2)}$ B.M. where n is equal to the number of unpaired electrons. In transition elements, the orbital contribution of the electron towards magnetic moment is usually quenched by interaction with electric fields of the environment but in case of lanthanides the 4forbitals lie too deep in the atom for such quenching to occur. Therefore, magnetic moments of lanthanides are calculated by taking into consideration spin as well as orbital contributions and a more complex formula

$$\mu_{eff} = \sqrt{4S(S+1) + L(L+1)}$$
 B.M.

which involves the orbital quantum number *L* and spin quantum number *S*.

(vi) **Complex formation** : Although the lanthanide ions have a high charge (+3) yet the size of their ions is very large yielding small charge to size ratio *i.e.*, low charge density. As a consequence, they have poor tendency to form complexes. They form complexes mainly with strong chelating agents such as EDTA, β - diketones, oxine etc. *No* complexes with π -bonding ligands are known.

(vii) **Lanthanide contraction** : The regular decrease in the size of lanthanide ions from La^{3+} to Lu^{3+} is known as lanthanide contraction. It is due to greater effect of the increased nuclear charge than that of the screening effect.

Consequences of lanthanide contraction

(a) It results in slight variation in their chemical properties which helps in their separation by ion exchange

(b) Each element beyond lanthanum has same atomic radius as that of the element lying above it in the group (e.g. Zr 145 pm, Hf 144 pm); Nb 134 pm, Ta 134 pm; Mo 129 pm, W 130 pm).

(c) The covalent character of hydroxides of lanthanides increases as the size decreases from La^{3+} to Lu^{3+} . However basic strength decreases. Thus $La(OH)_3$ is most basic whereas $Lu(OH)_3$ is least basic. Similarly, the basicity of oxides also decreases in the order from La^{3+} to Lu^{3+} .

(d) Tendency to form stable complexes from La^{3+} to Lu^{3+} increases as the size decreases in that order.

(e) There is a slight increase in electronegativity of the trivalent ions from *La* to *Lu*.

(f) Since the radius of Yb^{3+} ion (86 pm) is comparable to the heavier lanthanides *Tb*, *Dy*, *Ho* and *Er*, therefore they occur together in natural minerals.

(2) Actinides : The elements with atomic numbers 90 to 103 i.e. thorium to lawrencium (which come immediately after actinium, Z = 89) are called actinides or actinones. These elements involve the filling of 5 *f*-orbitals. Their general electronic configuration is, $[Rn]5f^{1-14}6d^{0-1}7s^2$.

They include three naturally occuring elements thorium, protactinium and uranium and eleven transuranium elements or transuranics which are produced artificially by nuclear reactions. They are synthetic or man made elements. All actinides are radioactive.

Properties of actinides

(i) **Oxidation state** : The dominant oxidation state of actinides is +3 which shows increasing stability for the heavier elements. *Np* shows +7 oxidation state but this is oxidising and is reduced to the most stable state +5. *Pu* also shows states upto +7 and *Am* upto +6 but the most stable state drops to *Pu* (+4) and *Am* (+3). *Bk* in +4 state is strongly oxidising but is more stable than *Cm* and *Am* in 4 state due to f^7 configuration. Similarly, *No* is markedly stable in +2 state due to its f^{14} configuration. When the oxidation number increases to + 6, the actinide ions are no longer simple. The high charge density causes the formation of oxygenated ions e.g., UO_2^{2+}, NpO_2^{2+} etc. The exhibition of large number of oxidation states of actinides is due to the fact that there is a very small energy gap between 5*f*, 6*d* and 7*s* subshells and thus all their electrons can take part in bond formation.

(ii) Actinide contraction : There is a regular decrease in ionic radii with increase in atomic number from Th to Lr. This is called actinide contraction analogous to the lanthanide contraction. It is caused due to imperfect shielding of one 5f electron by another in the same shell. This results in increase in the effective nuclear charge which causes contraction in size of the electron cloud.

(iii) **Colour of the ions :** Ions of actinides are generally coloured which is due to f - f transitions. It depends upon the number of electrons in 5 f orbitals.

(iv) **Magnetic properties :** Like lanthanides, actinide elements are strongly paramagnetic. The magnetic moments are lesser than the theoretically predicted values. This is due to the fact that 5f electrons of actinides are less effectively shielded which results in quenching of orbital contribution.

(v) **Complex formation :** Actinides have a greater tendency to form complexes because of higher nuclear charge and smaller size of their atoms. They form complexes even with π -bonding ligands such as alkyl phosphines, thioethers etc, besides EDTA, β -diketones, oxine etc. The degree of complex formation decreases in the order.

$$M^{4+} > MO_2^{2+} > M^{3+} > MO_2^{+}$$

Where *M* is element of actinide series. There is a high concentration of charge on the metal atom in MO_2^{2+} which imparts to it relatively high tendency towards complex formation.

 \mathscr{E} Iron pyrites is also known as Fool's gold (*CuFeS*₂).

- ∠ *Ni* can be extracted by or ford process.
- 𝕊 Chromium oxide is also known as chrome green. 𝕊

 \swarrow Cr_2O_3/C_5H_5N or solution of chromic oxide in pyridine is known as Collin's reagent.

 \swarrow Cr₂O₃.2H₂O is also known as Guignet's green.

✓ Zn, Cd and Hg are not expected to form covalent bond amongst themselves, hence they have relatively lower melting point.

✓ For the first four element of a transition series higher oxidation states are more stable than lower oxidation state. For next five-element lower oxidation state are more stable than higher oxidation state.

 Lightest transition metal is Sc and heaviest and densest transition element is osmium.

 \swarrow Mercurous ion exist as dimer $Hg_2^{2^+}$ and not as Hg^+ and this explains its diamagnetic nature.

✗ Pt, Pd and Ir are inert metal.

 \not *TiCl*₄ and *TiO*₂ are used in smoke screens.

𝕊 Mo is used in X-ray tube, Ta in analytic weight and instrument used in surgery of veins.

- \swarrow Fe^{2+} is green and Fe^{3+} is yellow.
- \mathscr{L} Fe^{3^+} is powerful oxidizing agent than Fe^{2^+} ion.

 \swarrow Iron carbide or cementite is *Fe*₃*C*.

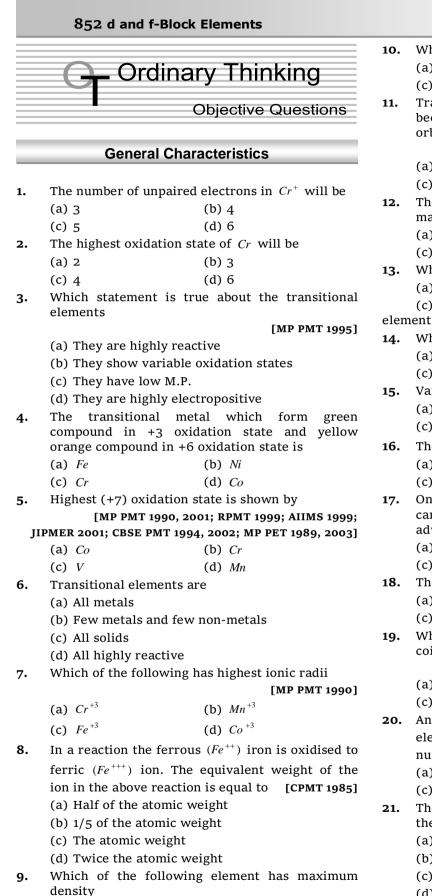
 \swarrow Kipp's base is $FeS + H_2SO_4$.

 \mathscr{C} Copper dissolves in an aqueous solution of $FeCl_3$.

*𝕊 CuSO*⁴ reacts only with *KI* does not react with *KCl*, *KBr* or *KF*.

 \mathscr{L} CuCl₂ and CuBr₂ are covalent and exist as polymer while CuF₂ is an ionic solid.

All silver halide except *AgF* are insoluble in water.


- ∠ Ag, Au and Cu are known as coinage metals.
- \swarrow Fulminating gold is $Au(NH_2) = NH$ or N_2H_3 .
- Purple of cassius is a colloidal solution of gold.

▲ Mercuric salts are more stable than mercurous salts.

- \mathscr{K} Schweitzer reagent is $[Cu(NH_3)_4]SO_4$.
- \varkappa Etard reagent is CrO_2Cl_2 .
- \swarrow Barfoed's reagent is $Cu(CH_3COO)_2 + CH_3COOH$.

 \mathcal{L} Milon's reagent is the solution of mercuric and mercurous nitrate.

- \mathscr{L} Zeigler natta catalyst is $TiCl_4 + (C_2H_5)_3Al$.
- ∠ Lindlar's catalyst is *Pd/BaSO*₄.
- \swarrow Wilkinson's catalyst is $[Ph_3P]_3RhCl$.
- Adam catalyst is *Pt/PtO*.
- ✗ Brown's catalyst is Nickel boride (P-2 catalyst).

(b) Au

(d) Pb

(a) *Hg*

(c) Os

10.	Which is heaviest amon	g the following[CPMT 1986]
	(a) Iron	(b) Copper
	(c) Gold	(d) Silver
11.		exhibit variable valencies
	because they release el orbits	ectrons from the following
	[MP PET/PMT 1988;	MP PET 1989;UPSEAT 2001]
	(a) <i>ns</i> orbit	(b) <i>ns</i> and <i>np</i> orbits
	(c) $(n - 1)d$ and <i>ns</i> orbit	ts(d) (<i>n</i> – 1) <i>d</i> orbit
12.	maximum in	s complex formation is
		(b) p - block elements
	(c) <i>d</i> - block elements	-
13.	Which forms coloured s	alts [CPMT 1984; MP PET 1995]
	(a) Metals	(b) Non-metals
	(c) <i>p</i> - block elements	(d) Transitional
	hents	
14.	•	to <i>d</i> – block [CPMT 1984]
	(a) <i>Na</i>	(b) <i>Ca</i>
	(c) <i>Cu</i>	(d) Ar
15.		wn by [MP PMT 1986; AMU 1999]
	(a) <i>Na</i>	(b) <i>Cu</i>
	(c) <i>Mg</i>	(d) <i>Al</i>
16.	The element with a ato	nic number 26 is [CPMT 1972]
	(a) A non-metal	(b) Krypton
	(c) Iron	(d) Manganese
17.	carbonyl compound ar	metals forms a volatile nd this property is taken raction. This metal is[NCERT 1984]
	(a) Iron	(b) Nickel
	(c) Cobalt	(d) Tungston
18.	The coinage metals are	
	(a) Iron, Cobalt, Nickel	(b) Copper and Zinc
		Gold (d)Gold and Platinum
19.		ng structure is that of a
0	coinage metal	0
		[CPMT 1973, 86]
	(a) 2, 8, 1	(b) 2, 8, 18, 1
	(c) 2, 8, 8	(d) 2, 18, 8, 3
20.	An elements in+3 o	oxidation state has the
	electronic configurati	on $(Ar)3d^3$. Its atomic
	number is	[JIPMER 2002]
	(a) 24	(b) 23
	(c) 22	(d) 21
21.		f the transition metals and
		ibed to their[Kerala (Engg.) 2002]
	(a) Chemical reactivity	
	(b) Magnetic behaviour	
	(c) Unfilled <i>d</i> -orbitals	
		ltiple oxidation states and ility

What is the general electronic configuration for 2nd row transition series [Orrisa JEE 2002]

	(a) $[Ne]3d^{1-10}, 4s^2$		31.		ng has the maximum number ns [BIT 1992; CBSE PMT 1999]
	(c) $[Kr]4d^{1-10}$, $5s^{1-2}$	(d) $[Xe]5d^{1-10}, 5s^{1-2}$		(a) Zn	(b) Fe^{2+}
23.	Transitional elements	are named transition			
	elements because their	characters are		(c) Ni^{3+}	(d) Cu^+
	(a) In between s and p	- block elements	32.	Which is not amphote	
	(b) Like that of p and d	- block elements		(a) Al^{3+}	(b) Cr^{3+}
	(c) They are members of	of I – A group		(c) Fe^{3+}	(d) Zn^{2+}
	(d) They are like inactiv	<i>v</i> e elements	33.	Which does not form	amalgam
24.		two outermost orbitals are	00		[AFMC 1988; MP PET 2001]
	incompletely filled with	electrons are		(a) <i>Fe</i>	(b) <i>Co</i>
	(a) <i>p</i> - block elements			(c) Ag	(d) Zn
	(b) <i>s</i> - block elements		34.		e often paramagnetic owing
	(c) Transitional elemen		34.	to	e often paramagnetic owing
	(d) Both s and p - block				[Bihar CEE 1992]
25.	Which ion has maximur	•		(a) Their high M.P. a	
		[AIIMS 1983; MP PMT 1990]		(b) The presence of v	
	(a) V^{+3}	(b) Mn^{+3}			of one or more unpaired
	(c) Fe^{+3}	(d) Cu^{+2}		electrons in the s	
26.	Which of the following in misch metal	transition metal is present		(d) Their being les elements of group	s electropositive than the os I-A and II-A
	(a) <i>La</i>	(b) <i>Sc</i>	35.	Elements which g	enerally exhibit multiple
	(c) <i>Ni</i>	(d) <i>Cr</i>			d whose ions are usually
27.		statements is not true in		coloured are	
	•	ments [EAMCET 1988, 89]			[NCERT 1973; MP PMT 2000]
	(a) They readily form o			(a) Metalloids	(b) Transition elements
	(b) They show variable	valency	_	(c) Non-metals	(d) Gases
	(c) All their ions are co	lourless	36.		g transition metal cation has
_		partially filled d -electron		maximum unpaired e	
leve	-			- ,	988; MP PMT 1991; RPMT 1997]
28.	Which of the following	represents the electronic		(a) Mn^{+2}	(b) Fe^{+2}

28. Which of the following represents the electronic configuration of a transition element[EAMCET 1987] 2 - 2 6 2 2

(a)
$$1s^2, 2s^2p^3, \dots, ns^2p^3$$

(b)
$$1s^2, 2s^2p^0, \dots, ns^2p^0d^3, (n+1)s^2$$

(c)
$$1s^2, 2s^2p^6, \dots, ns^2p^6d^{10}, (n+1)s^2p^1$$

- (d) $1s^2, 2s^2p^6, \dots, ns^2p^6$
- The general electronic configuration of transition 29. elements is

[CPMT 1984, 90, 2002; CBSE PMT 1991, 96; AIIMS 2001; Pb. CET 2000; MP PMT 2003]

(a)
$$(n-1)d^{1-5}$$
 (b) $(n-1)d^{1-10}ns^{1}$

(c)
$$(n-1)d^{1-10}ns^{1-2}$$
 (d) $ns^2(n-1)d^{10}$

Transition elements are coloured 30.

[MP PMT 1986; Pb. CET 1989; RPET 1999]

- (a) Due to small size
- (b) Due to metallic nature
- (c) Due to unpaired *d* electrons
- (d) All of these

metal is derived from the following configuration [MP PET/PMT 1988] (a) ns electron (b) (n-1)d electron (c) (n+1)d electron (d) ns + (n-1)d electron **38.** Which of the following statement is correct

Maximum number of oxidation states of transition

d and f-Block Elements 853

[MP PET/PMT 1988; MP PMT 1991]

(d) Ni^{2+}

(a) Iron belongs to 3rd transition series of the periodic table

- (b) Iron belongs to *f*-block of the periodic table
- (c) Iron belongs to second transition series of the periodic table
- (d) Iron belongs to group VIII of the periodic table
- Zinc does not show variable valency like *d*-block 39. elements because[MP PET 1989; MP PMT 1992; CPMT 1984]
 - (a) It is a soft metal

(c) Co²⁺

37.

- (b) *d*-orbital is complete
- (c) It is low melting

(d) Two electrons are	present in t	the outermost		(b) Metals have high	gh co-ordination number
					adopt closely packed structures
Ũ				(d) Metals have high	gh lattice energy
		39; DPMT 1982]	50.		d mercury show the properties
. ,				-	
	ansition elem	nents			ements (d) Rare elements
-	lon arr		51.		
•	•				••
		mnounda			element (d) An inert element
•		-	52.	· •	[NCERT 1975; CPMT 1976]
			1988]		
-			-91		
-			reag	•	
_	ur pressure			(c) They are shinin	ng lustrous and pleasing to look
	-	icity	at		in actions shots
- •		-		-	
0 1		con crements	53.		lowing statement is not true [CPMT 1988]
		[AMU 2000]			
(a) It has partially filled	l <i>f</i> -orbitals				
(b) It is just before Ce ir	n the periodi	c table			
(c) It has both partially	filled <i>f</i> and <i>d</i>	d-orbitals			
(d) The properties of La	nthanum are	e very similar	E 4	(d) Oxidation state of iron is +3 in this salt4. Which one of the following statement is true for	
to the elements of 4	f block		54.	transition elements[AIIMS 1983; AFMC 1987; JIPME]	
•		-		(a) They exhibit diamagnetism	
belongs to $ns^2(n-1)d^{1-10}($	$(n-2)f^{1-14}$	[UPSEAT 2001]		(b) They exhibit inert pair effect	
(a) <i>s</i> -block	(b) <i>p</i> -block			(c) They do not form alloys	
(c) <i>d</i> -block	(d) <i>f</i> -block			-	-
Variable valency is show	vn by	[UPSEAT 2001]		-	
(a) Typical elements	(b) Normal	elements	55.		electronic configuration of Cr
(c) Transition elements	(d) None of	f these			[Orissa JEE 2005]
Which ion is not coloure	ed	[DPMT 2001]		(a) $4s^{o}3d^{4}$	(b) $4s^2 3d^2$
(a) Cr^{3+}	(b) Co ²⁺				
(c) Cr^{2+}	(d) Cu ⁺				(d) $3p^6 4s^2$
The number of unpaired	d electrons :	in ferrous ion	56.	The hardness of of lusture is due to	<i>Cr</i> is due to and metallic
	[JIPME	R (Med.) 2001]		(a) Covalent bond,	metallic bond
(a) 5	(b) 4	· · ·		(b) Covalent bond,	hydrogen bond
	(d) 2			(c) Metallic bond,	covalent bond
		ytic properties		(d) Metallic bond,	hydrogen bond
			57.		ion series, the highest B.P. and
(a) Organic compound	(b) Oxidati	on		M.P. is of	
•				(a) <i>Cr</i>	(b) <i>V</i>
	-			(c) <i>Ni</i>	(d) <i>Fe</i>
• Which of the following statement is not correct		58.		ransition elements, the lowest	
which of the following a		[NCERT 1983]		M.P. and B.P. is ex	hibited by
(a) Metals contribute tthe common sea of e	heir valency			M.P. and B.P. is exit. (a) <i>Cr</i>	hibited by (b) H_g
	Which of the following i (a) <i>Al</i> (c) <i>Ni</i> Which is not true for tra- (a) They are all metals (b) They show variable (c) They form coloured (d) They do not form co The main reason for electrolytic cell in <i>NaOF</i> (a) <i>Hg</i> is a liquid (c) <i>Hg</i> has a high vapor (d) <i>Hg</i> is a good conductor Lanthanum is grouped because (a) It has partially filled (b) It is just before <i>Ce</i> in (c) It has both partially (d) The properties of Latter to the elements of 4 The element having belongs to $ns^2(n-1)d^{1-10}(n)$ (a) <i>s</i> -block (c) <i>d</i> -block Variable valency is show (a) Typical elements (c) Transition elements (c) Transition elements (c) <i>Cr</i> ²⁺ The number of unpairer is (a) 5 (c) 3 <i>Fe</i> , <i>Co</i> and <i>Ni</i> have va in process involving (a) Organic compound (c) Hydrogenation ogen	Which of the following is a transition[MP PMT 198(a) Al (b) As (c) Ni (d) Rb Which is not true for transition elem(a) They are all metals(b) They show variable valency(c) They form coloured ions(d) They do not form co-ordinate construction(d) They do not form co-ordinate construction(d) They do not form co-ordinate construction(e) They form coloured ions(d) They do not form co-ordinate construction(a) They as a high vapour pressure(d) H_g is a liquid(c) H_g has a high vapour pressure(d) H_g is a good conductor of electreLanthanum is grouped with f -blef-orbitals(b) It is just before Ce in the periodi(c) It has both partially filled f and G (d) The properties of Lanthanum are to the elements of $4f$ blockThe element having electronicbelongs to $ns^2(n-1)d^{1-10}(n-2)f^{1-14}$ (a) s -block(a) s -block(b) p -block(c) d -block(c) d -block(d) Transition elements(d) None ofWhich ion is not coloured(a) Cr^{3+} (a) Cr^{2+} (b) Co^{2+} (c) Cr^{2+} (c) Cu^+ The number of unpaired electrons(a) 5 (b) 4 (c) 3 (d) 2 Fe, Co and Ni have valuable cataly(a) Organic compound(b) Oxidati(c) Hydrogenation(d) Comport(a) Organic compound(b) Colati(c) Hydrogenation(d) Comport	(c) Ni (d) Rb Which is not true for transition elements(a) They are all metals(b) They show variable valency(c) They form coloured ions(d) They do not form co-ordinate compoundsThe main reason for not using a mercuryelectrolytic cell in $NaOH$ manufacture is that[CPMT(a) Hg is a liquid(c) Hg has a high vapour pressure(d) Hg is a good conductor of electricityLanthanum is grouped with f-block elementsbecause[AMU 2000](a) It has partially filled f -orbitals(b) It is just before Ce in the periodic table(c) It has both partially filled f and d-orbitals(d) The properties of Lanthanum are very similar to the elements of 4f blockThe element having electronic configuration belongs to $ns^2(n-1)d^{1-10}(n-2)f^{1-14}$ [UPSEAT 2001](a) s-block(b) p-block(c) Transition elements(d) None of theseWhich ion is not coloured[DPMT 2001](a) Cr^{3+} (b) Co^{2+} (c) Cr^{2+} (d) Cu^+ The number of unpaired electrons in ferrous ion is[JIPMER (Med.) 2001](a) 5(b) 4(c) 3(d) 2Fe. Co and Ni have valuable catalytic properties in process involving(a) Organic compound(b) Oxidation(c) Hydrogenation(c) Compounds of orgen	Which of the following is a transitional elementIMP PMT 1989; DPMT 1982]50.(a) Al (b) As (c) Ni (d) Rb Which is not true for transition elements51.(a) They are all metals51.(b) They show variable valency52.(c) They form coloured ions52.(d) They do not form co-ordinate compounds52.The main reason for not using a mercuryelectrolytic cell in $NaOH$ manufacture is that[CPMT 1988](a) Hg is toxicreag(b) Hg is a liquidreag(c) Hg has a high vapour pressureat(d) Hg is a good conductor of electricity53.Lanthanum is grouped with f-block elements53.(c) It has partially filled f -orbitals54.(d) The properties of Lanthanum are very similar to the element soi of 4f block54.The element having electronic configuration belongs to $ns^2(n-1)d^{1-10}(n-2)d^{1-14}$ [UPSEAT 2001]55.(c) Transition elements(d) f-block(c) Transition elements(b) Co^{2+} (c) Cr ²⁺ (d) Cu ⁺ The number of unpaired electrons in ferrous ion is55.(c) Cr ²⁺ (d) Cu ⁺ (d) 5 (b) 4(c) 7^{2+} (d) Cu ⁺ (f) 3 (d) 2Fe. Co and Ni have valuable catalytic properties in process involving57.(a) Organic compound(b) Oxidation(c) Hydrogenation(d) Compounds(c) Hydrogenation(c) Compounds(d) (c) Hydrogenation(d) Compounds <td>(c) Metals tend to (d) Metals have hit 2 Jinc, cadmium am of (a) AI (b) As(a) AI (b) As(c) Metals have hit 2 Jinc, cadmium am of (a) Typical elements (a) They are all metals (b) They show variable valency (c) They form coloured ions (c) They form coloured ions (c) They on ot form co-ordinate compounds The main reason for not using a mercury electrolytic cell in NoOH manufacture is that[CPMT 1983](c) Metals have hit 2 Jinc, cadmium am of (a) Typical element (c) A transitional element (d) They are in reagents(d) H_g is a liquid (c) H_g is a liquid (c) H_g is a good conductor of electricity Lanthanum is grouped with f-block elements to the element having electronic configuration belongs to $m^2(n-1)d^{1-10}(n-2)t^{1-4}$ [UPSEAT 2001] (a) Typical elements (c) Transition elements (c) G^{-2^+} (d) Ca^+ The number of unpaired electrons in ferrous ion is(c) Metals tend to (d) They are found (d) They are found (d) They are found (d) They are found (d) Ordiation stat(a) I the colourises (b) I t is just before Ce in the periodic table (c) I thas both partially filled f and d-orbitals (d) They exhibit di (e) D reversibiliti (c) <math>Transition elements(d) Ca^{-1} (f) The valence shell of (d) Ca^{+1} (b) Co^{2^+} (c) G^{-2^+} (d) Ca^{+1} (c) $A^{+2}3d^0$(a) $f^{-10}(n-2)t^{1-4}$ (c) $A^{+2}3d^0$(b) $Fa^{-1}(n-2)t^{1-4}$ (c) $A^{+2}3d^0$(c) The number of unpaired electrons in ferrous ion is</math></td>	(c) Metals tend to (d) Metals have hit 2 Jinc, cadmium am of (a) AI (b) As (a) AI (b) As (c) Metals have hit 2 Jinc, cadmium am of (a) Typical elements (a) They are all metals (b) They show variable valency (c) They form coloured ions (c) They form coloured ions (c) They on ot form co-ordinate compounds The main reason for not using a mercury electrolytic cell in NoOH manufacture is that[CPMT 1983](c) Metals have hit 2 Jinc, cadmium am of (a) Typical element (c) A transitional element (d) They are in reagents(d) H_g is a liquid (c) H_g is a liquid (c) H_g is a good conductor of electricity Lanthanum is grouped with f-block elements to the element having electronic configuration belongs to $m^2(n-1)d^{1-10}(n-2)t^{1-4}$ [UPSEAT 2001] (a) Typical elements (c) Transition elements (c) G^{-2^+} (d) Ca^+ The number of unpaired electrons in ferrous ion is(c) Metals tend to (d) They are found (d) They are found (d) They are found (d) They are found (d) Ordiation stat(a) I the colourises (b) I t is just before Ce in the periodic table (c) I thas both partially filled f and d-orbitals (d) They exhibit di (e) D reversibiliti (c) $Transition elements(d) Ca^{-1}(f) The valence shell of(d) Ca^{+1} (b) Co^{2^+}(c) G^{-2^+} (d) Ca^{+1}(c) A^{+2}3d^0(a) f^{-10}(n-2)t^{1-4}(c) A^{+2}3d^0(b) Fa^{-1}(n-2)t^{1-4}(c) A^{+2}3d^0(c) The number of unpaired electrons in ferrous ionis$

59.	In the following memb the lowest ionization en	ers of transition elements, nergy is of	68.	The electric (a) $1s^2$,
	(a) <i>Ti</i>	(b) <i>Sc</i>		(b) $1s^2$,
	(c) V	(d) <i>Mn</i>		
60.	Which of the followi potential less than expe	ng has second ionisation		(c) $1s^2$, (d) $1s^2$,
		(b) Z_n	69.	Out of
	(a) <i>Cr</i> (c) <i>V</i>	(d) <i>Mo</i>	69.	transiti
61.	A transition element	X has a configuration		(a) 80
		xidation state. Its atomic		(c) 43
	number is		7 0 .	U
		[CBSE PMT 1996]		(a) Mis
	(a) 25	(b) 26	-1	(c) Nob
	(c) 22	(d) 19	71.	Bullet-j (a) Sc
62.	The transition eleme	nt have a characteristic		(a) SC (c) Zr
	electronic configuration	n which can be represented	72.	In maki
	as		/2.	(a) <i>Fe</i> -
		MT/PET 1988; MP PMT 1989]		(c) <i>Fe</i> -
	(a) $(n-2)s^2p^6d^{1-10}(n-1)s^2$	$s^2 p^6 n s^2$	73.	Neobiu
	(b) $(n-2)s^2p^6d^{1-10}(n-1)s^{1-10}$	$a^1p^6d^1$ or d^1ns^1	75	surgica
	(c) $(n-1)s^{1}p^{6}d^{10}ns^{2}p^{6}nd$	1–10		(a) Non
	(d) $(n-1)s^2p^6d^{1-10}ns^1$ or	ns^2		(c) Soft
63.		ectrons in $Fe^{+++}(Z = 26)$ is	74.	To supp steel us
		[MP PMT 1995; RPET 2003]		(a) <i>Cr</i>
	(a) 4	(b) 5		(c) <i>Mn</i>
	(c) 6	(d) 3	75.	The ele
64.		and Cr^{3+} [atomic number of		series h
04.	Zn = 30, Ni = 28, Cr = 24			(a) 19 t
	(a) Only Zn^{2+} is colour	less and Ni^{2+} and Cr^{3+} are	76.	(c) 24 t Which of to the fi
	coloured	locs		(a) <i>Fe</i>
	(b) All three are colour(c) All three are colour			(c) Ag
		red and Zn^{2+} and Cr^{3+} are	77.	Fe^{2+} sh
	colourless			(a) Feri
65.	Common oxidation stat	e of scandium, a transition		(c) Dia
	element is/are [atomic	number of <i>Sc</i> = 21][MP PET 19	96/8.	Zinc an
	(a) + 4	(b) + 1		like d-b
	(c) $+ 2$ and $+ 3$	(d) $+ 4$ and $+1$		(a) The
66.		ing is not correct about		(b) The
	transition metals	[MP PET 1996]		(c) The
	(a) Their melting and b			sub:
	(b) Their compounds an		=0	(d) The
	-	c or covalent compounds	7 9 .	Cuprou: coloure
	(d) They do not exhibit			(a) Botl
67.	-	ion state is shown by the		(b) Cup
	(a) V-B	(b) VI-B		(c) Botl
	(c) VII-B	(d) VIII		(-) 200
	(-)	(,		

58.	The electronic configur	ation of cobalt is
	(a) $1s^2, 2s^2 2p^6.3s^2 3p^6 3a$	$d^{1}, 4s^{2}$
	(b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3a^2$	$d^{7}.4s^{2}$
	(c) $1s^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^6 \cdot 3s^2$,
	(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3a^6$,
_		,
69 .	Out of all the known transitional elements is	elements the number of s
	(a) 80	(b) 61
	(c) 43	(d) 38
о.	Cigarette or gas lighte	e r is made up of
	(a) Misch metal	(b) Alkali metal
	(c) Noble metal	(d) None
1.	Bullet-proof steel allog	y is prepared by using
	(a) <i>Sc</i>	(b) <i>Ni</i>
	(c) <i>Zr</i>	(d) <i>Zn</i>
2.	In making gun-berrel ,	the steel used is
	(a) $Fe - Mn$	(b) $Fe - Cr$
	(c) $Fe - W$	(d) $Ni - Mo$
3.	Neobium and tantalum surgical instruments be	metals are used in making ecause they are
	(a) Non-corrosive	(b) Hard
	(c) Soft	(d) All
4.	To support tungstun fi steel used is	lament in electric bulb, the
	(a) <i>Cr</i>	(b) <i>Ni</i>
	(c) <i>Mn</i>	(d) <i>Mo</i>
5.	The elements belongin series have atomic num	ng to the first transition Nber from
	(a) 19 to 37	(b) 22 to 32
	(c) 24 to 30	(d) 21 to 30
6.		g elements does not belong eries [BHU 2000; MP PMT 1995]
	(a) <i>Fe</i>	(b) <i>V</i>
	(c) <i>Ag</i>	(d) <i>Cu</i>
7.	Fe^{2+} shows	[RPET 2000]
	(a) Ferromagnetism	(b) Paramagnetism
	(c) Diamagnetism	(d) None of these
8.		not show variable valency ecause [RPMT 2000; MP PMT 200
	(a) They are soft	
	(b) Their <i>d</i> - shells are o	complete
	(c) They have only two subshell	electrons in the outermost
	(d) Their <i>d</i> -shells are in	ncomplete
9.		rless while cupric ion is [KCET 2000]
	(a) Both have half fille	d n and d-orbitals

- (a) Both have half filled p and d-orbitals
- (b) Cuprous ion has incomplete *d*-orbital and cupric ion has a complete *d*-orbital
- (c) Both have unpaired electrons in the *d*-orbitals

	(d) Cuprous ion has a complete <i>d</i> -orbital and cupric ion has an incomplete <i>d</i> -orbital
80.	
	[MP PMT 2003; CPMT 1991]
	(a) <i>s</i> -block (b) <i>p</i> -block
	(c) <i>d</i> -block (d) None of these
81.	1
	is (atomic number of <i>Co</i> = 27) [MP PMT 2003]
	(a) 2 (b) 3
	(c) 4 (d) 1
82.	
	(a) IIB (b) IIA
_	(c) IA (d) IB
83.	Which of the following element does not showvariable valency[MP PMT 2003]
	(a) <i>Ni</i> (b) <i>Zn</i>
	(c) <i>Cu</i> (d) <i>Mn</i>
84.	Which of the following is diamagnetic transitional metal ion
	(a) Ni^{+2} (b) Zn^{+2}
	(c) Co^{+2} (d) Cu^{+2}
85.	Which of the following is not an actinide
	[DPMT 2005]
	(a) Curium (b) Californium
	(c) Uranium (d) Terbium
86.	
	transitional metal ion is due to
	(a) Small size (b) Vacant 'd' orbitals
o_	(c) High nuclear charge (d) All of these
87.	ion
	(a) Fe^{+2} (b) Ni^{+2}
	(c) (a) and (b) both (d) V^{+3}
88.	Magnetic moment is expressed in
	(a) Faraday (b) Calorie
	(c) Bohr Magneton (d) Debye
89.	If the colours of salts of transition elements are
	due to the presence of unpaired electrons in the transition metal ions, which of the following ions
	will be colourless in aqueous solution
	(a) Ti^{3+} (b) Ti^{4+}
	(c) Fe^{2+} (d) Fe^{3+}
	(The at. no. of <i>Ti</i> and <i>Fe</i> are 22 and 26
resp	ectively)
90.	In the periodic table first transition series is placed in
	(a) Third period (b) Fourth period
	(c) Fifth period (d) None of these
91.	

91. The element having general electronic configuration $3d^4 4s^1$ is **[BHU 1978; CPMT 1987]** (a) Noble gas (b) Non-metal

	(c) Metalloid	(d) Transition metal
92.	-	g general configuration of tts chromium element [<i>Cr</i> 's
	[CBSE PMT 1991; MP PMT 1	992, 2001; RPET/PMT 1999]
	(a) d^5s^1	(b) $d^6 s^0$
	(c) d^4s^2	(d) d^3s^2
93.	Which element gives ma	ximum balanced oxide
		[MP PMT 1990]
	(a) V	(b) <i>Cr</i>
	(c) <i>Mn</i>	(d) <i>Fe</i>
94.	In first transition series is low because	s, the melting point of <i>Mn</i> [MP PMT/PET 1988]
	(a) Due to d^{10} configure	ration, metallic bonds are
stroi	ng	
	-	ation, metallic bonds are
weal	k	

(c) Due to d^5 configuration, metallic bonds are weak

(d) None of these

~

95. Which of the following ions has the least magnetic moment

[MP PMT 1993]

(a)	<i>Cu</i> ⁺²	(b)	Ni^{+2}
(c)	<i>Co</i> ⁺³	(d)	Fe^{+2}

96. Among the following outermost configurations of transition metals, which shows the highest oxidation state

[MP PMT 1993; MP PET 1995, 2001]

(a) $3d^3 4s^2$	(b) $3d^5 4s^1$
(c) $3d^5 4s^2$	(d) $3d^6 4s^2$

97. Which of the following is not true for transition metals

[MP PET 1993]

- (a) They are malleable and ductile
- (b) They have high boiling and melting points
- (c) They crystallize with body centred cubic and hexagonal close-packed structures only
- (d) They show variable oxidation states although not always
- 98. The most malleable of all the metals is
 - (a) Silver (b) Sodium
 - (c) Gold (d) Platinum
- **99.** Paramagnetism is exhibited by molecules

[NCERT 1981; Manipal MEE 1995]

- (a) Not attracted in a magnetic field
- (b) Containing only paired electrons
- (c) Carrying a positive charge
- (d) Carrying unpaired electrons

100. The higher number of unpaired electrons are in

				d and f-E	Block Elements 857
		[DCE 2001]		(a) Oxidation of Ag	(b) Oxidation of <i>Cu</i>
	(a) <i>Fe</i>	(b) <i>Fe</i> ⁺		(c) Reduction of Ag	(d) Reduction of <i>Cu</i>
	(c) Fe^{+2}	(d) Fe^{+3} ving statements concerning	112.	Lanthanide for whi states are common i	ich + II and + III oxidation [AIIMS 2003]
	lanthanides elements is			(a) <i>L</i> ą AMU 2001]	(b) <i>Nd</i>
		parated from one another		(c) <i>Ce</i>	(d) <i>Eu</i>
	by ion exchange met	-	113.		ired electrons in Zn^{++} is
		of trivalent lanthanides	5	(a) 2	(b) 3
	2	with increase in atomic		(c) 4	(d) o
	number	highly doneo motole	114.	The first transition e	
	(c) All lanthanides are h(d) Most typical oxidation		1.	(a) Chromium	(b) Scandium
	Complex ion is shown by			(c) Nickel	(d) Copper
	(a) Ag	(b) Au	115		iguration (outermost) of Mn^{+2}
	(a) Ag (c) Cu	(d) All of these	113.		An = 25) in its ground state is
		(d) All of these transition metal is used as			1993; MP PMT 1994; AFMC 2002]
	a catalyst	ir ansition metal is used as		(a) $3d^5 4s^0$	(b) $3d^4 4s^1$
		[CPMT 2001]		(c) $3d^34s^2$	(d) $3d^24s^24p^2$
	(a) Nickel	(b) Cobalt	116		
	(c) Gold	(d) Both (a) and (b)	110.	6 6	tic moment is shown by the on with the outer electronic
		ing transition metal ion is		configuration	
		tic moment having outer		[MP PET :	1993; MP PMT 1995; RPMT 1999]
	electronic configuration			(a) $3d^2$	(b) $3d^5$
	(a) $3d^1$	(b) $3d^8$		(c) $3d^7$	(d) $3d^9$
	(c) $3d^5$	(d) $3d^7$	117.	Which has valency t	
	-	d electrons is maximum in		(a) <i>Al</i>	(b) <i>Rb</i>
		= 23; $Cr = 24$; $Fe = 26$)[MP PET 2	2003]	(c) <i>Cu</i>	(d) <i>Ge</i>
	(a) <i>Cr</i>	(b) <i>Fe</i>	118.		
	(c) V Europium is	(d) Sc	1101		ts are true except that[Kerala (Me
	(a) <i>s</i> -block element	[DPMT 2005] (b) <i>p</i> -block element		(a) All of the	transitional elements are
	(c) <i>d</i> -block element	(d) <i>f</i> -block element		predominantly n	netallic
7.	Which of the following	g elements is alloyed with MP PET 2003; MP PMT 2004]		(b) In aqueous solut are coloured	tion many of their simple ions
	(a) Lead	(b) Silver			transitional elements show
	(c) Zinc	(d) Antimony		pronounced cata	
		lowing metallic bond is		(d) Most of the tran one valence state	nsitional elements show only
	strongest	C	110		
		[MP PET 2003]	119.	highest oxidation sta	ing transition metals can have ate [RPET 2003]
	(a) <i>Fe</i>	(b) <i>Sc</i>		(a) Cr	(b) <i>Co</i>
	(c) <i>V</i>	(d) <i>Cr</i>			
).	Which of the following i	is a colourless ion[EAMCET 199	92] 120.	Which of the followi	(d) Cu ing melts in boiling water[MNR 19
	(a) Cu^{+2}	(b) Fe^{+3}		(a) Gun metal	(b) Wood's metal
	(c) <i>Ti</i> ⁺³	(d) Zn^{+2}		(c) Monel metal	(d) Bell metal
).	The substance used in ca	ancer therapy is[DPMT 2002]		(e) None of these	(-,
	(a) <i>Rn</i>	(b) <i>Ni</i>	121.		osition in the electrochemical
	(c) <i>Fe</i>	(d) <i>Co</i>			which does not displace
.•	In solution of $AgNO_{3}$, if	f Cu is a solution become		hydrogen from wate	_
	blue due to			(a) <i>Hg</i>	(b) <i>Al</i>
	blue due to			() 8	

122.	The tendency of 3 <i>d</i> -metal ions to form stable complexes is due to their [MP PMT 1997]	
	complexes is due to their[MP PMT 1997](a) Variable oxidation state	
		135
	(b) Strong electronegative nature(c) High charge/size ratio and vacant <i>d</i>-orbitals	
	(d) Very low ionization energiesThe 3<i>d</i>-metal ions are paramagnetic in nature	
123.	because	
	[MP PMT 1997]	136
	(a) They are reducing agents	-
	(b) They form coloured salts	
	(c) They have one or more paired <i>s</i> -electrons	
	(d) They have one or more unpaired <i>d</i> -electrons	
24.	Lanthanide contraction occurs because	
	[AMU 2000; BHU 2003]	40-
	(a) <i>f</i> -orbital electrons are easily lost	137.
	(b) <i>f</i> -orbital an incompletely filled	
	(c) <i>f</i> -orbital electron an poor shielders of nuclear charge	
	(d) <i>f</i> -orbital do not come out on the surface of atom and are buried inside	138
25.	Which is most reactive metal[BHU 1979]	
	(a) <i>Fe</i> (b) <i>Pt</i>	
	(c) <i>Ni</i> (d) <i>Co</i>	139
26.	Least reactive metal is	
	(a) <i>Fe</i> (b) <i>Os</i>	
	(c) Ni (d) Pt	
27.	Which occludes hydrogen	
	(a) Os (b) Pt	
- 0	(c) <i>Ni</i> (d) All of these	140
28.	Which has the maximum ferromagnetic character	
	(a) Fe (b) Co	
20	(c) <i>Ni</i> (d) <i>Pt</i> Which forms interstitial compounds	
29.	[BHU 1982; MP PMT 1983]	141.
	(a) Fe (b) Co	-4
	(c) <i>Ni</i> (d) All of these	
30.	Which occurs in nature in free state	
-	(a) <i>Fe</i> (b) <i>Co</i>	
	(c) <i>Ni</i> (d) <i>Pt</i>	
31.	$3d^{10}4s^0$ electronic configuration exhibits	
	(a) Zn^{++} (b) Cu^{++}	142
	(c) Cd^{++} (d) Hg^{++}	
32.	$3d^04s^0$ electronic configuration exhibits	
	(a) Pd^{+2} (b) Sc^{+2}	143
	(c) Ti^{+4} (d) Zn^{+2}	
33.	Rare-earth elements are exhibited by	
	(a) At. No. 58 to 71 (b) At. No. 21 to 30	
	(c) At. No. 39 to 71 (d) At. No. 81 to 91	
34.	All those elements belong to f - block whose	
	atomic numbers are	

(c) Both (a) and (b) (d) None

135. The correct order of density is

- (a) Cu > Ni > Zn > Sc
- (b) Ni > Cu > Zn > Sc
- (c) Zn > Cu > Ni > Sc
- (d) Sc > Zn > Ni > Cu
- **136.** The property exhibited by only transitional elements
 - (a) To form paramagnetic compounds
 - (b) To form coloured compounds
 - (c) To form complex compounds
 - (d) To show inert tendency
- **137.** Which of the following will have standard oxidation potential less than *SHE*
 - (a) *Zn* (b) *Cu*
 - (c) *Fe* (d) *Ni*
- **138.** Hydrated Cu^{+2} ion will be
 - (a) Green (b) Violet
 - (c) Blue (d) Colourless
- **139.** The placement of *Zn*, *Cd* and *Hg* along with '*d*' block elements is not proper because
 - (a) Their 'd' orbitals are completely filled
 - (b) Their 'd' orbitals are empty
 - (c) They do not form complex compounds
 - (d) They do not form coloured compounds
- **140.** Which of the following is the weakest reducing agent
 - (a) Zn (b) Cu(c) H_2 (d) Li
- **141.** The decrease in atomic volume from *Cr* to *Cu* is very negligible because
 - (a) Increase in nuclear change
 - (b) Screening effect
 - (c) Unpaired electrons of *Cr*
 - (d) None

(c) Lead

142. The heaviest atom amongst the following is

[Kurukshetra CEE 1998]

- (a) Uranium (b) Radium
 - (d) Mercury
- 143. Thallium shows different oxidation states because [Kurukshetra CEE 1998]
 - (a) It is a transition metal
 - (b) Of inert-pair effect
 - (c) Of its high reactivity
 - (d) Of its amphoteric character

144.	The test of ozone O_3 can	n be done by [AFMC 1997]
	(a) <i>Ag</i>	(b) <i>Hg</i>
	(c) <i>Au</i>	(d) <i>Cu</i>
145.		set of elements does not ements set [EAMCET 1998]
	(a) <i>Fe</i> , <i>Co</i> , <i>Ni</i>	(b) <i>Cu</i> , <i>Ag</i> , <i>Au</i>
	(c) <i>Ti</i> , <i>Zr</i> , <i>Hf</i>	(d) Ga, In, Tl
146.	The transition metals m	ostly are
	[MP PM]	T 2000; Kerala (Med.) 2002]
	(a) Diamagnetic	
	(b) Paramagnetic	
	(c) Neither diamagnetic	
	(d) Both diamagnetic an	1 0
147.	elements	t in respect of <i>d</i> -block
		[MP PMT 2000, 02]
	(a) They are all metals	
	(b) They show variable	valency
	(c) They form coloured	ions and complex salts
	(d) All above statements	s are correct
148.	Which one of the follow typical transition eleme	ving is an example of non- nts
	(a) <i>Li, K, Na</i>	(b) <i>Be, Al, Pb</i>
	(c) <i>Zn, Cd, Hg</i>	(d) <i>Ba, Ca, Sr</i>
149.	Which one is wrong in t	•
		[Kurukshetra CET 2002]
	(a) Gold is considered to	•
	(b) Gold is soluble in me	-
	(c) Copper is added to g(d) None of these	
1=0		alastrong in Cr3+ ion io
150.	The number of unpaired	[Kurukshetra CET 2002]
	(a) 3	(b) 5
	(c) 4	(d) 1
151.		does not form coloured
	•	[Kurukshetra CET 2002]
	(a) Chromium	(b) Manganese
	(c) Zinc	(d) Iron
152.	Super alloys are usually	[Kurukshetra CET 2002]
	(a) Iron based	
	(b) Nickel based	
	(c) Cobalt based	
	(d) Based on all of these	
153.	The transitional metal state from +2 to +7 belo	l which shows oxidation ong to group
		(b) VI B
	(a) VII B	(0) VI D
	(a) VII B (c) II B	(d) III B
154.		(d) III B

	d and f-Blocl	k Elements 859
	(a) Cr ⁺³	(b) <i>Cu</i> ⁺
	(c) Fe^{+3}	(d) Cu ²⁺
155.	Which of the following i	ons is paramagnetic
	(a) Cu ⁺	(b) Zn^{+2}
	(c) Ti^{+3}	(d) Ti^{+4}
156.	Which of the following n	netals absorbs hydrogen
	(a) <i>K</i>	(b) <i>Al</i>
	(c) Zn	(d) <i>Pd</i>
157.	Which of the following i	ons is coloured [BHU 1997]
	(a) Cu ⁺	(b) Cu ²⁺
	(c) <i>Ti</i> ⁴⁺	(d) V^{5+}
158.	The metal present in B_{12}	is [BHU 1997]
	(a) Magnesium	(b) Iron
	(c) Cobalt	(d) Manganese
159.		ive the following reaction xide + $H\downarrow$ [Pb. PMT 2001]
	(a) Mercury	(b) Iron
	(c) Sodium	(d) Magnesium
160.		lues of <i>d</i> -block elements
	-	tion potential value of <i>f</i> -
[N	block elements are AP PMT 2002] (a) Higher	(b) Equal
	(c) lower	(d) All of these
161	• •	wing properties is not of
1010	transition elements	[MP PET 1999; CPMT 2002]
	(a) Colour	(b) Paramagnetism
	(c) Fixed valency	(d) None of the above
162.		wing, tendency towards ns is maximum[MP PET 1999]
	(a) <i>s</i> -block elements	(b) <i>d</i> -block elements
	(c) <i>p</i> -block elements	(d) <i>f</i> -block elements
163.	The electronic configu corresponds to	aration $1s^2, 2s^2p^6, 3s^2p^6d^6$ [MP PET 1994]
	(a) Mn^{2+}	(b) Fe^{2+}
	(c) <i>Co</i>	(d) <i>Ge</i>
164.	Which of the following	statements is not correct configuration of gaseous
		[MP PET 1994]
4 <i>s</i> o	(a) It has 5 electrons in rbitals	n $3d$ and one electron in
	(b) The principal quantue electrons are 3 and 4	um numbers of its valence l
	(c) It has 6 electrons in	3 <i>d</i> orbital
o an		have quantum number ' <i>l</i> '

165.	-	ne same group, they differ rties. The property that is	174.	Which of the follow lowest density	ring transitional metal has
	shared by both is			(a) <i>Sc</i>	(b) <i>Ti</i>
		[Pb. PMT 1998]		(c) V	(d) <i>Cr</i>
	(a) They form oxide rea	dily	175.		ring transitional metal has
	(b) They react with stea	m readily		lowest boiling point (I	
	(c) They react with he	ot concentrated sulphuric		(a) Zn	(b) <i>Sc</i>
cid			186	(c) Ti Which of the followin	(d) <i>V</i> g electronic configuration is
	(d) They react with hot	•	170.		element[NCERT 1983; CPMT 1989
66.		ionic species will impart			7; AIIMS 2000; MP PMT 2002]
	-	ution[CBSE PMT 1998; BHU 20	01]	(a) $1s^2, 2s^2p^6, 3s^2p^6d^{10}$	$4s^2p^6$
	(a) Ti^{4+}	(b) <i>Cu</i> ⁺		(b) $1s^2, 2s^2p^6, 3s^2p^6d^{10}$.	$4s^2n^1$
	(c) Zn^{2+}	(d) Cr^{3+}			1
67.		s in the outermost shell of		(c) $1s^2, 2s^2p^6, 3s^2p^6d^2, 4$	
	the 3d-transition elemen	[MP PMT 1997]		(d) $1s^2, 2s^2p^6, 3s^2p^6, 4s^2$	2
	(a) $(n-1)d^n$	(b) <i>nd</i> ^{<i>n</i>}	177.		in the eighth group, the
					n the outermost orbit is
	(c) ns^2	(d) $(n-1)s^2$		(a) 1 (c) 3	(b) 2 (d) 4
68.		variable oxidation states. oxidation state shown by	178.		ling, the transitional metals
	[]	MP PMT 1997; JIPMER 2002]		(a) Lustrous	(b) Conductor
	(a) + 4	(b) + 5		(c) Hard and brittle	(d) Ductile
	(c) + 6	(d) + 7	179.		nt of a metal ion of first
.69.	Which of the following solution	ng ions gives coloured	_, 5.	transition series is 2.83 <i>BM</i> . Therefo have unpaired electrons	
		[MP PET 1995]		(a) 6	(b) 4
	(a) <i>Cu</i> ⁺	(b) Zn^{++}		(c) 3	(d) 2
	(c) Ag ⁺	(d) Fe^{++}	180.	Which of the following	ng pair of ions may exhibit
7 0.	Which metal represents	more than one oxidation		same colour	
	state			(a) Cr^{+++} and Fe^{++}	
	(a) 41	[CPMT 1990]		(b) Ti^{+++} and V^{++}	
	(a) Al (c) Mg	(b) <i>Na</i> (d) <i>Fe</i>		(c) Fe^{+++} and Mn^{++}	
-1				(d) Cu^+ and Ni^{++}	
1/1.	A reduction in atomic size with increase in atomic number is a characteristic of elements of [AII			• •	omplete orbitals in inner
	(a) High atomic masses (b) <i>d</i> -block		-101	transition element is	[Pb. PMT 2001]
	(c) f -block	(d) Radioactive series		(a) 2	(b) 3
i 72.	•	ving characteristics of the		(c) 4	(d) 1
		ociated with their catalytic	182.		on states of <i>Cs</i> (cesium) are
	activity				[AIEEE 2002]
	(a) Variable oxidation s	[CBSE PMT 2003]		(a) + 2, + 3	(b) + 2, + 4
	(b) High enthalpy of ato			(c) + 3, + 4	(d) + 3, + 5
	(c) Paramagnetic behav		183.	The $3d$ elements sho	w variable oxidation states
	(d) Colour of hydrated i				s of the following sets of
73.	The number of oxidation			orbitals are almost sir	
		-		(a) $ns, (n-1)d$	(b) <i>ns</i> , <i>nd</i>
	(a) 4	(b) 6			

d	and	f-Block	Elements	861
---	-----	---------	----------	-----

184.	Which of the following 3 the smallest number of u	3d bivalent metal ions has inpaired d electrons	1
	(a) $3d^6$	(b) $3d^7$	
	(c) $3d^8$	(d) $3d^9$	
185.	The $3d$ metal ions for because the energy corrected by the energy corrected	orm coloured compounds esponding to the following ange of electromagnetic	1
	(a) Free energy change $3d$ metal ions	of complex formation by	
	(b) $d-d$ transitions of 3	3d electrons	1
	(c) Heat of hydration of	3 <i>d</i> metal ions	
	(d) Ionisation energy of	3 <i>d</i> metal ions	
186.	The oxidation number ferrocyanide is	of iron in potassium	
	(a) +2	(b) +3	1
	(c) +4	(d) Zero	
187.	by electrons are	he orbitals partially filled [DPMT 1984; MP PMT 1999]	
		(b) <i>p</i> - orbitals	
	(c) <i>d</i> - orbitals	(d) <i>f</i> - orbitals	19
188.	Number of unpaired elect	trons in <i>Mn</i> ²⁺ is IT 1997; Pb. PET/PMT 1999]	-,
	(a) 3	(b) 5	
	(c) 4	(d) 1	
189.	Mercury is the only met This is due to its	al which is liquid at 0°C. [CBSE PMT 1995]	19
		energy and weak metallic	
bond			
	(b) Low ionisation poter	Itlal	
	(c) High atomic weight(d) High vapour prossur	0	1
100	(d) High vapour pressure Essential constituent of		
190.		1982; CPMT 1973, 77, 78, 89]	
	(a) Iron	(b) An alkali metal	2
	(c) Silver	(d) Mercury	2
191.		in metal containers made	
		[DPMT 1982; CPMT 1973]	2
	(a) Silver	(b) Lead	
	(c) Iron	(d) Aluminium	
192.	The electroplating of because	chromium is undertaken	2
		[MP PMT 1994]	
	(a) Electrolysis of chrom		
	(b) Chromium can form	alloys with other metals	_
			2
			2

s	193.	An element having the $[Ar]3d^24s^2$ belongs to	electronic configuration [MP PMT 1993]
		(a) <i>s</i> - block elements	(b) p - block elements
		(c) <i>d</i> - block elements	(d) f - block elements
5	194.	Which one of the follo metal	wing is not a transition
2			[MP PMT 1999]
7		(a) Chromium	(b) Titanium
		(c) Lead	(d) Tungsten
	195.		an element is 22. The exhibited by it in its
			[MP PMT 1996]
		(a) 1	(b) 2
		(c) 3	(d) 4
	196.	d-block elements form	
		(a) Ionic compounds	
		(b) Covalent compounds	
		(c) Ionic and covalent co	ompounds
		(d) Only complex compo	unds
	197.	The transition metals 1 form ions due to	have a less tendency to [Bihar CEE 1995]
		(a) High ionisation energy	зу
		(b) Low heat of hydratio	n of ion
		(c) High heat of sublima	tion
		(d) All of these	
	198.	The electronic configurat	tion of A_g atom is[CPMT 1984]
		(a) $[Kr]3d^{10}4s^1$	(b) $[Xe] 4 f^{14} d^{10} 6s^1$
		(c) $[Kr]4d^{10}5s^1$	(d) $[Kr] 4d^9 5s^2$
	199.		property of manganese is Dolowing oxidation state[MP PET
		(a) <i>Mn</i> (+7)	(b) $Mn(+2)$
		(c) <i>Mn</i> (+4)	(d) <i>Mn</i> (+5)
	200.	Which one of the followi	ng ions is colourless PET 1999; RPET/PMT 1999]
		(a) <i>Cu</i> ⁺	(b) <i>Co</i> ²⁺
		(c) Ni^{2+}	(d) Fe^{3+}
	201.		elements are almost same
		(a) $Fe - Co - Ni$	(b) $Na - K - Rb$
		(c) $F-Cl-Br$	(d) $Li - Be - B$
	202.	In human body if neces wire used for surgery are	_
		(a) <i>Ni</i>	(b) <i>Au</i>
		(c) <i>Pt</i>	(d) <i>Ta</i>
	203.	Manganese is related to table	which block of periodic
		(a) <i>s</i> -block	[MP PMT 2003] (b) <i>p</i> -block

	(c) <i>d</i> -block	(d) f -block
204.	A hard and resistant me	etal (alloy) generally used
	in tip of nib of fountain	pen is [BHU 1982]
	(a) <i>Os.Ir</i>	(b) <i>Pt.Cr</i>
	(c) <i>V.Fe</i>	(d) <i>Fe.Cr</i>
205.	Chloride of which of th	e following elements will
	be coloured	
		[MP PMT 1999]
	(a) Silver	[MP PMT 1999] (b) Mercury
	(a) Silver (c) Zinc	
206.	(c) Zinc	(b) Mercury
206.	(c) Zinc	(b) Mercury (d) Cobalt
206.	(c) Zinc Which of the followin	(b) Mercury (d) Cobalt ng ions has the highest

(-)	Mn^{2+}	(d)) Zn^{2+}
	~ /	11111	(u	

- 207. Cerium (Z = 58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect [AIEEE 2004]
 - (a) The +4 oxidation state of cerium is not known in solutions
 - (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state
- (c) The common oxidation states of cerium are +3 and +4 $\,$
 - (d) Cerium (IV) acts as an oxidizing agent
- **208.** Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them

[AIEEE 2004]

(a)
$$(n-1)d^3ns^2$$

(b) $(n-1)d^5ns^1$
(c) $(n-1)d^8ns^2$
(d) $(n-1)d^5ns^2$

- **209.** Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is
 - [CBSE PMT 2004] (a) Ti^{4+} , V^{3+} , Cr^{2+} , Mn^{3+} (b) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^{5+} (c) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+} (d) Ti^+ , V^{4+} , Cr^{6+} , Mn^{7+}
- **210.** Lanthanoids are
 - (a) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling 4f sublevel
 - (b) 14 elements in the seventh period (atomic no.= 58 to 71) that are filling 4*f* sublevel
 - (c) 14 elements in the sixth period (atomic no. = 90 to 103) that are filling 4*f* sublevel
 - (d) 14 elements in the seventh period (atomic no.= 90 to 103) that are filling 4*f* sublevel
- 211. Which of the following metals make the most efficient catalyst [BHU 1995]
 - (a) Transition (b) Alkali
 - (c) Alkaline earth (d) Coloured metals
- 212. Lanthanides and actinides resemble in [AFMC 2004]

- (a) Electronic configuration (b) Oxidation state
- (c) Ionization energy (d) Formation of complexes
- 213. The lanthanide contraction relates to[Kerala PMT 2004]
 - (a) Atomic radii
 - (b) Atomic as well as M^{3+} radii
 - (c) Valence electrons
 - (d) Oxidation states
 - (e) Ionisation energy
- 214. Which of the following species is expected to show the highest magnetic moment? (At. Nos.: Cr=24, Mn = 25, Co = 27, Ni = 28, Cu = 29)[Kerala PMT 200]
 - (a) Cr^{2+} (b) Mn^{2+}
 - (c) Cu^{2+} (d) Co^{2+}
 - (e) Ni^{2+}
- 215. Which one belongs to 3*d*-transition series [MP PMT 2004](a) Copper(b) Gold
 - (c) Cobalt (d) Silver
- **216.** Which one of the following organisation's iron and steel plant was built to use charcoal as a source of power, to start with, but later switched over to hydroelectricity

[AIIMS 2004]

- (a) The Tata Iron and Steel Company
- (b) The Indian Iron and Steel Company
- (c) Mysore Iron and Steel Limited
- (d) Hindustan Steel Limited
- 217. Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002]

(a)
$$Fe > Co > Ni$$
 (b) $Ni > Co > Fe$

(c)
$$Co > Ni > Fe$$
 (d) $Fe > Ni > Co$

- **218.** Which of the following element has maximum
first ionisation potential[Pb. CET 2002]
 - (a) *V* (b) *Ti*
 - (c) *Cr* (d) *Mn*
- **219.** A metal *M* having electronic configuration
 - $M 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002]
 - (a) *s*-block element (b) *d*-block element
 - (c) *p*-block element (d) None of these
- **220.** Identify the transition element [MH CET 2003]
 - (a) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6$, $4s^2$
 - (b) $1s^2$, $2s^22p^6$, $3s^2$, $3p^63d^2$, $4s^2$
 - (c) $1s^2$, $2s^22p^6$, $3s^2$, $3p^63d^{10}$, $4s^24p^2$
 - (d) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{10}$, $4s^2 4p^1$
- **221.** What is the name of element with atomic number 105
 - [CPMT 2004]
 - (a) Kurchatovium (b) Dubnium

- g 4f sublevel
- [CBSE PMT 2004]

					d and f-Bl	ock Elements	863
	(c) Nobelium	(d) Holmiu	m	232.	Which of the follo		
222.	Electrons in a paramag	gnetic compou	nd are [UPSEAT 2	004]	largest atomic radii i		e series [BHU 2002]
	(a) Shared	(b) Unpair	ed		(a) <i>La</i>	(b) <i>Ce</i>	
	(c) Donated	(d) Paired		222	(c) Pm Which of the follow	(d) Lu	have valence
223.	Which of the foisoelectronic ions	ollowing pa	irs involves	233.	Which of the follow electron in <i>3d</i> -subshe	ell	[AIIMS 2002]
			[UPSEAT 2004]		(a) Fe (III) (c) Cr (I)	(b) <i>Mn</i> (II) (d) <i>P</i> (0)	
	(a) Mn^{3+} and Fe^{2+}	(b) <i>Mn</i> ²⁺ a	nd Fe^{3+}	224	Among the followin		s the lower
	(c) Cr^{3+} and Mn^{2+}	(d) Fe^{2+} and	nd Co^{2+}	234.	oxidation state in aq	U I	•
224.	Which of the following	g is paramagne	etic[Pb. CET 2000]		than the other in		
	(a) Ni ⁺⁺	(b) <i>Cu</i> ⁺					[AIIMS 2005]
	(c) Zn ⁺⁺	(d) Sc ⁺⁺⁺			(a) Tl^+, Tl^{3+}	(b) Cu^+, Cu^2	2+
225.	The electronic configu	ration of chro	mium is		(c) Cr^{2+}, Cr^{3+}	(d) V^{2+}, VO^{2+}	2+
		[BHU 2005	Pb. CET 2000]	235.	The lanthanide contr	action is respo	nsible for the
	(a) $[Ne]3s^23p^63d^4, 4s^2$	(b) $[Ne]3s^2$	$3p^{6}3d^{5}, 4s^{1}$	fact			
	(c) $[Ne]3s^23p^63d^6, 4s^1$	(d) $[Ne]3s^2$	$3p^{5}3d^{5}.4s^{2}$				[AIEEE 2005]
226.	Electronic configuration		•	1	(a) Zr and Y have a		
	(a) $[Ar]3d^94s^2$	(b) $[Ar]3d^{10}$			(b) Zr and Nb have		
					(c) Zr and Hf have		
	(c) $[Ar]3d^54s^2$	(d) $[Ar]3d^6$	$4s^2$	226	(d) Zr and Zn have t		
227.	Ce-58 is a member of		[Pb. CET 2002]	230.	Which of the following the main cause of land		
	(a) <i>s</i> -block	(b) <i>p</i> -block			(a) Poor shielding		
	(c) <i>d</i> -block	(d) <i>f</i> -block			another in the su	ıbshell	-
228.	How many unpaired el				(b) Effective shieldir	ng of one of $4f$	electrons by
			[MP PET 2004]		another in the su		
	(a) 2	(b) 4			(c) Poorer shielding	g of $5d$ elect	rons by $4f$
220	(c) 5 The main reason for	(d) 0	n of avidation		electrons		then by 10
229.	states exhibited by				(d) Greater shieldin electrons	ig of <i>Sa</i> elec	LION by 4j
	corresponding lanthan		BSE PMT 2005]	237.	Which of the following	ng have maximı	im number of
	(a) Lesser energy diff			0,1	unpaired electrons		[BHU 2005]
	orbitals than betw	•			(a) Fe^{3^+}	(b) <i>Fe</i> ²⁺	
	(b) Larger atomic si	ze of actino	ids than the		(c) <i>C</i> 0 ²⁺	(d) <i>Co</i> ³⁺	
	lanthanoids	erence betwee	en Ef and 6d	238.	Transition metals sho		
	(c) More energy difference between 5f and 6d orbitals than between 4f and 5d orbitals			(a) Due to characteristic configuration(b) High lattice energy			
	(d) Greater reactive nature of the actinoids than the lanthanoids				(c) Due to variable oxidation states		
					(d) Due to unpaired electrons		
230.	Four successive me			239.	Which of the followi		nents cannot
	transition elements a atomic numbers. Which				form an alloy		[KCET 2005]
	have the highest third		-	Г 2005	(a) <i>Zn,Cu</i>	(b) <i>Fe</i> , <i>Hg</i>	
	(a) Vanadium ($Z = 23$)		um(Z = 24)	5	(c) <i>Fe</i> , <i>C</i>	(d) <i>Hg</i> , <i>Na</i>	
	(c) Iron ($Z = 26$)		nese ($Z = 25$)	240.	Which belongs to the		5 [J & K 2005]
231.	The aqueous solution				(a) <i>Ce</i>	(b) <i>Cf</i>	
	following ions will be	colourless [CB			(c) <i>Ca</i>	(d) <i>Cs</i>	
	(a) Sc ³⁺	(b) Fe^{2+}		241.	Effective magnetic di		on is [Kerala CET 200
	(c) Ti^{3+}	(d) Mn^{2+}			(a) 1.73	(b) 0	
0-`	(Atomic number <i>Sc</i> =	21, $Fe = 26$,	Ti = 22, Mn =		(c) 5.92	(d) 2.83	
25)					(e) 3.87		

	d and f-Block Elements 863				Block Elements 863	
	Compounds of Trar	sitional elements	9.	In solid CuSO $_4.5H_2C$	<i>O</i> copper is co-ordinated to	
1.		te acts as an oxidant in	mol	(a) Five water mole ecules	[MP PET 1985, 86] ecules(b) Four water	
	neutral, alkaline as wel	l as acidic media. The final it in the three conditions		(c) One sulphate an	tion (d) One water molecule luble in NH_4OH but insoluble	
	(a) $M_{\rm H}O$ $M_{\rm H}O$ $M_{\rm H}^{2+}$	[MP PMT 1997] (b) $M_{10} Q^{2-} M_{10} M_{10} Q^{2+}$		(a) $BaSO_4$	[AFMC 1987] (b) <i>CuSO</i> 4	
	(a) MnO_2, MnO_2, Mn^{2+}			(c) $PbSO_4$	(d) $AgCl$	
	(c) $MnO_2, MnO_4^{2-}, Mn^{3+}$	(d) MnO, MnO_4, Mn^{2+}	11.	Verdigris is	[BHU 1987]	
•		nole of MnO_4^- accepts how		(a) Basic copper ace	etate (b) Basic lead acetate	
		s in a redox process ?[MP PE	T/PMT :	1998] Basic lead	(d) None of these	
	(a) 1	(b) 3	12.	Number of moles of	$K_2 Cr_2 O_7$ reduced by one mole	
	(c) 5 In acidia madium nataa	(d) 6 sium dichromate acts as an		of Sn^{2+} ions is	[KCET 1996]	
•	oxidant according to the			(a) 1/3	(b) 3	
	-	$Cr^{3+} + 7H_2O$. What is the		(c) 1.6	(d) 6	
	equivalent weight of K	-	13.		ne following is reduced by in acid medium [EAMCET 1997]	
	1 0	[MP PET/PMT 1998]		(a) Potassium perm		
	(a) <i>M</i>	(b) <i>M</i> /2		(b) Potassium iodid	e	
	(c) <i>M</i> /3	(d) <i>M</i> /6		(c) Ferrous sulphate		
	The correct formula of j	permanganic acid is[MP PET	1999]	(d) Potassium ferrocyanide		
	(a) $HMnO_4$	(b) <i>HMnO</i> ₅	14.		ganese is amphoteric[AFMC 1995]	
	(c) $H_2 MnO_4$	(d) $H_2 MnO_3$		(a) MnO_2	(b) Mn_2O_3	
	Acidified potassium di	chromate is treated with		(c) Mn_2O_7	(d) <i>MnO</i>	
		he reaction, the oxidation	15.	Which one of the fol (a) <i>MnO</i>	llowing oxides is ionic[IIT-JEE 1999 (b) Mn_2O_7	
		[MP PET 1996]		(c) CrO_3	(d) P_2O_5	
	(a) Increases from + 3 t		16.		calomel is[CPMT 1994; AFMC 1998]	
	(b) Decreases from +6 t(c) Remains unchanged	0 +3		(a) Hg_2Cl_2	(b) $HgCl_2$	
	(d) Decreases from $+6$ t	0 +2		(c) $HgCl_2.H_2O$	· · · · · · · · · · · · · · · · · · ·	
	• •	th acidified <i>FeSO</i> 4 [MP PET 1	17. 996]		nt use of ferrous sulphate is in	
	(a) Only $FeSO_4$ is oxidi			the (a) Manufacture of	blue black ink	
	(b) Only $KMnO_4$ is oxid			(b) Manufacture of		
	(c) $FeSO_4$ is oxidised K			(c) Preparation of h		
		and 4 and 15 reduced		-	nhydrous ferric chloride	
	(d) None of these When calomel reacts wi	th NH.OH we get	18.	Copper sulphate is r		
		[CBSE PMT 1996]		(a) In electrotyping		
	(a) $HgNH_2Cl$	(b) $NH_2 - Hg - Hg - Cl$		(b) In dyeing and ca(c) In detecting wat		
	(c) Hg_2O	(d) <i>H</i> gO		(d) As fertilizer		
	-	lution of NH_3 but not in	19.	Blue vitriol is	[AFMC 1992]	
	water because	[MP PMT 1984, 86]		(a) CuSO $_4$	(b) $CuSO_4.5H_2O$	
	(a) NH_3 is a better solv			(c) Cu_2SO_4	(d) $CuSO_4.H_2O$	
	(b) Ag^+ forms a completion	_	20.		er sulphate may be kept safely	
	_	5		in the container ma	-	
	(c) NH_3 is a stronger b	-		(a) Fe	(b) A_g	
VH_3	(d) The dipole moment	t of water is higher than	21.	(c) Zn Silver nitrate produ	(d) <i>Al</i> aces a black stain on skin due	
112				to	accor a brach brain on bhin duc	

- (a) Being a strong reducing agent
- (b) Its corrosive action
- (c) Formation of complex compound
- (d) Its reduction to metallic silver
- **22.** When hypo solution is added to cupric sulphate solution, the blue colour of the latter is discharged, due to formation of
 - (a) CuS_2O_3 (b) $Na_2S_4O_6$
 - (c) $NaCuS_2O_3$ (d) Cu_2O_3
- 23. Metal oxides which decomposes on heating is [MNR 1984: UPSEAT 1999]

	LMNR 1984; UPSEAT
(a) <i>ZnO</i>	(b) Al_2O_3

- (c) CuO (d) Na_2O
- (e) *HgO*
- **24.** Anhydrous sample of ferric chloride is prepared by heating
 - (a) Fe + HCl (b) $Fe + Cl_2$ (c) $FeCl_2 + Cl_2$ (d) Hydrated ferric

chloride

25. Light green crystals of ferrous sulphate lose water molecule and turn brown on exposure to air. This is due to its oxidation to

(a)	Fe_2O_3	(b)	$Fe_2O_3.H_2O$
(c)	$Fe(OH)SO_4$	(d)	$Fe_2O_3 + FeO$

26. In alkaline condition *KMnO*₄, reacts as follows :

 $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$

Therefore its equivalent weight will be

[NCERT 1974; CPMT 1977; DCE 2002]

(a) 31.5	(b) 52.7
(c) 72.0	(d) 158.0

27. Equivalent weight of KMnO₄ acting as an oxidant in acidic medium is equal to[CPMT 1990; MP PMT 1999]
(a) Molecular weight of KMnO₄

(b) $\frac{1}{2}$ × Molecular weight of <i>KMnO</i>	4
(c) $\frac{1}{3}$ × Molecular weight of <i>KMnO</i>	4

- (d) $\frac{1}{5}$ × Molecular weight of *KMnO*₄
- 28. In which of the following ionic radii of chromium would be smallest [MP PET 1994]
 (a) K₂CrO₄ (b) CrO₂
 - (c) $CrCl_3$ (d) CrF_2
- **29.** $CoO.Al_2O_3$ is called
 - (a) Cobalt aluminate (b) Thenard's blue
 - (c) Both (a) and (b) (d) None of these
- 30. ZnO.CoO is called
 (a) Cobalt zincate
 (b) Rinman's green
 (c) Both (a) and (b)
 (d) None of these
- **31.** $FeSO_4 . (NH_4)_2 SO_4 . 6H_2O$ is called [Bihar CEE 1995] (a) Mohr's salt (b) Green salt

- (d) Glauber's salt (c) Alum 32. Molybdenum compounds are used in (a) Dye industry (b) For colouring leather (c) For colouring rubber (d) All of these 33. When copper turnings and concentrated *HCl* is heated with copper sulphate the compound formed is [CPMT 1984] (b) Cuprous chloride (a) Cupric chloride (c) Copper sulphate (d) SO_{2} 34. The compound of copper which turns green on keeping in air is [CPMT 1984] (a) Copper sulphate (b) Copper nitrate (c) Cupric chloride (d) Cuprous chloride Cu_2Cl_2 with HCl in presence of oxidising agents 35. gives [CPMT 1984] (b) H_2CuCl_2 (a) $CuCl_2$ (d) Chlorine gas (c) Hydrogen gas $K_2Cr_2O_7$ on heating with aqueous *NaOH* gives 36. [CBSE PMT 1997] (a) CrO_4^{2-} (b) $Cr(OH)_3$ (c) $Cr_2 O_7^{2-}$ (d) $Cr(OH)_2$ $KMnO_4$ reacts with oxalic acid according to the 37. equation : $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$ Here 20 ml of 0.1 M $KMnO_4$ is equivalent to [CBSE PMT 1996] (a) 20ml of 0.5 $M C_2 H_2 O_4$ (b) 50ml of 0.1 $M C_2 H_2 O_4$ (c) 50ml of 0.5 $M C_2 H_2 O_4$ (d) 20ml of 0.1 $M C_2 H_2 O_4$ potassium 38. The equivalent weight of [MP PET 1999] permanganate for acid solution is (a) 158 (b) 31.6 (c) 52.16 (d) 79 Which statement is not correct 39. [MP PET 1999] (a) Potassium permanganate is a powerful oxidising substance (b) Potassium permanganate weaker а
 - (b) Potassium permanganate is a weaker oxidising substance than potassium dichromate
 - (c) Potassium permanganate is a stronger oxidising substance than potassium dichromate
 - (d) Potassium dichromate oxidises a secondary alcohol into a ketone

40. The formula of corrosive sublimate is **[CPMT 1997]** (a) H_gCl_2 (b) $H_{g_2}Cl_2$

- (c) H_{g_2O} (d) H_g
- **41.** Which is mild oxidising agent [AFMC 1971] (a) Ag_2O (b) $KMnO_4$

				d and f-Block Elements 865
	(c) $K_2 C r_2 O_7$	(d) Cl ₂		(d) It give <i>CuO</i> on strong heating in air
42.	The equivalent weigh	It of $K_2 C r_2 O_7$ in acidic	53.	Acidified potassium permanganate solution
	medium			decolourised by [MNR 19
	(a) 294	(b) 298		(a) Bleaching powder(b) White vitriol(c) Mohr's salt(d) Microcosmic salt
	(c) 49	(d) 50		(e) Laughing gas
43 .		nent of III-B group is	54.	
		$V_2(SO_4)_3$. Therefore the	01	becomes yellow on heating [MP PET 19
	compound will be	(h) Plus		(a) AgO (b) Ag_2O
	(a) Purple (c) White	(b) Blue (d) Uncertain		(c) <i>FeO</i> (d) <i>ZnO</i>
11		The salt $ZnSO_4$, the salt	55.	Amalgams are
44.	will be	plife with $2i30_4$, the sate		(a) Highly coloured alloys
	(a) Paramagnetic	(b) Diamagnetic		(b) Always solid
	(c) Ferromagnetic	(d) None		(c) Alloys which contain mercury as one of
45.	V_2O_5 is useful as cataly		cont	tents
15.	(a) Manufacture of H_2			(d) Alloys which have great resistance to abrasi
			56.	In photography sodium thiosulphate is used as
	(b) Manufacture of <i>HN</i>	-		[DPMT 20
	(c) Manufacture of <i>Na</i> ₂	CO_3		(a) Complexing agent (b) Oxidising agent
_	(d) It is not a catalyst			(c) Reducing agent (d) None of these
46.		n is reduced to [Orissa JEE 200	5]57•	The substance that sublimes on heating
	(a) $K_2 MnO_4$	(b) MnO_2		[EAMCET 1978, 82; MP PMT 199
	(c) $Mn(OH)_2$	(d) Mn^{2+}		(a) Magnesium chloride(b) Silver chloride(c) Mercurous chloride(d) Sodium chloride
47.	When $KMnO_4$ is reduce	d with oxalic acid in acidic	58.	
		n number of <i>Mn</i> changes	50.	
	from	-		(a) Potassium ferricyanide
		[CPMT 1989]		(b) Red prussiate of potash (c) Potassium hexacyanoferrate (III)
	(a) 7 to 4	(b) 6 to 4		(d) All of these
40	(c) 7 to 2 Necceler's reagant is	(d) 4 to 2	59.	
48.	Nesseler's reagent is	1; MP PMT 1993; AFMC 2001]	55.	weight when kept in magnetic field
	(a) $K_2 HgI_4$	(b) $K_2 HgI_4 + KOH$		(a) TiO_2 (b) $Fe_2(SO_4)_3$
	(c) $K_2HgI_2 + KOH$			(c) $KMnO_4$ (d) $ScCl_3$
40		romate is heated, the gas	60	Amongst TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$ (Ator
49.	formed is	folliate 13 licated, the gas	00.	number $Ti = 22$, $Co = 27$, $Cu = 29$, $Ni = 28$).
		[MP PMT 1993; IIT-JEE 1999]		colourless species are [CBSE PMT 19]
	(a) N ₂	(b) O ₂		(a) CoF_6^{3-} and $NiCl_4^{2-}$ (b) TiF_6^{2-} and CoF_6^{3-}
	(c) H ₂	(d) NH_3		
50.	Acidified potassium dic sulphite is reduced to	hromate on reacting with a	61.	(c) Cu_2Cl_2 and $NiCl_4^{2-}$ (d) TiF_6^{2-} and Cu_2Cl_2 Which of the following imparts green colour
	(a) CrO_2Cl_2	(b) CrO_4^{2-}		the glass [CPMT 19
	(c) Cr^{3+}	(d) Cr^{2+}		(a) Cu_2O (b) CdS
51.	The product of oxidati	on of I^- ion by MnO_4^- in		(c) MnO_2 (d) Cr_2O_3
	alkaline medium is		62.	
	(a) <i>I</i> ₂	(b) IO_3^-		finally obtained [CPMT 1971, 74,
	(c) IO_4^-	(d) I_3^-		(a) Copper (b) Copper oxide
52.		it which is not correct		(c) Copper nitrate (d) Copper nitride
. سر	regarding copper sulph	ate	63. _[On adding KI to a solution of copper sulphate UPSEAT 2000, 01 [CPMT 1973; NCERT 1977; MP PMT 197
	(a) It reacts with <i>KI</i> to	-		(a) Cupric oxide is precipitated
	(b) It reacts with <i>KCl</i> to			(b) Metallic copper is precipitated
	(c) It reacts with NaOH	I and glucose to give Cu_2O		

	866 d and f-Bloc	k Elements			
of iod		precipitated with liberation		(c) $[Cu(NH_3)]^+$	(d) None of the above
	(d) No change occurs		72.	If M is the molecula	r weight of $KMnO_4$, it
ŀ.	Which of the follow	ing statements is correct to $KMnO_4$ [MP PET 1994]		equivalent weight will into $K_2 MnO_4$	be when it is converte
		f its molecular weight in			[MP PET 1993
	ne medium			(a) <i>M</i>	(b) <i>M</i> /3
		f its molecular weight in		(c) <i>M</i> /5	(d) <i>M</i> /7
	_	molecular weight in acidic	73.	While writing the form written as (<i>FeO</i>), because	nula of ferrous oxide it i se it is
	um (d) It is such third of it			(a) Non-stoichiometric	(b) Non-existant
	um	s molecular weight in acidic		(c) Paramagnetic	(d) Ferromagnetic
		r_2O_7 with <i>NaCl</i> and conc.	74.		wing exhibit maximur
	H_2SO_4 gives	[MP PET 1994]		oxidation state of vanad	
	(a) $CrCl_3$	(b) <i>CrOCl</i> ₂		(a) $VOCl_3$	(b) <i>VCl</i> ₄
	2	-		(c) <i>VCl</i> ₃	(d) <i>VCl</i> ₂
	(c) CrO_2Cl_2	(d) Cr_2O_3	75.	Prussian blue is due to	the formation of
	because it is	pplied in coloured bottles			0; KCET 1992; MP PET 1995
	because it is	[CPMT 1985]		(a) $Fe_4[Fe(CN)_6]_3$	(b) $Fe_2[Fe(CN)_6]$
	(a) Oxidised in air			(c) $Fe_3[Fe(CN)_6]$	(d) $Fe[Fe(CN)_6]_3$
	(b) Decomposes in sun	light	76.	The Nesseler's reagent	• • • • • • • • • • • • • • • • • • •
	(c) Explosive in sunlig	-		•	87; MP PMT 1985; BHU 1996
	(d) Reactive towards a	ir in sunlight		(a) Hg_2^{++}	(b) <i>Hg</i> ⁺⁺
		with common salt gives a		-	-
		hich is soluble in dilute		(c) $HgI_2^{}$	(d) $HgI_4^{}$
	NH_4OH . It is the nitra		77.	Formula of ferric sulpha	ate is [AFMC 2003
	(a) Copper	(b) Mercury		(a) FeSO $_4$	(b) $Fe(SO_4)_2$
	(c) Silver	(d) Gold		(c) Fe_2SO_4	(d) $Fe_2(SO_4)_3$
		wing is lunar caustic[CPMT 19	^{84]} 78.	When $CuSO_{A}$ is hydrate	d, then it becomes[AFMC 2
	(a) $AgNO_3$	(b) Cu_2Cl_2		(a) Acidic	(b) basic
	(c) $CuCl_2$	(d) Hg_2Cl_2		(c) Neutral	(d) Amphoteric
	Invar, an alloy of Fe ar	nd Ni is used in watches and	79.		-
	meter scale, its charac	teristic property is [Kerala (F	Engg.) 2	$\begin{array}{c} \textbf{(a)} AgNO_{2} \end{array}$	(b) Ag_2O_3
	(a) Small coefficient of	f expansion			(d) Al_2O_3
	(b) Resistance to corro	osion	0 -	(c) Fe_2O_3	2 0
	(c) Hardness and elast	icity	80.	·	changes from red orange t
	(d) Magnetic nature			lemon yellow on treat because of	ment with aqueous KOH
	The extraction of nicke			Decause of	[MP PMT 1994
	(a) The formation of <i>N</i>	$Vi(CO)_4$		(a) The reduction of Cr	
	(b) The decomposition	of $Ni(CO)_4$		(b) The formation of ch	
	(c) The formation and	l thermal decomposition of		(c) The conversion of di	
	$(\mathbf{p})_4$	-			potassium hydroxide t
СС	<i>D</i>) ₄	catalytic decomposition of	81.		with <i>KOH</i> in presence of
		NH_3 solution to $CuSO_4$		(a) $KMnO_4$	(b) $K_2 MnO_4$
	solution, the dark blue			(c) $Mn(OH)_2$	(d) Mn_3O_4
ſ	CPMT 1990; AIIMS 1982;	MP PMT 1989, 92; BHU 1996;	82.	$Cu(CN)_4^{2-}$ is colourless a	5
	ана Г аса — Эм	JIPMER 1997]	02.		
	(a) $\left[Cu(NH_3)_4\right]^{++}$	(b) $\left[Cu(NH_3)_2\right]^{++}$		(a) Visible region	(b) Ultraviolet region

					· · · · · · · · · · · · · · · · · · ·
83.	Acidified solution of with hydrogen peroxid	chromic acid on treatment e yields [MP PET 1999;	96.	(c) A reducing agent(e) Alloying agentIn the reaction,	(d) A cutting tool
	(a) $CrO_3 + H_2O + O_2$	(b) $Cr_2O_3 + H_2O + O_2$	90.	$2KMnO_4 + 16HCl \rightarrow 5Cl_2 + 16$	2MnCl + 2KCl + 8H O
		(d) $H_2Cr_2O_7 + H_2O + O_2$			
84.	5 2	g metals corrodes readily in		the reduction product i (a) Cl_2	 [Kerala (Med.) 2003] (b) MnCl₂
04.	moist air	, metale corroace reading in		-	2
	[CP	MT 1972, 82; CBSE PMT 1989]		(c) H_2O	(d) <i>KCl</i>
	(a) Gold	(b) Silver	97.	Which one of the follow	ving statements is correct
	(c) Nickel	(d) Iron		(a) Manganese salts gi	[AIEEE 2003] ve violet borax bead test in
85.		llowing compounds is not		the reducing flame	ve violet borax beau test in
	coloured	[AIIMS 1997]		-	ecipitate of AgCl and AgI
	(a) Na_2CuCl_4	(b) Na_2CdCl_4		ammonia solution o	
	(c) $K_4 Fe(CN)_6$			(c) Ferric ions give a	deep green precipitate or
0.0		(d) $K_3 Fe(CN)_6$		•	errocyanide solution
86.		colourzed by [AMU 1999]		(d) On boiling a solu	tion having K^+, Ca^{2+} and
	(a) Br_2	(b) O_3		HCO_{2}^{-} ions we get	a precipitate of $K_2Ca(CO_3)_2$
	(c) HCl	(d) HBr	08	Collin's reagent is	[RPMT 2002]
87.		g compound expected to be	90.	•	(b) $MNO_4 / C_5 H_5 N$
	colourless			(c) $K_2 Cr_2 O_7 / H_2 SO_4$	
	(a) <i>ScO</i>	(b) $V_2 O_3$		· - ·	
	(c) <i>CuCN</i>	(d) $Cr_2(SO_4)_3$	99.	which compound has c	oloured aqueous solution [RPMT 2002]
88.		are isomorphous[CPMT 1990]		(a) $Zn(NO_3)_2$	(b) <i>LiNO</i> 3
	(a) $ZnSO_4$, $SnSO_4$	(b) $MgSO_4$, $CaSO_4$		(c) $Co(NO_3)_2$	(d) $Ba(NO_3)_2$
	(c) $ZnSO_4$, $MgSO_4$	(d) $PbSO_4$, $NiSO_4$		5 2	
89.	On heating $Mn(OH)_2$ v	with PbO_2 and conc. HNO_3		airro a	ated with <i>NaOH</i> solution
	pink colour is obtained	due to the formation of [MP P	ET 199	$5_{(a)} Z_{n(OH)}$	(b) $ZnCl_2$
	(a) $KMnO_4$	(b) $HMnO_4$		(c) Na_2ZnO_2	(d) $Zn(OH)_3$
	(c) $Pb(MnO_4)_2$	(d) $PbMnO_4$	101		
90.	Which of the following is used as white pigment			heating	g compounds volatilises on
	(a) <i>TiO</i> ₂	(b) $V_2 O_5$		nouting	[BHU 1998]
	(c) <i>CuO</i>	(d) <i>HgO</i>		(a) $MgCl_2$	(b) <i>HgCl</i> ₂
91.	Which metal oxide is u	sed to make blue glass		(c) <i>CaCl</i> ₂	(d) $FeCl_3$
-	(a) Fe_2O_3	(b) <i>CoO</i>	102	Which of the following	5
	(c) Cu_2O	(d) <i>NiO</i>	102.	-	inds of transition elements
92.	-	for certain pyrophosphate		are paramagnetic	inds of transition clements
92.		formula of its ferric			nds of transition elements
	pyrophosphate will be			are paramagnetic	
	(a) $Fe_2(P_2O_7)_3$	(b) $Fe_4(P_4O_{14})$			nds of transition elements
	(c) $Fe_4(P_2O_7)_3$	(d) Fe_3PO_4		are diamagnetic	
93.		ring compounds does not		(d) Transition eleme	nts form the complex
93.	dissolve in ammonium			pounds	which is IND DWT accol
	(a) <i>AgF</i>	(b) AgBr	103.	Calamine is a mineral, (a) $7\pi CO$	
	(c) AgCl	(d) AgI		(a) $ZnCO_3$	(b) ZnS
94.	Which of the following	-		(c) $ZnSO_4$	(d) <i>ZnO</i>
24.	(a) Fe_3O_4	(b) Fe_2O_3	104.	Super conductors are d	lerived from compounds of
	(c) <i>FeO</i>	(d) All the above		(a) a bla - b - b	[Kerala (Engg.) 2002]
95.		steel industry as [Kerala (Med) 2003	(a) <i>p</i> -block elements	(b) Lanthanides
	(a) A flux	(b) Scavenger of			(d) Transition elements s highest oxidation state in
	hydrogen		105.	manganese achieves it	s ingliest oxidation state in

hydrogen

105. Manganese achieves its highest oxidation state in its compound [MP PET 1993, 2001; MP PMT 2004]

	868 d and f-Block	Elements	
	(a) MnO_3	(b) Mn_3O_4	
	(c) $KMnO_4$	(d) $K_2 MnO_4$	118
106.	in a stream of hydrogen		
	(a) Copper (II) oxide	(b) Magnesium oxide	
	(c) Aluminium oxide		119
07.	Which of the following i		
	(a) ScCl ₃	(b) <i>TiO</i> ₂	
	(c) $MnSO_4$	(d) $ZnSO_4$	10
08.	Chrome green is		12
	(a) Chromium sulphate		
	(c) Chromium nitrate		
09.	The colour of $(NH_4)_2 SO_4$	$Fe(SO_4)_3.24H_2O$ is	
		[BHU 1982; CPMT 1989]	12
	(a) White	(b) Green	14.
	(c) Violet	(d) Blue	
10.	Correct formula of potas		pe
	(a) $K_4 Fe(CN)_6$	83; CPMT 1974; AFMC 2005] (b) <i>K</i> ₃ <i>Fe</i> (<i>CN</i>) ₆	12
	(c) $K_3[Fe(CN)_3]$	(d) $K_3[Fe(CN)_4]$	
1.	The form of iron has content is	ving the highest carbon	12
	(a) Cast iron	[DPMT 2005] (b) Wrought iron	
	(c) Strain steel	(d) Mild steel	
12.		ic chloride is[MP PMT 1999]	124
	(a) Acidic	(b) Basic	
	(c) Neutral	(d) Amphoteric	
13.	In the reduction of	dichromate by <i>Fe(II)</i> the	
	number of electrons inv is [Pb. PMT 2001]	rolved per chromium atom	12
	(a) 2	(b) 3	12
	(c) 4	(d) 1	
14.	A group of acidic oxide i		
	(a) CrO_3 , Mn_2O_7	(b) ZnO, Al_2O_3	
	(c) <i>CaO</i> , <i>ZnO</i>	(d) Na_2O, Al_2O_3	12
۱5.	Silver nitrate is mainly u	used [CPMT 1988, 93]	
	(a) In photography	(b) In model formation	
16.	The correct order of mag	(d) As dehydrating agent gnetic moments (spin only	
	values in B.M.) among is		
	(a) $[Fe(CN)_6]^{4-} > [MnCl_4]$	$^{2^{-}} > [CoCl_{4}]^{2^{-}}$	12
	(b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{-}$	$^{4-} > [CoCl_4]^{2-}$	
	(c) $[MnCl_4]^{2-} > [CoCl_4]^{2-}$	$> [Fe(CN)_6]^{4-}$	
	(d) $[Fe(CN)_6]^{4-} > [CoCl_4]^2$	$^{2-} > [MnCl_4]^{2-}$	
	(Atomic nos. $Mn = 25$, Fe	=26, Co=27)	4.5
17.	Hybridization of [<i>Ni</i> (<i>CO</i>)]		12
	-		
	(a) sp^{3}	(b) $d^2 s p^3$	

	(c) sp^3d	(d) sp^2
118.	What is the oxidation compound $[Fe(H_2O)_5(NO)]$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	(a) +2	(b) +3
	(c) ±1	(d) ±4
119.	when heated with hot c	metal gives hydrogen gas, oncentrated alkali[Pb. CET 20
	(a) <i>Cu</i>	(b) <i>Ag</i>
	(c) Zn	(d) Ni
120.	formed is	ts with <i>NaOH</i> , the product [Pb. CET 2002]
	(a) NaF	(b) <i>FeCl</i> ₃
		-
	(c) $Fe(OH)_3$	(d) NaFeO $_2$
121.	1	
	(a) Mercurous nitrate	
	(c) Mercurous chloride	(d) Mercurous
-	hlorate	
122.		oxide [JEE Orissa 2004, 05]
	(a) ZnO	(b) <i>CaO</i>
	(c) BaO	(d) <i>SrO</i>
123.	What is the magnetic m	oment of $[FeF_6]^{3-1}$
		[JEE Orissa 2004]
	(a) 5.92	(b) 5.49
	(c) 2.32	(d) 4
124.	How H_2S is liberated in	n laboratory [JEE Orissa 2004]
	(a) $FeSO_4 + H_2SO_4$	
	(b) $FeS + dil. H_2SO_4$	
	(c) FeS + conc. H_2SO_4	
	(d) Elementary H_2 + ele	ementary S
125.	The spin magnetic m	noment of cobalt in the is [IIT JEE Screening 2004]
	(a) $\sqrt{3}$	(b) $\sqrt{8}$
	(c) $\sqrt{15}$	(d) $\sqrt{24}$
126.	In which of these proce catalyst	esses platinum is used as a
	(a) Oxidation of ammor	[DCE 2004] Dia to form <i>HNO</i>
	(b) Hardening of oils(c) Production of synthematical environment of synthematical envi	etic rubber
	(d) Synthesis of methan	
127	•	<i>INO</i> ₃ , it gives [DCE 2004]
·~/•		1103, 16 51 VC3 [DCE 2004]
	(a) Ferric nitrate	10
	(b) Ferric nitrate and Λ	2
	(c) Ferrous nitrate and	
	(d) Ferrous nitrate and	
128.	CrO_3 dissolves in aqueo	ous <i>NaOH</i> to give [J & K 2005]

				d and f-Blo	ck Elem	ents 869
	(c) $Cr_2 O_7^{2-}$	(d) $Cr(OH)_2$		(a) Wurtzite	(b) Iro	on pyrites
29.	KI and $CuSO_4$ solution	· · · · 2		(c) Chalcosite	(d) Sil	lver glance
	4	[CPMT 2004; UPSEAT 2004]	140.	Which one of the fol	llowing	is highest melting
	(a) $CuI_2 + K_2SO_4$	(b) $Cu_2I_2 + K_2SO_4$		halide		
	(c) $K_2SO_4 + Cu_2I_2 + I_2$					[DCE 2003]
				(a) AgCl	(b) <i>Ag</i>	
		$AgNO_3$ solution, the reaction		(c) AgF	(d) Ag	
	takes place is	[CPMT 2004]		$4K_2Cr_2O_7 \xrightarrow{\text{heat}} 4K_2Cr_2O_7$	$O_4 + 3O_2$	
		(b) Reduction of Cu		reaction X is		[DCE 2004]
	(c) Oxidation of Ag	(d) Reduction of NO_3^-		(a) CrO_3	(b) <i>Cr</i>	2 /
31.	By annealing, steel	[BHU 2004]		(c) Cr_2O_3	(d) <i>Cr</i>	5
	(a) Becomes soft		142.	Monds process is used		[AFMC 2004]
	(b) Becomes liquid			(a) <i>Ni</i>	(b) <i>Al</i>	
	(c) Becomes hard and			(c) Fe	(d) Cu	
	(d) Is covered with a th	5	143.	Stainless steel is an all	-	[AFMC 2004]
;2.		ving is more soluble in		(a) Copper(c) Manganese	(d) Zi	ckel and chromium
	ammonia		144	Percentage of silver in		
	(a) AgCl	[MH CET 2003] (b) <i>AgBr</i>		FMC 2004; CPMT 1985; CI		
	(c) Agl	(d) None of these	-	(a) 0%	(b) 1%	
3.	•	e works as oxidising agent		(c) 5%	(d) No	one of these
5.	both in acidic and ba	sic medium. In both state		Which process of pur	ification	is represented by
	product obtained by K	MnO_4 is respestively [Kerala CE	T 200	5 ^{the}		following
	(a) MnO_2^- and Mn^{3+}			scheme $Ti_{impure} + 2I_2 - \frac{250^{\circ}C}{250^{\circ}C}$	$\rightarrow TiI_4 - \frac{14}{3}$	$\xrightarrow{400 \ ^{o}C} Ti + I_2$
	(c) Mn^{2+} and Mn^{3+}	(d) MnQ_{-} and Mn^{2+}				[Kerala PMT 2004]
		(a) mile 2 and mil		(a) Cupellation	(b) Po	0
	(e) Mn^{2+} and MnO_2			(c) Electrolytic refinin	g (d) Zo	one refining
4.	Which of the followign is the green coloured powder produced when ammonium dichromate is 14			(e) Van-Arkel process		
	used in fire works	a ammonium dichromate is	146.	Which of the following strongly in air gives the		
	used in fire works	[J & K 2005]		(a) Cu_2S	(b) Ci	-
	(a) <i>Cr</i>	(b) <i>CrO</i> ₃		(c) Fe_2S_3	(d) Fe	
	(c) Cr_2O_3	(d) $CrO(O_2)$		(e) HqS	(u) 10	
		s not dissolve in hot dilute	-	Guignet's green is know	wn ac	[Kerala PMT 2004]
· E	-	, not unsouve in not unute	147	Gaigner 5 green 13 KIIU	, 11 as	[nerma rm1 2004]
35.	HNO_{2}		147.			$2O_2.2H_2O_2$
5.	HNO ₃	[DCE 2002: NCERT 1077]	147.	(a) Cr_2O_3 . $2H_2O$	(b) <i>Fe</i>	$2O_3.2H_2O$
5.	-	[DCE 2002; NCERT 1977] (b) <i>CuS</i>	147.	(a) Cr_2O_3 . $2H_2O$ (c) Cu_2O_3	(b) <i>Fe</i>	$eO_3.2H_2O$ $eCO_3.Cr_2O_3$
	(a) <i>HgS</i>	(b) <i>CuS</i>		(a) $Cr_2O_3 \cdot 2H_2O$ (c) Cu_2O_3 (e) $FeO \cdot Cr_2O_3$	(b) <i>Fe</i> (d) <i>Fe</i>	$eCO_3.Cr_2O_3$
	(a) <i>H_gS</i>(c) <i>PbS</i>	(b) CuS(d) CdS	148.	(a) $Cr_2O_3 \cdot 2H_2O$ (c) Cu_2O_3 (e) $FeO \cdot Cr_2O_3$ Vanadium (III) oxide is	(b) Fe (d) Fe s a strong	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004]
	 (a) <i>H_gS</i> (c) <i>PbS</i> The least stable oxide a 	 (b) CuS (d) CdS at room temperature is[DCE 200 	148.	(a) $Cr_2O_3 \cdot 2H_2O$ (c) Cu_2O_3 (e) $FeO \cdot Cr_2O_3$ Vanadium (III) oxide is (a) Drying agent	(b) <i>Fe</i> (d) <i>Fe</i> s a strong (b) Ox	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent
6.	 (a) <i>H_gS</i> (c) <i>PbS</i> The least stable oxide a (a) <i>ZnO</i> 	 (b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO 	148.	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) Anadium (III) oxide is (a) Drying agent (c) Reducing agent 	 (b) Fe (d) Fe (d) Fe (d) Ox (d) We 	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004]
36.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3	 (b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (d) Ag₂O 	148. 02]	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) Area of the constraint o	 (b) Fe (d) Fe (a strong (b) Ox (d) We 	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent
;6.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following	 (b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO 	148. 02]	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not 	 (b) Fe (d) Fe s a strong (b) Ox (d) We t rust bee 	2CO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004]
6. 7.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3	 (b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (d) Ag₂O ng pari of elements cannot 	148. 02]	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent Stainless steel does not (a) Chromium and nick 	 (b) Fe (d) Fe (b) Ox (d) We (d) We (d) trust beed 	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron
;6. ;7.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following	 (b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (d) Ag₂O 	148. 02]	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not 	 (b) Fe (d) Fe (b) Ox (d) We (d) We (d) trust beed 	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron
3 6.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following form an alloy (a) $Zn-Cu$	(b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (d) Ag_2O ag pari of elements cannot [KCET 2005] (b) $Fe - Hg$	148. 02]	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent (b) Chromium and nick (b) Chromium forms a 	 (b) Fe (d) Fe (c) F	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron layer and protects
6. 57.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following form an alloy (a) $Zn - Cu$ (c) Fe, C	(b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (d) Ag_2O ag pari of elements cannot [KCET 2005] (b) $Fe - Hg$ (d) Na, Hg	148. ^{02]} 149.	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) PeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent (f) Chromium and nick (g) Chromium forms a iron from rusting 	 (b) Fe (d) Fe (d) Fe (e) Ox (d) We (d) W	<i>cCO</i> ₃ . <i>Cr</i> ₂ <i>O</i> ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron layer and protects ot rust
36. 37.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following form an alloy (a) $Zn - Cu$ (c) Fe, C Which of the following	(b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (c) Ag_2O ag pari of elements cannot [KCET 2005] (b) $Fe - Hg$ (c) Na, Hg (c) shows dimerisation[DCE 2002]	148. ^[22] 149.	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent (f) Reducing agent (g) Chromium and nich (h) Chromium forms a iron from rusting (c) Nickel present in it (d) Iron forms a hard chromium present 	 (b) Fe (d) Fe (d) Fe (e) Ox (d) We (d) W	eCO ₃ .Cr ₂ O ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron layer and protects ot rust cal compound with
;6. ;7.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following form an alloy (a) $Zn-Cu$ (c) Fe,C Which of the following (a) H_gCl_2	(b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (c) Ag_2O ag pari of elements cannot [KCET 2005] (b) $Fe - Hg$ (c) Na, Hg shows dimerisation[DCE 2002] (b) B_2H_6	148. ^[22] 149.	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent (f) Chromium and nick (g) Chromium forms a iron from rusting (c) Nickel present in it (d) Iron forms a hard chromium present The main product ob 	 (b) Fe (d) Fe (d) Fe (b) Ox (d) We (d) W	<i>cCO</i> ₃ . <i>Cr</i> ₂ <i>O</i> ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron layer and protects ot rust cal compound with when a solution of
36. 37.	(a) H_gS (c) PbS The least stable oxide a (a) ZnO (c) Sb_2O_3 Which of the following form an alloy (a) $Zn - Cu$ (c) Fe, C Which of the following (a) H_gCl_2 (c) $TiCl_4$	(b) CuS (d) CdS at room temperature is[DCE 200 (b) CuO (c) Ag_2O ag pari of elements cannot [KCET 2005] (b) $Fe - Hg$ (c) Na, Hg (c) shows dimerisation[DCE 2002]	148. ^[22] 149.	 (a) Cr₂O₃. 2H₂O (c) Cu₂O₃ (e) FeO . Cr₂O₃ (e) FeO . Cr₂O₃ Vanadium (III) oxide is (a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent (f) Reducing agent (g) Chromium and nich (h) Chromium forms a iron from rusting (c) Nickel present in it (d) Iron forms a hard chromium present 	 (b) Fe (d) Fe (d) Fe (b) Ox (d) We (d) W	<i>cCO</i> ₃ . <i>Cr</i> ₂ <i>O</i> ₃ g [Kerala PMT 2004] kidising agent etting agent cause [KCET 2004] ine with iron layer and protects ot rust cal compound with when a solution of

[DCE 2003]

	0/0 d dild i biock	Liemento
	(c) <i>HgCO</i> ₃	(d) $HgCO_3.Hg(OH)_2$
151.	Which of the following h	nas diamagnetic character [Pb. CET 2003]
	(a) $[NiCl_4]^{2-}$	(b) $[CoF_6]^{3-}$
	(c) $[Fe(H_2O)_6]^{2+}$	(d) $[Ni(CN)_4]^{2-}$
152.		bromide in hypo solution [Pb. CET 2003; CPMT 1987]
	(a) $[Ag(S_2O_3)]^{-3}$	(b) Ag_2SO_3
	(c) $[Ag(S_2O_3)]^-$	(d) $Ag_2S_2O_3$
153.	Brass is an alloy of	[DPMT 1982, 83;
		89; MLNR 1985; AFMC 1990;
P		; MP PMT 1996; KCET 2000]
	(a) Zn and Sn	(b) Zn and Cu
1 - 4	(c) <i>Cu</i> , <i>Zn</i> and <i>Sn</i>	<i>(I) Cu</i> and <i>Sh</i> <i>(I</i> reacts with a solution of
154.	Ioume is formed when r	[Pb. CET 2004]
	(a) $CuSO_4$	(b) $(NH_4)_2 SO_4$
	-	
	(c) $ZnSO_4$	(d) FeSO $_4$
155.	Rust is	[Pb. CET 2004]
	(a) $FeO + Fe(OH)_2$	(b) Fe_2O_3
	(c) $Fe_2O_3 + Fe(OH)_2$	(d) Fe_2O_3 and $Fe(OH)_3$
56.	$[Sc(H_2O)_6]^{3+}$ ion is	[Pb. CET 2004]
	(a) Colourless and diam	agnetic
	(b) Coloured and octahe	dral
	(c) Colourless and parameters	
	(d) Coloured and param	
ا 57	Which of the following	
		Bihar MEE 1995; BVP 2004]
	(a) $ZnCl_2$	(b) $MgSO_4.7H_2O$
	(c) $ZnSO_4.7H_2O$	(d) $Al_2(SO_4)_3$
58.	<i>FeSO</i> $_4.7H_2O$ shows ison	norphism with [BVP 2004]
	(a) $ZnSO_4.7H_2O$	(b) $MnSO_4.4H_2O$
	(c) $CaSO_4.5H_2O$	(d) $CaCl_2.2H_2O$
159.	similar colour in aqueou	 and is expected to show b working and cucl₂
	(c) $VOCl_2$ and $FeCl_2$	
60.		g dissolves in hot conc.
	NaOH solution (a) Fe	[CPMT 2004] (b) Zn
	(c) Sn	(d) <i>Ag</i>
61.	Which of the followin colour	g sulphides is yellow in
		983, 88, 2004; NCERT 1976]
	(a) <i>CuS</i> (c) <i>ZnS</i>	(b) <i>CdS</i> (d) <i>CoS</i>
62.	Which of the following i	
		[IIT Screening 2005]

[IIT Screening 2005]

⁽a) KI (b) FeSO $_4$

(c) $KMnO_4$	(d) $K_2 MnO_4$
--------------	-----------------

- 163. The number of moles of KMnO₄ reduced by one mole of KI in alkaline medium is [CBSE PMT 2005]
 (a) One fifth (b) Five
 (c) One (d) Two
- 164. Excess of *KI* reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is incorrect for this reaction [AIEEE 2004]
 (a) Na₂S₂O₃ is oxidised (b) CuI₂ is formed

(c) Cu_2I_2 is formed (d) Evolved I_2 is reduced

- **165.** The only cations present in a slightly acidic solution are Fe^{3+} , Zn^{2+} and Cu^{2+} . The reagent that when added in excess to this solution would identify and separate Fe^{3+} in one step is [IIT 1997] (a) 2M HCl (b) 6M NH₃
 - (c) 6M NaOH (d) H_2S gas
- **166.** Which element is alloyed with copper to form bronze

		[CPMT 1972,	, 80, 93; CPMT 1980, 82]
	(a) <i>Fe</i>	(b)	Mn
	(c) <i>Sn</i>	(d)	Zn
167.	Emery consists o	of	[AFMC 1999]
	(a) Impure coru	ndum (b)	Impure carborundum
	(c) Impure grapl	hite (d)	Purest form of iron

168. The metal commonly present in brass and german silver is

[EAMCET 1988]

(a) <i>Mg</i>	(b) <i>Zn</i>
(c) <i>C</i>	(d) <i>Al</i>

- **169.** In the equation $4M + 8CN^- + 2H_2O + O_2 \longrightarrow 4[M(CN_2)]^- + 4OH^-$ The metal *M* is [MP PET 2000]
 - (a) Copper (b) Iron
 - (c) Gold (d) Zinc
- 170. The term platforming is [Kerala (Med.) 2002](a) Platinum painting
 - (b) Flat sheet of platinum
 - (c) Platinum manufacturing
 - (d) Platinum used as a catalyst
- 171. Purple of cassium is[BHU 2002](a) Gold solution(b) Silver solution(c) Copper solution(d) Platinum solution
- 172. Match the items under List 1 with the compounds/elements from the List 2. Select the correct answer from the sets (a), (b), (c) and (d).

	. sets (u), (b), (c) and (d	
List 1	List 2	
(i) Explosive	(A) NaN ₃	
(ii) Artificial gem	(B) Fe_3O_4	
(iii)	Self reduction	(C)

	(iv)Magnetic material	(D) <i>Al</i> ₂ <i>O</i> ₃
		(E) $Pb(N_3)_2$
		(F) Fe_2O_3
		(G) <i>Cu</i>
		(H) SiC
	(a) (i) A, (ii) D, (iii) G,	(iv) <i>B</i> (b)
	(c) (i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , ((iv) <i>B</i> (d)
173.	Blood haemoglobin cont	ains the metal
	(a) <i>Al</i>	(b) <i>Mg</i>
	(c) <i>Cu</i>	(d) <i>Fe</i>
174.	Percentage of carbon in	
		(b) 0.25 - 0.5%
		(d) 3 - 3.5%
175.	Steel is manufactured fr	
	(a) Wrought iron	(b) Cast iron
_	(c) (a) and (b) both	
176.	Modern method for the	manufacture of steel is
	(a) Bessemer process	
	(b) Seimen-Martin's ope	en hearth process
	(c) Duplex method	
100	(d) L.D. process Spiegeleisen is an alloy	r of
1//.	(a) Fe, C and Mn	
	(c) <i>Fe</i> , Co and <i>Cr</i>	
178.		loy steel of the following
_,	metals	
	[MP PET 199	0; Pb. PET 1999; KCET 2000]
	(a) Fe Only	(b) Cr and Ni
		(d) Ni and Be
179.		of steel, the Bessemer
	converter is containing	•
	(a) SiO_2	(b) <i>CaO</i>
	(c) CaO and MgO	2 0
180.	_	alloys contain only <i>Cu</i> and
	Zn	
	(a) Bronze	[DCE 1999]
	(c) Gun metal	(b) Brass (d) Bell metal
181.		pliable by [MP PET 1989]
		(b) Nitriding
	(c) Tempering	(d) Case hardening
182.	Most stable oxidation st	•
		[AFMC 1976; CPMT 1988]
	(a) +2	(b) +3
	(c) -2	(d) -3
183.		of Ni [MP PMT/PET 1988]
	(a) 1-5%	(b) 3-5%
	(c) $6-5\%$	(d) 8-5%
184.	Permanent magnet is m	
		P PET/PMT 1988; CBSE 1989]
	(a) Cast iron	(b) Steel
	(c) Wrought Iron	
10-	In nitriding process of s	tool

	· · · · · · · · · · · · · · · · · · ·						
	MP PET/PMT 1988; CBSE 1989] an atmosphere of ammonia						
(b) Steel is made red h							
	(c) Steel is made red hot and then plunged into oil						
for cooling	1 0						
(d) None of these							
186. ⁱ⁾ If on the citient of the	, carbon give						
$ \begin{array}{c} (i) \underset{(a)}{E} (ii) \underset{Fec}{(ii)} H, (iii) C, (iv) F \end{array} $	7 (b) Fe_2C						
(c) Fe_3C	(d) FeC_2						
187. Iron loses magnetic pr	-						
	(b) 1000 <i>K</i>						
••	(d) Boiling point						
-	the properties of steel due						
to	the properties of steel due						
	[KCET 2002]						
(a) Chemical reaction	on heating						
(b) Partial rusting							
(c) Change in the resid	dual energy						
(d) Change in the differential rate of	lattice structure due to cooling						
189. Pure conc. HNO_3 ma	-						
surface is covered wit	-						
	rrisa JEE 2002; EAMCET 1993]						
(a) Fe_2O_3	(b) <i>FeO</i>						
(c) Fe_3O_4	(d) $Fe(NO_3)_3$						
190. Red hot iron absorbs	0.0						
-9	[Orrisa JEE 2002]						
(a) $FeS + O_2$	(b) $Fe_2O_3 + FeS$						
(c) $FeO + FeS$	(d) $FeO + S$						
	temperature well below red						
	bled slowly, the process is						
called							
	[Kerala (Med.) 2002]						
(a) Tempering	(b) Hardening						
(c) Softening	(d) Annealing						
- 0	, which of the following						
$400^{\circ}C - 600^{\circ}C$	ce in Blast furnace at						
(a) $CaO + SiO_2 \rightarrow CaSiO_2$	[MP PET 2002]						
-	5						
(b) $2FeS + 3O_2 \rightarrow 2Fe +$	-						
(c) $FeO + SiO_2 \rightarrow FeSiO$	3						
(d) $Fe_2O_3 + 3CO \rightarrow 2Fe$	+ 3 <i>CO</i> ₂						
193. Soil containing both A	<i>l</i> and <i>Fe</i> is called[DPMT 2002]						
(a) Laterite	(b) Bauxite						
(c) Pedalfers	(d) Clay						
194. German silver is an all							
	PET/PMT 1998; UPSEAT 1999;						
	00; KCET 2000; MP PMT 2001]						
	ickel (b) Copper and silver						
(c) Copper, zinc and ti silver	in (d) Copper, zinc and						
195. Iron is rendered passiv	ve by the action of						

195. Iron is rendered passive by the action of

_							
	[IIT 1982;]	MP PET 1985; MP PMT 1987;		(a) Stainless steel	(b) Nicke		_
	(a) Conc U SO	DPMT 1984; KCET 1993]		(c) Tungstun steel	(d) Chror		
	(a) Conc. H_2SO_4	(b) Conc. H_3PO_4	207.	Which of the following carbon	has lowes	st percen	tage of
	(c) Conc. <i>HCl</i>	(d) Conc. HNO_3		[DPMT 1984; CP]	MT 1080 01	04. KCEJ	F 2000]
196.	Iron sheets are galva			(a) Cast iron	(b) Wrou		1 2000]
		anisation, iron surface is		(c) Steel	(d) All	have	same
	coated with	87, 89, 92, 96; NCERT 1980;	perc	entage			
	[#11 1 1 1 1 903, 00,	Bihar CEE 1995]	208.	Galvanisation is the	[CPMT	1980, 86,	91, 99;
	(a) Zinc	(b) Tin		MP P	ET/PMT 198	88; Pb. PE	T 1999]
	(c) Chromium	(d) Nickel		(a) Deposition of Zn on	Fe		
197.	Chemical formula of rus	t is [BHU 1986; MP PET 1990]		(b) Deposition of Al on	Fe		
	(a) <i>FeO</i>	(b) Fe_3O_4		(c) Deposition of Sn on	Fe		
	(c) $Fe_2O_3.xH_2O$	(d) $FeO.xH_2O$		(d) Deposition of <i>Cu</i> on	Fe		
108	Heating steel to bright	redness and then cooling		Tempered steel is			
190.	suddenly by plunging it	into oil or water, makes it[M	P PET :	(a) Soft and pliable			
	(a) Hard and pliable	(b) Soft and pliable		(b) Hard and brittle			
	(c) Soft and brittle	(d) Hard and brittle		(c) Neither so hard nor	so brittle		
199.	Which of the following i	s found in body [CPMT 1975]		(d) Very soft			
	(a) <i>Pb</i>	(b) <i>Fe</i>	210.	Best quality of steel is n		-	U 1996]
	(c) <i>Cd</i>	(d) <i>Al</i>		(a) Siemen –Martin's op	en hearth	process	
200.	•	g pairs of elements might		(b) Electrical process			
	form an alloy			(c) Bessemer process			
		[NCERT 1981]		(d) Blast furnace			
	(a) Zinc and lead	(b) Iron and mercury	211.	The presence of <i>Si</i> in st	eel gives it		
plati	(c) Iron and carbon	(d) Mercury and		(a) Fibrous structure	(b) Silica	te	type
-	Ferrous sulphate on stro	ong beating gives	stru	cture	(1)	C 13	
201.	(a) SO_2	(b) $Fe_2(SO_4)_3$		(c) Sheet type structure			
	_		212.	The presence of Mn in s	steel produ	ces	
	(c) $FeO + SO_3$	(d) $Fe_2O_3 + SO_2 + SO_3$		(a) Elasticity	.1		
202.	Green vitriol is	[DPMT 1985; BHU 1997; 		(b) Increases tensile str	engtn		
		RPET 1999; JIPMER 2002]		(c) Both (a) and (b)			
	(a) $CuSO_4.5H_2O$	(b) $FeSO_4.7H_2O$	212	(d) None of these Presence of <i>Cr</i> in steel	makac it		
	(c) $CaSO_4.2H_2O$	(d) $ZnSO_4.7H_2O$	213.	(a) Resistant to chemica			
203.		acid is added slowly to a		(b) Useful for making cu			
		lphate containing nitrate		(c) Increases chemical a	-		
	composition of the ring i	ring is formed. The		(d) (a) and (b) both			
			214.	The addition of metals	s like Cr, l	Mn,W and	d Nito
	(a) $[Fe(H_2O)_5 NO]SO_4$	(b) $FeSO_4.NO_2$		ordinary steel makes it			
	(c) $Fe[(H_2O)_5](NO_3)_2$	(d) None of these		(a) More useful			
204.	F_2 is the formed by read	cting $K_2 Mn F_6$ with [AIIMS 200	95]	(b) Alters the properties	s of ordina	ry steel	
	(a) SbF_5	(b) <i>MnF</i> ₃		(c) Both (a) and (b)			
	(c) $KSbF_6$	(d) MnF_4	01-	(d) None of these	omnosius T	his shows	aton io
205		e made by heating rods of	215.	Stainless steel is non-co more prominent in	orrosive. I	ms chara	acter is
205.		oal powder. The process is		(a) <i>Mn</i> steel	(b) Ordin	arv steel	
	known as			(c) <i>Ti</i> steel	(d) All of	-	
	[CPMT 1972; DCE 2000); KCET 2003; UPSEAT 2001]	216.	When little vanadium			teel, it
	(a) Case hardening	(b) Sheradizing		becomes			
	(c) Annealing	(d) Tempering		(a) More hard	(b) More	-	
206.	-	hat is used in making		(c) Both (a) and (b)	(d) No ef		
	automobile parts and uto	ensils [EAMCET 1979; MP PMT	19 2)17.	To obtain steel entirel	-	m sulph	ur and
				phosphorus, the process	s used is		

		ess (b) Bessemer process			BSE PMT 1989; Roorkee 1990]
	(c) Open-hearth proces			(a) Bleaching powder	(b) $K_4[Fe(CN)_6]$
	Stainless steel contains			(с) Нуро	(d) Potash alum
	(a) 14%	(b) 5%	231.	The passivity of iron in	n concentrated nitric acid is
	(c) 50%	(d) 2.5%		due to	
19.	The chief constituents o	of steel made in India are			[MP PMT 1994]
		[MP PMT/PET 1988]		(a) Ferric nitrate coati	ing on the metal
	(a) Mn and Cr	(b) Al and Zn		(b) Ammonium nitrate	coating on the metal
	(c) V and Co	(d) Ni and Mg		(c) A thin oxide layer of	-
20.	Which of the following	is used to prepare medical		(d) A hydride coating of	-
	instruments		232.		heated iron is represented
	(a) Cast iron	(b) Wrought iron	-5	as	
	(c) Steel	(d) Alloy of <i>Cu</i> and <i>Fe</i>			[MP PMT 1994]
21.	A clock spring is hea	ted to redness and then		(a) $3Fe + 4H_2O \rightarrow Fe_3O$	
	plunged into cold water	. This treatment will cause			
	it to become			(b) $2Fe + 3H_2O \rightarrow Fe_2O$	$_{3} + 3H_{2}$
		[NCERT 1979]		(c) $Fe + H_2O \rightarrow FeO + H_2O$	2
	(a) Soft and ductile	(b) More springy than		(d) $2Fe + H_2O + O_2 \rightarrow Fe$	$e_2O_2 + H_2$
efor	e				
	(c) Strongly magnetic	(d) Hard and brittle	233.		to make alloy steel for
22.	Mark the steel in which	carbon % is highest		armour plates, safes an	
	(a) Mild steel	(b) Hard steel		(a) <i>Al</i>	(b) <i>Mn</i>
	(c) Alloy steel	(d) None of these		(c) Cr	(d) <i>Pb</i>
23.	Mark the variety of	iron which has highest	234.	Rusting on iron needs	[MP PMT 1995]
	melting point	_		(a) Dry air	
	(a) Pig iron	(b) Cast iron		(b) Air and water	
	(c) Wrought iron	(d) Steel		(c) Distilled water and	l carbon dioxide
	-	ised in the manufacture of		(d) Oxygen and carbon	dioxide
-		[CPMT 1991]	235.		n concentrated nitric acid
	(a) Pig iron	(b) Steel	-55*		[MP PET 1996]
	(c) Wrought iron	(d) Cast iron		(a) Readily reacts	(b) Slowly reacts
	Steel contains	[MP PMT 1989; KCET 2000]		(c) Becomes passive	(d) Gives ferrous nitrate
-	(a) $Fe + C + Mn$	(b) $Fe + C + Al$	226	-	ot contain copper is[DPMT 19
	(c) $Fe + Mn$	(d) $Fe + Mn + Cr$	230.	(a) Solder	(b) Bronze
		on and wrought iron in that		(c) Brass	(d) Bell metal
	bleer uniers nom pig no	Ji and wrought non m that		(C) Brass	(d) Bell metal
		C			
	it contains	-	237.	Which one of the follo	wing statements shows the
	it contains	[KCET 1991]	237.	Which one of the follo correct percentage of o	wing statements shows the
	it contains (a) No carbon at all	[KCET 1991]	237.	Which one of the follo correct percentage of o wrought iron	wing statements shows the carbon in steel, pig iron and
	it contains (a) No carbon at all (b) Less carbon than eit	[KCET 1991]	237.	Which one of the follo correct percentage of o wrought iron (a) Steel containing	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon
	it contains(a) No carbon at all(b) Less carbon than eit(c) More carbon than ei	[KCET 1991] ther	237.	 Which one of the follo correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon ; to 2.0% carbon; and pig
	it contains(a) No carbon at all(b) Less carbon than eit(c) More carbon than ei	[KCET 1991]	237.	 Which one of the follo correct percentage of o wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbo 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on
vo	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than ei (d) An amount of carb	[KCET 1991] Ther oon intermediate between		 Which one of the follo correct percentage of o wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbo (b) Pig iron less than o 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon to 2.0% carbon; and pig on 0.15% carbon; wrought iron
vo 27.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than ei (d) An amount of carb Finely divided iron com	[KCET 1991] Ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbo (b) Pig iron less than a 0.15 to 2.0% carbo 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon to 2.0% carbon; and pig on 0.15% carbon; wrought iron
vo 27.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbo (b) Pig iron less than a 0.15 to 2.0% carbon 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2%
vo 27.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than ei (d) An amount of carb Finely divided iron com	[KCET 1991] Ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% than 0.15% carbon; steel
vo 27.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET	[KCET 1991] ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbon (c) Wrought iron less 0.15 to 2.0% carbon carbon 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% s than 0.15% carbon; steel oon; and pig iron over 2%
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$	[KCET 1991] ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$		 Which one of the follo correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbo (b) Pig iron less than a 0.15 to 2.0% car carbon (c) Wrought iron less 0.15 to 2.0% carbo (d) Wrought iron less 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% s than 0.15% carbon; steel bon; and pig iron over 2% than 0.15% carbon; pig iron
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$	[KCET 1991] ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000]		 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbox (b) Pig iron less than a 0.15 to 2.0% carcarbon (c) Wrought iron less 0.15 to 2.0% carbox (d) Wrought iron less 0.15 to 2.0% carbox 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% s than 0.15% carbon; steel bon; and pig iron over 2% than 0.15% carbon; pig iron
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$	[KCET 1991] ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000]	1994]	 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% than 0.15% carbon; steel oon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0%
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$ (c) $(NH_4)_2SO_4.FeSO_4.6H_2O$	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000]	1994]	 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod In the Bessemer and a carbod 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% than 0.15% carbon; steel oon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0%
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$ (c) $(NH_4)_2SO_4.FeSO_4.6H_2O$ (d) $[Fe(NH_4)_2](SO_4)_2.6H_2$	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000]	1994]	 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod In the Bessemer and a manufacture of steel, 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% s than 0.15% carbon; steel oon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0% open-hearth process for the which one of the following
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$ (c) $(NH_4)_2SO_4.FeSO_4.6H_2O$ (d) $[Fe(NH_4)_2](SO_4)_2.6H_2$ Mohr's salt is	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000] I_2O I_2O I_2O I_2O I_2O [MNR 1986]	1994]	 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod In the Bessemer and a manufacture of steel, 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% than 0.15% carbon; steel bon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0% open-hearth process for the which one of the following l of carbon in part or whole
vo 27. 28.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$ (c) $(NH_4)_2SO_4.FeSO_4.6H_2O$ (d) $[Fe(NH_4)_2](SO_4)_2.6H_2$ Mohr's salt is (a) Normal salt	[KCET 1991] ther ither oon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000] I_2O [MNR 1986] (b) Acid salt	1994]	 Which one of the folloc correct percentage of a wrought iron (a) Steel containing wrought iron 0.15 iron over 2% carbod (b) Pig iron less than a 0.15 to 2.0% carbod (c) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod (d) Wrought iron less 0.15 to 2.0% carbod In the Bessemer and a manufacture of steel, 	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% s than 0.15% carbon; steel oon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0% open-hearth process for the which one of the following
wo 27. 28. 29.	it contains (a) No carbon at all (b) Less carbon than eit (c) More carbon than eit (d) An amount of carb Finely divided iron com (a) $Fe(CO)_5$ (c) $Fe_3(CO)_{12}$ Mohr's salt is [KCET (a) $FeSO_4.7H_2O$ (b) $Fe(NH_4)SO_4.6H_2O$ (c) $(NH_4)_2SO_4.FeSO_4.6H_2O$ (d) $[Fe(NH_4)_2](SO_4)_2.6H_2$ Mohr's salt is	[KCET 1991] ther ither bon intermediate between bines with <i>CO</i> to give[MNR 1 (b) $Fe_2(CO)_9$ (d) $Fe(CO)_6$ 1993;DCE 1999; AIIMS 2000] I_2O [MNR 1986] (b) Acid salt (d) Double salt	1994]	 Which one of the following of t	wing statements shows the carbon in steel, pig iron and less than 0.15% carbon; to 2.0% carbon; and pig on 0.15% carbon; wrought iron rbon; and steel over 2% than 0.15% carbon; steel bon; and pig iron over 2% than 0.15% carbon; pig iron bon; and steel over 2.0% open-hearth process for the which one of the following l of carbon in part or whole

	074 и ани 1-ы	ock Elements			
	(c) Oxygen	Scrap iron	246.	Which of the follo major impurity in pig	
	(d) Air	Scrap iron		(a) Silicon	(b) Oxyge
239.	About the basic of statement is wrong	open hearth process, which		(c) Sulphur	(d) Graph
	(a) Limestone is add	lad to the charge	247	Annealing is	[Pune CET 19
		•	24/•	(a) Heating steel in r	
	process	urity cannot be removed by this		(b) Heating steel to	-
	-	of the steel can be uniformly	cooli	ing slowly	J Di Iglit Teul
		a series of batches		(c) Heating wrought	iron with carh
	(d) Iron scrap can be	e utilized		(d) Heating steel to 1	
240.	-	ng statements is wrong		suddenly by plun	
-		n temperature and then cooling	248.	In electroplating, th	e metal that
		dipping in water, makes steel		plating is	
	hard and brittle				
		tened by heating it to a high		(a) <i>Fe</i>	(b) <i>Zn</i>
		a prolonged time and then		(c) <i>Ni</i>	(d) <i>Au</i>
	cooling slowly. This is called quenching.(c) Tempering of hardened steel is done by heating it to just below red heat at controlled temperature and duration			Which one of the fol	lowing is a w
				about cast iron	
				(a) It is also called p	•
	-	urity makes steel 'cold short'		(b) It contains about	
41.	Bell metal is an alloy				sistant
-	[DPMT 1990, 96; CBSE PMT 1999; Kerala PMT 2002]			(d) It contracts on co	•
	(a) Cu, Zn and Sn	(b) Cu, Zn and Ni	250.	Iron pipes lying u	
	(c) Cu and Zn	(d) Cu and Sn		attached to blocks of from rusting. Magnes	
12.	Turnbull's blue is	[Bihar CEE 1995]		against corrosion bec	
1	(a) Ferricyanide	(b) Ferrous ferricyanide		C	
	(c) Ferrous cyanide			(a) Is more readily c	onverted into j
43.	-	portions of manganese makes		(b) Is lighter than iro	
15.		ng rails of rail-roads because		(c) Forms a corrosion	
	manganese			(d) Prevents air from	reaching the
		[IIT 1998]	251.	FeS ₂ is	-
	(a) Gives hardness to steel(b) Helps the formation of oxides of iron			(a) Artificial silver	(b) Fool's
				(c) Mohr's salt	(d) Cast ir
	(c) Can remove oxygen and sulphur			Stainless steel is an a	
	-	t oxidation state of + 7	252.	(a) 8% <i>Cr</i> , 50% <i>Mn</i>	(b) 10% N
44.		hich of the metal from their		(c) 2% <i>Cr</i> , 3% <i>C</i>	(d) 12% C
	salt solutions	[CPMT 1988]	252	The chemical proces	
	(a) AgNO $_3$	(b) $ZnSO_4$	-55.	from haematite ore in	
		$(\mathbf{J}) \mathbf{A} \mathbf{J} = \mathbf{C} \mathbf{A} \mathbf{J} \mathbf{A} \mathbf{J}$		(a) Reduction	

- (c) FeSO $_4$ (d) All of these
- **245.** Which of the following statement(s) is(are) correct with reference to the ferrous and ferric ions [IIT 1998]

(a) Fe^{3+} gives brown colour with potassium ferricyanide

(b) Fe^{2+} gives blue precipitate with potassium ferricyanide

(c) Fe^{3+} gives red colour with potassium thiocyanate

(d) Fe²⁺ gives brown colour with ammonium thiocyanate

- it constitutes a [CBSE PMT 1998]
 - en
 - hite
- 998; AFMC 2002] cooling

lness and then

- bon to redness
- ture and cooling
- is not used for

[Pune CET 1998]

- vrong statement [KCET 1998]
- soil are often n for protection rotection to iron
 - [KCET 1998]

[RPET 1999]

- positive ions
- loy with iron
- surface of iron
 - s gold
- iron
- vith [DCE 1999]
 - Ni, 2% Mn
 - Cr, 1% N
- oduction of steel E (Screening) 2000]
 - (a) Reduction
 - (b) Oxidation
 - (c) Reduction followed by oxidation
 - (d) Oxidation followed by reduction

254. The protection of steel by chrome plating is due to [MP PMT 2001]

- (a) Cathodic protection
- (b) Anodic protection
- (c) Covering of steel surface
- (d) Formation of alloy with iron
- 255. The most convenient method to protect bottom of ship made of iron is [CBSE PMT 2001; Kerala (Engg.) 2002] (a) White tin platting

	(b) Coating with red le			(a) Gun metal : $Cu + Z$	
(c) Connecting with ' <i>Pb</i> ' block				(b) Duralumin : $Al + c$	
	(d) Connecting with ' <i>Mg</i> ' block			(c) German silver : (Cu + Zn + C
256.	Carbon monoxide react			(d) Solder : $Pb + Al$	
		[KCET (Med.) 2001]	267.	Solder is an alloy of[]	
	(a) $Fe(CO)_5$	(b) $FeCO_2$		(a) 70% lead, 30% ti	
	(c) $FeO + C$	(d) $Fe_2O_3 + C$	0	(c) 80% lead, 20% t	
257.	Iron is extracted from with	n magnetite by reduction	268.	Zinc forms two impo German silver. Metal	s present in
		[UPSEAT 2001]	nick	(a) In (i) zinc and ti	n; and in (11
	(a) H_2	(b) <i>C</i>	mer	(b) In (i) zinc and irc	n. and in (ii
	(c) <i>Mg</i>	(d) <i>Al</i>	coba		, , , , , , , , , , , , , , , , , , ,
² 5 8.	Malachite is a mineral	of		(c) In (i) zinc and co	pper; and ir
	[MP PMT 1990; MP PET 1	992, 98, 2000; MP PMT 1998]	and	nickel	
	(a) <i>Zn</i>	(b) <i>Fe</i>		(d) In (i) zinc and a	
	(c) <i>Hg</i>	(d) <i>Cu</i>		nickel and alumir	nium
<u>259</u> .	The most important ox	idation state of copper is	269.	One of the constituen	it of german
		[MP PMT 1987]		[IIT 1980; Ku	
	(a) + 1	(b) + 2		(a) <i>Ag</i>	(b) <i>Cu</i>
	(c) + 3	(d) + 4		(c) <i>Mg</i>	(d) <i>Al</i>
260.	the gas obtained is	d when reacts with copper,	270.	Gun metal is an alloy	of [MP PMT
	(a) N_2	(b) Nitrous oxide		(a) Cu and Al	(b) <i>Cu</i> , <i>S</i>
	-			(c) Cu, Zn and Ni	(d) <i>Cu</i>
_	(c) <i>NO</i>	(d) NO_2	251	Besides Zn and Cu	
261.	to be shown by copper	g property is not expected 3; NCERT 1975; MP PET 1989]	2/1.	metal	, german sn
	(a) High thermal condu			(a) <i>Sn</i>	(b) <i>Ag</i>
	(b) Low electrical cond				-
	(c) Ductility	activity		(c) <i>Ni</i>	(d) <i>Mg</i>
	(d) Malleability		272.	Which metal is pre German silver	esent in br
262.	•	metal gives more than one		[CPMT 1997; AFM(C 1008+ AUM
	chloride	e		(a) Zn	
	(a) <i>Cu</i>	(b) <i>Al</i>			(b) <i>Mg</i>
	(c) Ag	(d) <i>Na</i>		(c) <i>Cu</i>	(d) <i>Al</i>
263.	The metal which is	the best conductor of	273.	Which of the followir	
	electricity is				[]
		[CPMT 1996]		(a) German silver <i>Cu</i>	
	(a) Iron	(b) Copper		(b) Alnico $Fe + Al + Ni$	
	(c) Silver	(d) Aluminium		(c) Monel metal <i>Cu</i> +	
264.	Paris green is			(d) Duralumin $Al + Cl$	u + Mg + Mn
nitra	te	per carbonate and copper	274.	An extremely hot co to give	pper wire r
arsin		spper acctate and copper			
	(c) Double salt of co	pper acetate and copper		(a) <i>CuO</i>	(b) <i>Cu</i> ₂
sulpł				(c) Cu_2O_2	(d) <i>CuO</i>
	(d) Double salt of copp	er and silver nitrate	275.	From a solution of	$CuSO_{A}$, th
	D 1 1 1 1 1 1	ollowing pairs will produce			[MP PET
265.				recover copper is	
265.		[CPMT 1973; CBSE PMT 1998]		recover copper is (a) Sodium	
265.				recover copper is(a) Sodium(c) Silver	(b) Iron (d) <i>Hg</i>

266. Which of the following is correct [BHU 1995]

alloy of[IIT 1995; MP PET 1995; AFMC 2005] ad, 30% tin (b) 30% lead, 70% tin ad, 20% tin (d) 90% *Cu*, 10% tin two important alloys, (i) Brass and (ii) ver. Metals present in them mainly are inc and tin; and in (ii) zinc, silver and nc and iron; and in (ii) zinc, nickel and nc and copper; and in (ii) zinc, copper zinc and aluminium; and in (ii) zinc, nd aluminium constituent of german silver is T 1980; Kurukshetra CEE 1998; DCE 1999] (b) *Cu* (d) Al is an alloy of [MP PMT 1990; CPMT 1997] Al (b) Cu, Sn and Znnd Ni (d) Cu and Sn and Cu, german silver contains the [MP PET 1997] (b) Ag (d) Mg al is present in brass, bronze and ver 1997; AFMC 1998; AIIMS 1999; J & K 2005] (b) Mg (d) Al e following is wrongly matched [KCET (Med.) 1999] silver Cu + Zn + NiFe + Al + Ni + COmetal Cu + Zn + Sn $\min Al + Cu + Mg + Mn$ ly hot copper wire reacts with steam [CPMT 1988] (b) *Cu*₂*O* (d) CuO_2 lution of $CuSO_4$, the metal used to per is [MP PET 1992; CPMT 1990] (b) Iron (d) *Hg*

d and f-Block Elements 875

276. Copper sulphate is commercially made from copper scraps by

[CPMT 1973]

- (a) Dissolving in hot conc. H_2SO_4
- (b) The action of dil. H_2SO_4 and air
- (c) Heating with sodium sulphate
- (d) Heating with sulphur
- 277. Cuprous ion is colourless, while cupric ion is coloured because [EAMCET 1992; BHU 2002]
 - (a) Both have unpaired electrons in *d*-orbital
 - (b) Cuprous ion has a completed d-orbital and cupric ion has an incomplete *d* -orbital
 - (c) Both have half-filled *p* and *d*-orbitals
 - (d) Cuprous ion has incomplete *d*-orbital and cupric ion has a completed d -orbital
- **278.** A blue colouration is not obtained when

[CBSE PMT 1989]

- (a) Ammonium hydroxide dissolves in copper sulphate
- (b) Copper sulphate solution reacts with $K_4[Fe(CN)_6]$

chloride (c) Ferric reacts with sodium ferrocyanide

(d) Anhydrous $CuSO_4$ is dissolved in water

- 279. Identify the statement which is not correct regarding CuSO 4 [MNR 1992; Pb. PMT 1998]
 - (a) It reacts with KI to give iodine
 - (b) It reacts with KCl to give Cu_2Cl_2
 - (c) It reacts with NaOH and glucose to give Cu_2O
 - (d) It gives *CuO* on strong heating in air
- **280.** Copper sulphate solution reacts with KCN to give [MP PMT 1992; MNR 1994; IIT 1996; AIIMS 1999; CBSE PMT 2002]
 - (a) $Cu(CN)_2$ (b) CuCN
 - (c) $K_2[Cu(CN)_4]$ (d) $K_3[Cu(CN)_4]$
- **281.** If excess of NH_4OH is added to $CuSO_4$ solution, it forms blue coloured complex which is

[MP PMT 1971, 79; Bihar CEE 1995; RPET 1999; AFMC 2001]

(a)	$Cu(NH_3)_4 SO_4$	(b)	$Cu(NH_3)_2 SO_4$
(c)	$Cu(NH_4)_4 SO_4$	(d)	$Cu(NH_4)_2 SO_4$

282. Which of the following metals displaces SO_2 gas from concentrated sulphuric acid

(a) <i>Mg</i> (b) <i>Zn</i>

- (c) Cu (d) None of these
- 283. The method of zone refining of metals is based on the principle of [CBSE PMT 2003]
 - (a) Greater solubility of the impurity in the molten state than in the solid
 - (b) Greater mobility of the pure metal than that of the impurity

- (c) Higher melting point of the impurity than that of the pure metal
- (d) Greater noble character of the solid metal than that of the impurity
- **284.** A metal when left exposed to the atmosphere for some time becomes coated with green basic carbonate. The metal in question is [NDA 1999] (a) Copper (b) Nickel (c) Silver (d) Zinc
- **285.** When $CuSO_4$ solution is added to $K_4[Fe(CN)_6]$, the formula of the product formed is [Bihar CEE 1995] (b) *KCN* (a) $Cu_2 Fe(CN)_6$
 - (c) $Cu(CN)_2$ (d) $Cu(CN)_2$

286. MnO_4^- on reduction in acidic medium forms

[MP PMT 1995]

[EAMCET 1997]

- (b) *Mn*⁺⁺ (a) MnO_2
- (c) MnO_{4}^{--} (d) *Mn*
- 287. Which of the following metals will not react with a solution of *CuSO* $_4$ [CPMT 1996]
 - (a) *Fe* (b) *Zn* (c) Mg (d) *Hg*
- 288. Which one of the following metals will not reduce H_2O

(a) <i>Ca</i>	(b) <i>Fe</i>
(c) <i>Cu</i>	(d) <i>Li</i>

289. The reaction, which forms nitric oxide, is

```
[KCET (Med.) 2001]
(a) C and N_2O
                        (b) Cu and N_2O
```

- (d) Cu and HNO_3 (c) Na and NH_3
- **290.** A cuprous ore among the following is **[KCET 2002]**
 - (a) Cuprite (b) Malachite
 - (c) Chalcopyrites (d) Azurite
- 291. When metallic copper comes in contact with moisture, a green powdery/ pasty coating can be seen over it. This is chemically known as[AFMC 2002]
 - (a) Copper sulphide Copper carbonate
 - (b) Copper carbonate Copper sulphate
 - (c) Copper carbonate Copper hydroxide
 - (d) Copper Sulphate Copper sulphide
- 292. Orford process is used in extraction of

(a) <i>Fe</i>	(b) <i>Co</i>
(c) <i>Pt</i>	(d) <i>Ni</i>

- 293. Horn silver is
 - (a) AgCl (b) Ag
 - (d) CH_3COOAg (c) AgBr

294. Which of the following is used in photography

[CPMT 1980]

- (a) AgCl (b) AgBr

(a)	Fe	(b) <i>Co</i>
(a)	D4	(d) N

				d and f-Blo	ck Elements 877
	(c) <i>AgI</i>	(d) Ag_2O		(a) <i>Ag</i>	(b) Ag_2O
<u>95</u> ،	Silver halides are used	l in photography because		(c) Ag_2O_3	(d) AgO_2
		[MP PMT 1989]	306.	For making Ag fro	m $AgNO_3$, which of the
	(a) They are photosen	sitive		following is used	[AFMC 1998]
	(b) Soluble in hypo			(a) PH_{3}	(b) AsH_3
	(c) Soluble in NH_4OH			(c) Na_2CO_3	(d) NH_3
	(d) Soluble in acids		307.		e following reacts with
296.	AgCl when heated wi	th Na_2CO_3 gives		concentrated sulphurio	
		P PET 1989; MP PMT 1982, 84]		(a) Au	(b) Ag
	(a) Ag_2O	(b) <i>Ag</i>	208	(c) <i>Pt</i> The nitrate of which n	(d) <i>Pb</i> netal left globule on heating
	(c) Ag_2CO_3	(d) NaAgCO $_3$	300.	strongly	lietal left globule oli lieatilig
97 ۰	$AgNO_3$ gives a red pp	t. with			[JIPMER 2001]
	[NCERT 1	972; BHU 1978; MP PMT 1995]		(a) $Pb(NO_3)_2$	(b) $NaNO_3$
	(a) <i>KI</i>	(b) NaBr		(c) $AgNO_3$	(d) $Cu(NO_3)_2$
	(c) NaNO $_3$	(d) $K_2 CrO_4$	309.	During extraction of si	lver, which of the following
:98.	Silver nitrate is prepa	red by [CPMT 1984]		is formed	
	(a) The action of only	conc. HNO_3 on silver		(a) $M_{\rm e}[A_{\rm e}(CN)]$	[MP PET 2002]
	(b) Heating silver oxide with NO_2			(a) $Na[Ag(CN)_2]$	(b) $Na_2[Ag(CN)_2]$
	(c) The action of hot dil. HNO_3 on silver			(c) $Na_4[Ag(CN)_2]$	(d) None of these
	(d) Dissolve A_g in aqua-regia		310.	Colourless solutions of the following four salts are placed separately in four different test tubes and	
299.	<i>AgCl</i> is soluble in	[EAMCET 1992]			ipped in each one of these.
	(a) Aqua-regia	(b) $H_2 SO_4$		which bolucion will cu	[MP PET 2002]
	(c) <i>HCl</i>	(d) NH_3 (aq)		(a) KNO_3	(b) $AgNO_3$
;00.	Which of the following	g is least soluble in water		(c) $Zn(NO_3)_2$	(d) $ZnSO_4$
		CERT 1974, 78; MNR 1984, 89]	311.	Zinc when reacted wit	h excess of <i>NaOH</i> gives
	(a) AgI	(b) AgCl			IT 1974, 78, 94; MP PMT 1999]
	(c) AgBr	(d) Ag_2S		(a) Zinc hydroxide	(b) Zinc oxide
;01.		nd plates have an essential		(c) Di sodium zincate	(d) Sodium zincate
	lingi eulent of	ingredient of [CPMT 1980; CBSE PMT 1989]			issolves in <i>NaOH</i> solution
	(a) Silver nitrate	(b) Silver bromide		(a) <i>Al</i> , <i>Cu</i>	(b) <i>Zn</i> , <i>Hg</i>
	(c) Sodium chloride	(d) Oleic acid		(c) <i>Zn</i> , <i>Cu</i>	(d) Zn, Al
;02.	Which of the following	g does not react with <i>AgCl</i>	313.	Lucas reagent is	
		[AIIMS 1997]			; AIIMS 1980, 82; DPMT 1983;
	(a) $NaNO_3$	(b) Na_2CO_3		(a) Anhydrous $ZnCl_2$ +	P PET 1995; MP PMT 1997, 98]
	(c) $Na_2S_2O_3$	(d) NH_4OH		(b) Hydrous $ZnCl_2 + dil$	
303.		llowing is known as lunar state[MP PMT 1999; JIPMER 200	1	_	
	(a) Silver nitrate	(b) Silver sulphate	2]	(c) Conc. HNO_3 + anhy	
	(c) Silver chloride	(d) Sodium sulphate		(d) Conc. HNO_3 + anhy	_
304.	Which silver halide is used in medicine[DPMT 1996]		314.		f shaking dil. H_2SO_4 with
	(a) $AgNO_3$	(b) <i>AgCl</i>		small quantity of anhy	
	(c) <i>AgBr</i>	(d) <i>AgF</i>			[NCERT 1975; CPMT 1975, 88]
305.	When silver nitrate is formed	s heated to red hot, what is	solut	tion	ssolves to form a colourless
		[CPMT 1996; NCERT 1970]		(b) The white solid	dissolves to form a green

[CPMT 1996; NCERT 1970]

to form a green solution

878	d	and	f-Block	Elements
-----	---	-----	---------	----------

disso		urns blue but does not	3
	(d) The white solid d	issolves to form a blue	5
solut			
315.		-deposited on iron surface	
	to prevent rusting	[MP PET 1990]	3
	(a) <i>Cu</i>	(b) <i>Zn</i>	
	(c) <i>Mg</i>	(d) <i>Pb</i>	
316.	. .	on pipes carrying drinking zinc. The process involved	
	-	MP PMT 1993; MP PET 1999]	3
	(a) Photoelectrolysis		
	(c) Galvanization	(d) Cathodic protection	
217.		of $ZnSO_4$, normal zinc	
,_/.	-	Ditated by [CPMT 1973]	3
	(a) Boiling with <i>CaCO</i> ₃		
	- 5	- 2 0	
	(c) Adding $NaHCO_3$	C <i>L</i>	
;18.	Which one of the fol concentrated <i>NaOH</i> sol		
	(a) <i>Fe</i>	(b) <i>Zn</i>	
	(c) <i>Cu</i>	(d) <i>Ag</i>	
;19.	Which of the following a oxide	metal forms an amphoteric	3
		[CPMT 1976]	
	(a) <i>Ca</i>	(b) <i>Fe</i>	
	(c) <i>Cu</i>	(d) <i>Zn</i>	3
;20.	Reaction of zinc with c acid yields	cold and very dilute nitric	
	[MP PET 19	985, 92, 97; BHU 1995, 2000; NCERT 1974; MP PMT 1995]	
	(a) $Zn(NO_3)_2 + N_2O$	(b) $Zn(NO_3)_2 + NO$	
	(c) $Zn(NO_3)_2 + NH_4NO_3$	(d) $Zn(NO_3)_2 + NO_2$	2
001	The number of unpaired	electrons in $7n^{2+}$ is	3
,21,	(a) 2	(b) 3	
	(c) 4	(d) 0	
222		in insulin is [KCET 1991]	
,22.	(a) Iron	(b) Cobalt	
	(c) Zinc	(d) Manganese	
222	The chemical name of b	•	3
<u>,</u> 23.	(a) Sodium orthoborate		
	(b) Sodium metaborate		
	(c) Sodium tetraborate		
	(d) Sodium tetraborate	decabydrate	3
221.	Hydrogen is not obtaine	-	
)24.	nyurogen is not obtaine	[CPMT 1994]	
	(a) Cold water	(b) Dilute H_2SO_4	
	(c) Dilute <i>HCl</i>	(d) Hot 20% <i>NaOH</i>	3
325.	The metal which give	s hydrogen on treatment ium hydroxide is[MP PET 1996	57
	(a) Iron	(b) Zinc	· JI

(a) Iron	(b) Zinc
----------	----------

- (c) Copper
- (d) None of the above
- 326. To protect iron against corrosion, the most durable metal plating on it, is [CBSE PMT 1994]
 (a) Nickel plating (b) Tin plating
 - (c) Copper plating (d) Zinc plating
- **327.** The compound $ZnFe_2O_4$ is [Kerala (Engg.) 2002]
 - (a) A normal spinel compound
 - (b) Interstitial compound
 - (c) Covalent compound
 - (d) Co-ordination compound
- **328.** ZnO when heated with BaO at 1100°C gives a compound. Identify the compound [AFMC 2002]
 - (a) $BaZnO_2$ (b) $BaO_2 + Zn$
 - (c) $BaCdO_2$ (d) $Ba + ZnO_2$
- **329.** Zn gives hydrogen gas with H_2SO_4 and HCl but not with HNO_3 because [CBSE PMT 2002]
 - (a) NO_2 is reduced in preference to H_3O^+
 - (b) HNO_3 is weaker acid than H_2SO_4 and HCl
 - (c) Zn acts as oxidising agent when reacts with HNO_3
 - (d) In electrochemical series Z_n is placed above the hydrogen
- **330.** The metal used for making radiation shield is

	[Kerala (Med.) 2002]
(a) Aluminium	(b) Iron
(c) Zinc	(d) Lead

331. Which of the following metal is obtained by leaching out process using a solution of *NaCN* and then precipitating the metal by addition of zinc dust

[NCERT 1984; AIIMS 1983; CBSE PMT 1989]

- (a) Copper (b) Silver
- (c) Nickel (d) Iron
- **332.** While extracting an element from its ore, the ore is ground and leached with dilute *KCN* solution to form the soluble product potassium argentocyanide. The element is

[CBSE PMT 1989]

- (a) Lead (b) Chromium
- (c) Manganese (d) Silver
- **333.** In Mc Arthur Forest method, silver is extracted from the solution of $Na[Ag(CN)_2]$ by the use of:[CPMT 2004
 - (b) Fe (b) Mg (c) Cu (d) Zn
- **334.** Iron obtained from blast furnace is known as

[DPMT 1981; CPMT 1988; MP PET 2000]

- (a) Wrought iron (b) Cast iron
- (c) Pig iron (d) Steel
- **335.** Extraction of silver from commercial lead is possible by

[BHU 1979]

(a) Mond's process (b) Park's process

	(c) Haber's process	(d) Clark'	s process	
336.	Impurities of lead in silv	ver are rem	oved by[AllMS 198	7]
	(a) Park process	(b) Solvey	v process	
	(c) Cyanide process	(d) Amalg	amation	
proc				
337.	Park's process is used in			3
	[BHU 1977; CB		2; MP PMT 1996; shetra CEE 1998]	
	(a) Iron	(b) Zinc	snetra CEE 1990]	
	(c) Silver	(d) Lead		
338.	From argentite (Ag_2S)		nethod used in	
00-1	obtaining metallic silver		[MP PMT 1989]	
	(a) Fused mixture o		and <i>KCl</i> is	3
elect	rolysed	~ 2		
	(b) Ag_2S is reduced with	h CO		
	(c) Ag_2S is roasted to A	$g_{2}O$ which	is reduced with	3
	carbon	02		
	(d) Treating argentite			
	followed by metal di			
339.	In the extraction of zinc jackets surrounding the	-	is burnt in the	3
	(a) Water gas	(b) Produ	cer gas	
	(c) Oil gas	(d) Coal g	as	
340.	MacArther process is us	ed for	[BHU 1995]	
	(a) <i>Hg</i>	(b) <i>Fe</i>		
	(c) <i>Cl</i>	(d) O ₂		3
341.	In the metallurgy of zin from roasting and re- contains some ZnO. How	duction of	zinc sulphide	3;
	(a) Absorbance of ul emission of white lig	traviolet 1	light and re-	3
	(b) Shock cooling by c molten lead is done	ontact wit	h a shower of	3
	(c) X-ray method is use	d		
	(d) Smelting is employe	d		
342.	In the metallurgy of c finally formed in the fur	. .		
	(a) $Cu_2S + O_2 \rightarrow 2Cu + SO$	2		3
	(b) $2CuS + 3O_2 \rightarrow 2CuO +$	$2SO_2$		
	$2CuO + CuS \rightarrow 3Cu + S$	O_2		
		~		

(c)
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

- (d) $CuS + O_2 \rightarrow Cu + SO_2$
- 343. In the smelting of roasted copper pyrites ore, melting occurs so that the first reaction is
 - (a) All the sulphur preferentially combines with iron to form *FeS* and *CuO* is formed

- (b) All the sulphur preferentially combines with copper to form CuS and FeO is formed
- (c) All the sulphur preferentially combines with iron to form *FeS* and Cu_2O is formed
- (d) All the sulphur preferentially combines with copper to form Cu_2S and FeO is formed
- **344.** In the oxidation of Cu, the reaction which takes place in bessemer converter is [CPMT 1999] (a) $2CuFeS_2 + O_2 \rightarrow Cu_2S + FeS + SO_2$
 - (b) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$
 - (c) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
 - (d) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$
- 345. Silica is added to roasted copper ore during smelting in order to remove [KCET 1998] (a) Cuprous sulphide (b) Cuprous oxide
 - (c) Ferrous oxide (d) Ferrous sulphide
- **346.** Parke's process is used to extract [MP PMT 2002] (a) Silver using *NaCN*
 - (b) Copper using CuFeS₂
 - (c) Silver from argentiferrous lead
 - (d) Silver by forming amalgam
- 347. Identify the reaction that doesn't take place during the smelting process of copper extraction[KCET 20
 - (a) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$ \uparrow
 - (b) $Cu_2O + FeS \rightarrow Cu_2S + FeO$
 - (c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$
 - (d) $FeO + SiO_2 \rightarrow FeSiO_3$
- 348. The extraction of which of the following metals involves bessemerisation [DCE 2004] (a) *Fe*
 - (b) Aq
- (d) Cu 3; AFMC 2002] **349.** Bessemer converter is used for [AFMC 2004] (a) Steel (b) Wrought iron
 - (d) Cast iron (c) Pig iron
- **350.** In the cyanide process for the extraction of silver, sodium cyanide is used to [MP PMT 1994]
 - (a) Convert silver into a soluble silver complex
 - (b) Reduce silver
 - (c) Precipitate silver
 - (d) Oxidise silver
- 351. Parke's process of desilverization of lead depends upon
 - (a) Partition coefficient of silver between molten zinc/molten lead having a high value
 - (b) Partition coefficient of silver between molten zinc/molten lead having a low value
 - (c) Crystallizing out of pure lead while the silverlead eutectic which has a lower melting point is left behind in liquid form
 - (d) Chemical combination of zinc and silver which precipitates out easily
- 352. Which is impure form of iron

(a) Cast iron

(b) Wrought iron

	(c) Steel iron	(d) None			
53·	Blister copper is	[CPMT 1976, 85, 2002;			· · - · · · ·
	DPMT 1982;	MP PET 1995; Bihar CEE 1995]		Crit	ical Thinking
	(a) Pure copper	(b) Ore of copper			
	(c) Alloy of copper	(d) 1% impure copper			Objective Questions
		pper when molten copper is copper is obtained due to <i>v</i> ing gas	1.	Transition metal v	with low oxidation number w
	(a) Water vapour	(b) Sulphur dioxide		act as	
	(c) Carbon dioxide	(d) Carbon monoxide		(a) A base	[DCE 200
55.	In the electrolytic p	urification of copper some		(b) An acid	
	gold is found in the[CI	MT 1972; AFMC 1995; RPET 2003	3]	(c) An oxidising ag	gent
	(a) Cathode	(b) Cathode mud		(d) None of these	5
	(c) Anode mud	(d) Electrolyte	2.		owing pair will have effecti
5 6.	Purest form of iron is			magnetic moment	equal
	[CPMT 1975, 3	80, 84, 87, 89; DPMT 1982, 83;		(a) Cr^{+3} and Mn^{+2}	(b) Cr^{+2} and Fe^{+2}
	MP PMT 1987, 90	0, 91; MP PET 1995; BHU 1999;		(c) V^{+2} and Sc^{+3}	(d) Ti^{+2} and V^{+2}
		MH CET 2003]	3.	Which is least solu	ıble in water [MNR 1984, 8
	(a) Cast iron	(b) Wrought iron		(a) <i>AgCl</i>	(b) <i>AgBr</i>
	(c) Hot steel	(d) Stainless steel		(c) <i>AgI</i>	(d) Ag_2S
57.	Spelter is	[CPMT 1988]		(e) <i>AgF</i>	
	(a) Impure <i>Cu</i>	(b) Impure Zn	4.	Which one of the	e following has the maximu
	(c) Zn 0	(d) <i>CuO</i>		number of unpaire	
8.	A copper coin is com	pletely covered with a gold		(a) Mg^{2+}	(b) Ti^{3+}
	film and is placed in d	lilute HNO_3 . This will result		(c) V^{3+}	(d) Fe^{2+}
	in formation of	[CPMT 1981]	5.		lowing ions form most stat
	(a) Gold nitrate	(b) Copper nitrate		(a) Cu ⁺⁺	(b) <i>Ni</i> ⁺⁺
	(c) None of these	(d) Purple of cassins		(c) <i>Fe</i> ⁺⁺	(d) <i>Mn</i> ⁺⁺
	When zinc is added to to	$CuSO_4$ copper gets ppt. due	6.	<i>Mn</i> ⁺⁺ can be conve	erted into <i>Mn</i> ⁷⁺ by reacting wi [UPSEAT 200
		[CPMT 1979]		(a) SO_2	(b) <i>Cl</i> ₂
	(a) Reduction of coppe	er ions		(c) <i>PbO</i> ₂	(d) SnCl $_2$
	(b) Oxidation of coppe	er ions	7.	General configu	ration of outermost a
	(c) Hydrolysis of copp	er sulphate		penultimate shell	is $(n-1)s^2(n-1)p^6(n-1)d^xns^2$. If n
	(d) Complex formation	n		4 and $x = 5$ then n	no. of proton in the nucleus w
io .	Addition of iron filing	s to $CuSO_4$ solution caused		be	[MP PET 200
	precipitation of Cu ov	ving to the [CPMT 1990]		(a) > 25	(b) < 24
	(a) Reduction of Cu^{++}		0	(c) 25	(d) 30
	(b) Oxidation of Cu^{++}		8.	hydrogen	metal reduces steam to evol
	(c) Reduction of <i>Fe</i>			nyurogen	[MP PMT 2003; DCE 200
	(d) Reduction of Fe^{+++}			(a) <i>Mg</i>	(b) <i>Fe</i>
				(c) <i>Sc</i>	(d) <i>Pt</i>
		pared from solid <i>KMnO</i> ₄ by [DPMT 2001]	9.	Chloride of whicl coloured	h of the following element
	(a) Strongly heating the	he solid			[MP PMT 199
	(b) Treating the solid	with H_2 gas		(a) <i>Ag</i>	(b) <i>Hg</i>
	(c) Dissolving the soli	d in dil. H_2SO_4		(c) <i>Zn</i>	(d) <i>Co</i>
	(d) Dissolving the soli		10.	Arrange Ce^{+3}, La^{+3} order of their ionic	

	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < Ce^{+3}$	La^{+3}	20.	In nitroprusside ior		
	(b) $Ce^{+3} < Yb^{+3} < Pm^{+3} < $	La^{+3}		Fe^{II} and NO^+ rathe		
	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ca^{+3} < $	Ce ⁺³		forms can be differen	-	[IIT-JEE 1998]
	(d) $Pm^{+3} < La^{+3} < Ce^{+3} < Ce^{+3}$	Yb +3		(a) Estimating the co		
11.		rous sulphate according to		(b) Measuring the co		
	the	equation		(c) Measuring the so	•	
	$MnO_4^- + 5Fe^{2+} + 8H^+ \to M$	-		(d) Thermally decom		-
	10ml of $0.1M$ KMnO ₄ is	-	21.	Among the following paramagnetic and co		[IIT-JEE 1997]
		[CPMT 1999]		(a) $K_2 Cr_2 O_7$	(b) $(NH_4)_2$	
	(a) 20 <i>ml</i> of 0.1 <i>M</i> FeSO			(c) $VOSO_4$		
	(b) 30 <i>ml</i> of 0.1 <i>M</i> FeSO		22.	The number of mo	56	
	(c) 40 <i>ml</i> of 0.1 <i>M</i> FeSO	•		needed to react co	•	
	(d) 50ml of 0.1M FeSO	•		ferrous oxalate Fe(C		
10				(a) 3/5	(b) 2/5	
12.	Which of the following i	[Roorkee Qualifying 1998]		(c) 4/5	(d) 1	
	(a) HgF_2	(b) H_gCl_2	23.	In following reaction	1	
	(c) $HgBr_2$	(d) HgI_2		$yMnO_4^- + xH^+ + C_2O_4^-$	$\rightarrow yMn^{++} + 2CO_2$	$_{2}+\frac{x}{2}H_{2}O$,
L3.	_	ements, the percentage of		x and y are		2 [CPMT 1997]
0	transitional elements is			(a) 2 and 16	(b) 16 and	
	(a) 30%	(b) 50%		(c) 8 and 16	(d) 5 and 2	
	(c) 60%	(d) 75%	24.	Which of the followi		
4 .		and <i>Fe</i> are 24 and 26		in magnetic field		-
		of the following is	7	(a) <i>VCl</i> ₃	(b) ScCl $_3$	
		pin of electron[CBSE PMT 200	02]	(c) $TiCl_3$	(d) $FeCl_3$	
	(a) $[Cr(NH_3)_6]^{+3}$	(b) $[Fe(CO)_5]$	25.	An elements is in	M^{3+} form.	Its electronic
	(c) $[Fe(CN)_6]^{-4}$	(d) $[Cr(CO)_6]$		configuration is [Ar]	$3d^1$ the ion is	[JIPMER 2002]
5۰	_	s not an element[DCE 2001]		(a) <i>Ti</i> ³⁺	(b) <i>Ti</i> ⁴⁺	
	(a) Graphite	(b) Diamond		(c) Ca^{2+}	(d) Sc ⁺	
	(c) 22-carat gold	(d) Rhombic sulphur	26.	The atomic number	of vanadium	(V), chromium
16.		s more paramagnetic[DCE 20	01]	(<i>Cr</i>), manganese		
	(a) Fe^{+2}	(b) Fe^{+3}		respectively 23, 24,		
	(c) Cr^{+3}	(d) Mn^{+3}		may be expected t ionization enthalpy	to have the l	[AIEEE 2003]
7.		trons in Fe^{2+} (at no. of		(a) <i>V</i>	(b) <i>Cr</i>	[
	Fe = 26) is not equal to			(c) <i>Mn</i>	(d) <i>Fe</i>	
	 (a) p - electrons in Ne (a) (b) s - electrons in Mg (a) 					
	(c) d - electrons in Mg (c) d - electrons in Fe	(at. 110. – 12)				
	(d) p - electrons in Cl^-	(at no of Cl - 17)		Assertio	on & Rea	Ison
18.	-	of the transition metal		R		
	monoxides follows the o				For <i>4</i> 99	MS Aspirants
	(a) $TiO > VO > CrO > FeO$					
	(b) $VO > CrO > TiO > FeO$		Read	d the assertion and 1	reason carefull	y to mark the
	(c) $CrO > VO > FeO > TiO$)	corr	ect option out of the o	ptions given be	elow :
	(d) $TiO > FeO > VO > CrO$		(a)	If both assertion a		
_	(Atomic no. $Ti = 22, V =$		(h)	reason is the correct		
9.	Amongest following	the lowest degree of e of the compound at 298	(b)	If both assertion and not the correct expla		
	<i>K</i> will be shown by	e of the compound at 290	(c)	If assertion is true b		
	(a) $M_{n}SO$ AHO	(b) C_{VSO} 5H O	(d)	If the assertion and i		

- (a) $MnSO_4.4H_2O$ (b) $CuSO_4.5H_2O$
- (c) $FeSO_4.6H_2O$ (d) *FeSO* $_4.5H_2O$

-)e of -JEE 1997
- 7] ed
- - ic 2]
 - m e se ıd 3]

2

- ıe
- is
- *If the assertion and reason both are false.* (d)
- (e) If assertion is false but reason is true.

1.	Assertion :	Cuprous ion (Cu^+) has unpaired electrons while cupric ion (Cu^{++})	14.	Assertion :	Tungsten filament is used in electric bulbs.
		does not		Reason :	Tungsten is a metal of high melting point.
	Reason :	Cuprous ion (Cu^+) is colourless	15.	Assertion :	$Na_2Cr_2O_7$ is not a primary standard
		where as cupric ion (Cu^{++}) is blue in			in volumetric analysis.
		the aqueous solution [AIIMS 2002]		Reason :	$Na_2Cr_2O_7$ Is hygroscopic.
2.	Assertion : Reason :	Zn^{2+} is diamagnetic The electrons are lost from 4 s	16.	Assertion :	Promethium is a man made element.
		orbital to form Zn^{2+} [IIT-JEE 1998]		Reason :	It is radioactive and has been
3.	Assertion :	Transition metals show variable			prepared by artificial means.
	valence.		17.	Assertion :	Magnetic moment values of
	Reason :	Due to a large energy difference			actinides are lesser than the
		between the ns^2 and $(n-1)d$		Reason :	theoretically predicted values. Actinide elements are strongly
		electrons.		Reason .	paramagnetic.
4.	Assertion :	[AIIMS 1996] The aqueous solution of <i>FeCl</i> ₃ is	18.	Assertion :	The degree of complex formation in
4.	A350111011 .	basic in nature.			actinides decreases in the order
	Reason :	<i>FeCl</i> ₃ hydrolyses in water.[AIIMS 1998]			$M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+$.
_		5		Reason :	Actinides form complexes with π -
5.	Assertion :	$AgCl$ dissolves in NH_4OH solution.			bonding ligands such as alkyl
	Reason :	Due to formation of a complex.			phosphines and thioethers.
6.	Assertion :	[AIIMS 1998] Pure iron is not used for making			
0.	A350111011 .	tools and machines.			
	Reason :	Pure iron is hard. [AIIMS 1998]			
7.	Assertion :	Solution of Na_2CrO_4 in water is			
		intensely coloured.			
	Reason :	Oxidation state of Cr in Na_2CrO_4 is			
		+VI.			
		[AIIMS 2003]			
8.	Assertion :	Copper metal gets readily corroded in an acidic aqueous solution.			
	Reason :	Free energy change for this process is positive. [AIIMS 2004]			
9.	Assertion :	The free gaseous <i>Cr</i> atom has six unpaired electrons.			
	Reason :	Half filled 's' orbital has greater stability.			
		[AIIMS 2004]			
10.	Assertion :	Fe^{2+} is paramagnetic.			
	Reason :	<i>Fe</i> ²⁺ contains four unpaired			
		electrons.			
11.	Assertion :	Transition metals are good catalysts.			
	Reason :	V_2O_5 or Pt is used in the			
		preparation of H_2SO_4 by contact			
		process.			
12.	Assertion :	Rusting of an iron is an example of corrosion.			
	Reason :	Rusting of iron is decreased by acids and electrolytes.			
13.	Assertion :	AgBr is used in photography.			
	Reason :	AgBr undergoes photochemical			
		reaction.			

19.	Assertion :	In transition elements ns orbital is filled up first and $(n-1)d$
		afterwards, during ionization ns electrons are lost prior to $(n-1)d$
		electrons.
	Reason :	The effective nuclear charge felt buy $(n-1)d$ electrons is higher as
20.	Assertion :	compared to that by <i>ns</i> electrons. Extraction of iron metal from iron oxide ore is carried out by heating with coke.
	Reason :	The reaction
		$Fe_2O_2(s) \rightarrow Fe(s) + \frac{3}{2}O_2(g)$ is a

 $Fe_2O_3(s) \rightarrow Fe(s) + \frac{3}{2}O_2(g)$ 1S

spontaneous process. [AIIMS 2005]

Answers

General Characteristics

1	C	2	d	3	b	4	c	5	d
6	a	7	a	8	c	9	С	10	c
11	C	12	c	13	d	14	C	15	b
16	С	17	b	18	c	19	b	20	a
21	d	22	c	23	a	24	C	25	c
26	а	27	C	28	b	29	c	30	C
31	b	32	c	33	a	34	c	35	b
36	а	37	d	38	d	39	b	40	C
41	d	42	d	43	d	44	d	45	C
46	d	47	b	48	C	49	а	50	c
51	C	52	b	53	d	54	d	55	a
56	a	57	a	58	b	59	b	60	b
61	а	62	d	63	b	64	а	65	C
66	d	67	b	68	b	69	b	70	a
71	c	72	d	73	a	74	d	75	d
76	c	77	b	78	b	79	d	80	C
81	b	82	a	83	b	84	b	85	d
86	d	87	C	88	C	89	b	90	b
91	d	92	a	93	C	94	c	95	a
96	C	97	c	98	C	99	d	100	d
101	b	102	d	103	d	104	C	105	a
106	d	107	C	108	d	109	d	110	d
111	b	112	а	113	d	114	b	115	a
116	b	117	C	118	d	119	С	120	b

d and f-Block Elements 881

121	а	122	С	123	d	124	d	125	а
126	d	127	d	128	а	129	d	130	d
131	а	132	С	133	а	134	С	135	b
136	C	137	b	138	с	139	а	140	b
141	b	142	a	143	b	144	b	145	d
146	b	147	d	148	c	149	d	150	a
151	C	152	d	153	а	154	b	155	c
156	d	157	b	158	c	159	а	160	a
161	C	162	b	163	b	164	C	165	a
166	d	167	C	168	d	169	d	170	d
171	c	172	a	173	b	174	а	175	a
176	C	177	b	178	C	179	d	180	a
181	b	182	C	183	а	184	d	185	b
186	а	187	C	188	b	189	а	190	d
191	C	192	C	193	c	194	C	195	d
196	c	197	d	198	c	199	а	200	a
201	а	202	d	203	C	204	b	205	d
206	c	207	a	208	d	209	b	210	a
211	а	212	b	213	b	214	b	215	c
216	а	217	C	218	d	219	b	220	b
221	b	222	b	223	b	224	а	225	b
226	b	227	d	228	а	229	а	230	d
231	а	232	а	233	d	234	а	235	c
236	а	237	а	238	d	239	b	240	b
241	b								

Compounds of Transitional elements

1	а	2	C	3	d	4	а	5	b
6	C	7	а	8	b	9	b	10	d
11	а	12	a	13	а	14	а	15	a
16	а	17	a	18	d	19	b	20	b
21	d	22	c	23	е	24	b	25	c
26	d	27	d	28	а	29	C	30	c
31	а	32	d	33	b	34	d	35	a
36	а	37	b	38	b	39	b	40	a
41	а	42	C	43	C	44	а	45	a
46	b	47	C	48	b	49	а	50	C
51	b	52	b	53	c	54	d	55	c
56	а	57	C	58	d	59	b	60	d
61	d	62	b	63	С	64	a	65	c
66	b	67	C	68	а	69	а	70	C
71	а	72	a	73	а	74	а	75	a
76	d	77	d	78	d	79	а	80	C

81 b 82 d 83 c 84 d 85 b 86 a 87 c 88 c 89 b 90 a 91 b 92 c 93 d 94 c 95 e 96 b 97 b 98 d 99 c 100 c 101 b 102 a 103 a 104 d 105 c 106 a 107 c 108 d 109 b 110 b 111 a 112 a 113 b 114 a 115 a 116 c 117 a 118 a 119 c 120 c 121 c 122 a 123 a 134 135 a 131 a 132 a 133 d 134 c 135 a 136 d 157 c
91b92c93d94c95e96b97b98d99c100c101b102a103a104d105c106a107c108d109b110b111a112a113b114a115a116c117a118a119c120c121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b185d176d177a178b179c180b181a182b183b184b185a186c </td
96 b 97 b 98 d 99 c 100 c 101 b 102 a 103 a 104 d 105 c 106 a 107 c 108 d 109 b 110 b 111 a 112 a 113 b 114 a 115 a 116 c 117 a 118 a 119 c 120 c 121 c 122 a 123 a 124 b 125 c 126 a 127 c 128 a 130 a 131 a 132 a 133 d 134 c 135 a 135 a 135 a 135 b 140 c 145 c 145 c 145 c 145 c 150 b
101b102a103a104d105c106a107c108d109b110b111a112a113b114a115a116c117a118a119c120c121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c178b179c180b181a192d193c194a195d196
106a107c108d109b110b111a112a113b114a115a116c117a118a119c120c121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b185d166c167a168b169c170d176d177a178b179c180b181a192d193c194a195d196a197c188d189c210c201d202b203a204a205a206
111a112a113b114a115a116c117a118a119c120c121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d176d177a178b179c180b181a182b183b184b185a186c187c198d199b200c201d202b203a204a205a206a207b208a219a220c211a212c213a214c215c206
116c117a118a119c120c121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d176d177a178b179c180b181a182b183b184b185a186c187c188d189c190c191a192d193c194a195d196a207b208a209c210a201d202b203a204a205a201d202b203a204a205a201
121c122a123a124b125c126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d171a172c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c198d199b200c201d202b203a204a205a206a207b208a219a220c211a212c213a214c215c216
126a127c128a129c130a131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d171a172c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c198d199b200c201d202b203a204a205a211a212c213a214c215c216c217a218a219a220c221d222b223c229d230d226
131a132a133d134c135a136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d176d177a178b179c180b181a182b183b184b185a186c187c188d189c190c191a192d193c194a195d196a207b208a209c210a201d202b233a214c215c216c217a218a219a220c221d222b223c224b235a226d227a228c229d230d231
136d137b138a139b140c141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d171a172c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c188d189c190c191a192d193c194a195d196a207b208a209c210a206a207b228a214c215c216c217a218a219a220c221d232a233b234b235c226d237c238d239a240d231
141c142a143b144d145e146e147a148c149b150b151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d171a172c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c198d199b200c201d202b203a204a205a206a207b208a209c210a211a212c213a214c215c226d227a228c229d230d231c324b235c238d239a240d246d247b248a249d255a256a255a256d257b258d </td
146 e 147 a 148 c 149 b 150 b 151 d 152 a 153 b 154 a 155 c 156 a 157 c 158 a 159 b 160 b 161 b 162 c 163 d 164 b 165 d 166 c 167 a 168 b 169 c 170 d 171 a 172 c 173 d 174 c 175 c 176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a
151d152a153b154a155c156a157c158a159b160b161b162c163d164b165d166c167a168b169c170d171a172c173d174c175c176d177a178b179c180b181a182b183b184b185a186c187c188d189c190c191a192d193c194a195d196a197c198d199b200c201d202b203a204a205a206a207b208a209c210a211a212c213a214c215c216c217a218a219a220c221d232a233b234b235c236a237c238d239a240d231c232a233b234b235c236
156 a 157 c 158 a 159 b 160 b 161 b 162 c 163 d 164 b 165 d 166 c 167 a 168 b 169 c 170 d 171 a 172 c 173 d 174 c 175 c 176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 216 c
161 b 162 c 163 d 164 b 165 d 166 c 167 a 168 b 169 c 170 d 171 a 172 c 173 d 174 c 175 c 176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 210 a 212 c 213 a 214 c 215 c 211 a
166 c 167 a 168 b 169 c 170 d 171 a 172 c 173 d 174 c 175 c 176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 2106 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 221 d
171 a 172 c 173 d 174 c 175 c 176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 228 c 229 d 230 d 221 d
176 d 177 a 178 b 179 c 180 b 181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 230 d 231 c
181 a 182 b 183 b 184 b 185 a 186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c
186 c 187 c 188 d 189 c 190 c 191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a
191 a 192 d 193 c 194 a 195 d 196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 206 a 207 b 208 a 209 c 210 a 206 a 207 b 208 a 209 c 210 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 228 c 229 d 230 d 226 d 227 a 233 b 234 b 235 c 231 c
196 a 197 c 198 d 199 b 200 c 201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d
201 d 202 b 203 a 204 a 205 a 206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d
206 a 207 b 208 a 209 c 210 a 211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 231 c 237 c 238 d 239 a 240 d 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d
211 a 212 c 213 a 214 c 215 c 216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b
216 c 217 a 218 a 219 a 220 c 221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 236 a 237 c 238 d 239 a 240 d 246 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b
221 d 222 b 223 c 224 b 225 a 226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
226 d 227 a 228 c 229 d 230 d 231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
231 c 232 a 233 b 234 b 235 c 236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
236 a 237 c 238 d 239 a 240 d 241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
241 d 242 b 243 ab 244 a 245 bc 246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
246 d 247 b 248 a 249 d 250 a 251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
251 b 252 a 253 d 254 a 255 a 256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
256 d 257 b 258 d 259 b 260 d 261 b 262 a 263 c 264 b 265 d
261 b 262 a 263 c 264 b 265 d
266 a 267 b 268 c 269 b 270 b
271 c 272 c 273 c 274 b 275 b
276 b 277 b 278 b 279 b 280 d
281 a 282 c 283 a 284 a 285 a
286 b 287 d 288 c 289 d 290 a
291 c 292 d 293 a 294 b 295 a
296 b 297 d 298 c 299 d 300 d

301	b	302	а	303	а	304	а	305	a
306	a	307	b	308	C	309	a	310	b
311	d	312	d	313	a	314	d	315	b
316	C	317	C	318	b	319	d	320	С
321	d	322	C	323	d	324	a	325	b
326	d	327	a	328	a	329	b	330	d
331	b	332	d	333	d	334	C	335	b
336	а	337	C	338	d	339	b	340	а
341	d	342	C	343	а	344	C	345	С
346	c	347	C	348	d	349	C	350	а
351	а	352	а	353	d	354	b	355	C
356	b	357	b	358	C	359	а	360	а
361	a								

Critical Thinking Questions

1	C	2	b	3	d	4	d	5	а
6	C	7	b	8	b	9	d	10	а
11	d	12	abc	13	C	14	а	15	C
16	b	17	d	18	a	19	b	20	c
21	c	22	a	23	b	24	b	25	a
26	b								

Assertion & Reason

1	е	2	b	3	с	4	е	5	а
6	С	7	а	8	d	9	с	10	а
11	b	12	с	13	b	14	а	15	а
16	a	17	b	18	b	19	a	20	d

Answers and Solutions

General characteristics

- (c) $3d^5$ 1. $4s^1$ 1 1 1 1 1 1 Cr 1 1 1 1 1 Cr^+
- (d) There are 6 electrons in its ultimate and penultimate shell.
- **3.** (b) They show variable oxidation state due to participation of ns and (n-1)d electrons.
- 4. (c) $(Cr^{+6}K_2Cr_2O_7 \text{yellow } Cr^{+3}Cr_2(SO_4)_3 \text{green})$

- 7. (a) Ionic radii $\propto \frac{1}{\text{Atomic No.}}$ Ionic radius decreases from left to right in a period.
- **8.** (c) The atomic weight;

Equivalent weight = $\frac{\text{Atomic weight}}{\text{No. of }e^{-1}\text{lost or gained}}$

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

∴ Equivalent weight = Atomic weight

10. (c) Gold; $([Xe]5d^{10}6s^1)$.

11. (c) (n-1)d and *ns* orbits.

- **12.** (c) *d*-block elements; because
 - (i) Small atomic size
 - (ii) High nuclear charge
 - (iii) Presence of vacant *d*-orbitals
- 13. (d) Transitional elements form coloured salts due to the presence of unpaired electrons in *d*-orbital.
- 14. (c) Cu; because last electron enters *d*-orbital $(3d^{10}4s^1)$.
- **15.** (b) *Cu* due to the presence of vacant *d*-orbital.
- 17. (b) Nickel; $Ni + 4CO \rightarrow [Ni(CO)_4]$ (volatile)
- 18. (c) Copper, silver and gold; all the three were used for making coins.
- **19.** (b) 2, 8, 18, 1 = *Cu*
- **23.** (a) In between *s* and *p*-block elements.
- **25.** (c) Fe^{+3}

S.	Outer	No. of	Colou	Magnet
No.	config	unpaire	r of	ic
	u-	d <i>e</i> ⁻	ion	momen
	ration			t
V^{+3}	$3d^2$	2	Green	2.76
Mn^{+3}	$3d^4$	4	Violet	1.9
Fe ⁺³	$3d^{5}$	5	Yello	5.96
			W	
<i>Cu</i> ⁺²	3 <i>d</i> ⁹	1	Blue	1.9

26. (a) Misch metal is an alloy of rare earth metals with composition :

Rare earth metals	-	94.95%
Iron (Fe)	-	5%
S, C, Ca, Al	_	Traces

- 27. (c) "All their ions are colourless" this sentence is false because they are 90% coloured and only few are colourless.
- **28.** (b) $1s^2, 2s^2p^6, \dots, ns^2p^6d^3, (n+1)s^2$ as last electron enters *d*-subshell.
- **30.** (c) Due to unpaired *d*-electrons.
- **31.** (b) $Fe^{+2} 3d^6 4s^0 4$ unpaired e^- .
- 32. (c) All the oxides of Fe(FeO, Fe₂O₃ and Fe₃O₄) are basic in nature.

- **34.** (c) The presence of one or more unpaired electrons in the system.
- 35. (b) They show multiple oxidation state due to availability of vacant *d*-orbitals.They are coloured due to *d*-*d* transition.
- **36.** (a) $Mn^{2+} 5$ unpaired electrons.
- (d) Iron belongs to group VIII B of the periodic table.
- **39.** (b) *d*-orbital is complete; $Zn 3d^{10} 4s^2$
- 41. (d) Transition elements form co-ordinate compounds because of
 (i) High nuclear charge
 (ii) Small size
 (iii) Vacant *d*-orbital
- **42.** (d) H_g is a good conductor of electricity.
- **45.** (c) Transition metals show variable valency.
- **46.** (d) Cu^+ do not have any unpaired electron.

47.

(b)
$$Fe^{2+}$$
 ion have 4 unpaired electrons
 $Fe^{2+} = 26 - 2 = 24 = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$

- **48.** (c) Hydrogenation because they have tendency to occlude hydrogen on free surface.
- **49.** (a) Metals contribute their valency electrons to the common sea of electrons.
- **52.** (b) They are inert towards many common reagents.
- **53.** (d) Oxidation state of iron in mohr's salt $FeSO_4(NH_4)_2SO_4.6H_2O$ is + 2.
- 54. (d) They show variable oxidation states due to participation of (n-1) *d*-orbitals electrons with *ns* orbital electrons.
- **55.** (a) Electronic configuration of chromium

 $Cr \rightarrow [Ar] 3d^5 4s^1$

 $Cr^{2+} \rightarrow [Ar]3d^4 4s^0$.

- 56. (a) Covalent bond is constituted by electrons of *d*-orbitals and lusture is due to free electrons of *s*-orbital in metallic bond.
- **57.** (a) *Cr* has highest M.P. and B.P. due to maximum no. of unpaired electrons.
- **58.** (b) *Hg* as there is no unpaired electron so M.P. and B.P are low. *Hg* is therefore liquid at room temperature with 234*K*.
- **60.** (b) *Zn* due to increased shielding effect the attraction of electrons towards nucleus decreases.
- **61.** (a) Number of electrons in excited state

 $X^{+3} = 18 + 4 = 22$

Number of electrons in ground state X = 22 + 3 = 25.

- **62.** (d) $(n-1)s^2p^6d^{1-10}ns^1$ or ns^2
- **64.** (a) Ni^{2+} and Cr^{2+} are coloured. But Zn^{2+} is colourless because of absence of unpaired e^- .

- **66.** (d) They show variable valency due to presence of vacant *d*-orbitals.
- **67.** (b) Maximum oxidation state = 6 Maximum no. of e^- in last shell = 6
 - ∴ Group is VI-B.
- **76.** (c) *Ag* belongs to second (4*d*) transition series remaining all are in first transition series.
- 77. (b) Fe^{+2} ion have 4 unpaired electron so it is paramagnetic.
- **78.** (b) $_{30}Zn$ and $_{80}Hg$ have their *d* orbitals completely filled so they do not show any variable valency.
- 80. (c) d-block elements are known as transition elements. These show variable valency due to their incomplete d-subshell.
- **81.** (b) Electronic configuration of $_{27}Co$ -

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$,

hence unpaired $e^- = 3$

- **82.** (a) $_{30} Zn$ has been placed in II B group of *d*-block in the long form of periodic table.
- **83.** (b) The electronic configuration of Zn is $(Ar)3d^{10}4s^2$. Hence due to complete *d*-subshell, it does not show variable valency.
- **84.** (b) $Zn^{+2} 3d^{10}$

no unpaired electrons. Hence, diamagnetic in nature.

- **85.** (d) Terbium is lanthanide as it belongs to 4f series having configuration $[Xe]4s^96s^2$. However the remaining members belong to 5f series (actinides).
- **87.** (c) Fe^{+2} and Ni^{+2} both.
- **89.** (b) $Ti^{+4} \rightarrow 3d^0 4s^0$ \therefore no unpaired e^- .
- **91.** (d) Transition metal as its last electron enters *d*-orbital.
- **92.** (a) d^5

This configuration is more stable because of symmetrical distribution of e^- and exchange energy.

 S^1

93. (c) Among the transition metals *Mn* forms maximum no. of oxides.

94. (c) Due to d^5 configuration, metallic bonds are weak. d^5 orbital is half filled as a result 3d electrons are more tightly held by the nucleus and this reduces the de-localization of electrons resulting in weaker metallic bonding.

95. (a) Cu^{+2}

S.N Ion Electronic No. of

0		configurati	unpaired
		on	electrons
(i)	Cu^{+2}	d^9	1
(ii)	Ni ⁺²	d^8	2
(iii)	Co^{+2}	d^7	3
(iv)	Fe^{+2}	d^{6}	4

 $\mu = \sqrt{n(n+2)}$ (magnetic moment)

 Cu^{+2} there is only 1 unpaired electron so its magnetic moment is least.

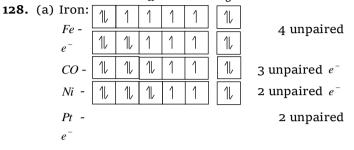
- **96.** (c) In the first transition series $Mn(3d^54s^2)$ shows the maximum oxidation state of + 7.
- **97.** (c) They crystallize with body centered cubic and hexagonal close packed structure.
- **99.** (d) Carrying unpaired electrons.
- **102.** (d) All are transition elements and form complex ion.
- **103.** (d) *Ni* and *Co* are used as catalyst.
- **104.** (c) Magnetic moment depend upon the no. of unpaired electrons.
- **105.** (a) *Cr* has 6 unpaired electrons.
- **106.** (d) Europium is a f block elements as it follows the general electronic configuration of the f – block elements $(4f^{1-14}5d^{0.1}6s^2)$

 $Eu = [Xe] 4 f^7 6 s^2$

- 107. (c) 70% Cu and 30% Zn are mixed to form brass which is used in making utensils, artificial jewelry.
- 108. (d) Strength of metallic bond depends upon number of unpaired electrons. As number of unpaired electrons increases, the bond strength increases. So Cr, Mo, W show stronger bonding due to maximum number of unpaired electron.
- **109.** (d) Zn^{+2} as there are no unpaired electrons.

Zn	1	1	1	1,	1	1
Zn^{+2}	1	1	1	1,	1	

- 110. (d) Cobalt is used in cancer therapy.
- **111.** (b) *Cu* is oxidised which turns the solution blue.


113. (d) $Zn^{+2} - 3d^{10}4s^0$ so there are no unpaired electrons.

- **114.** (b) $Sc 21 \rightarrow 3d^1 4s^2$
- **116.** (b) $3d^5$ as this configuration corresponds to maximum number of unpaired electrons.
- **121.** (a) Hg because it lies below H_2 in electrochemical series and thus cannot reduce it.

- **122.** (c) High charge/size ratio and vacant *d*-orbitals.
- **123.** (d) They have one or more unpaired d electron.
- **125.** (a) *Fe* because it easily gets oxidised in moist air.

$$Fe \xrightarrow[H_2O/H^+]{air} Fe_2O_3.xH_2O_{Rust}$$

126. (d) Pt, because it is a noble metal and does not react with air, water or acid at room temperature. d s

Therefore, *Fe* is most ferromagnetic as it has maximum number of unpaired electrons.

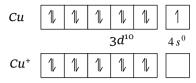
- **129.** (d) The transition metals form a large number of interstitial compounds in which small atoms like hydrogen, carbon, boron and nitrogen occupy interstitial sites in their lattices.
- **130.** (d) Because Pt is a noble metal.

131. (a) $Zn - 3d^{10}4s^2$

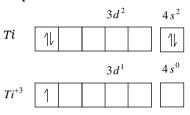
 $Zn^{++} - 3d^{10} 4s^{0}$

132. (c) $Ti \rightarrow 3d^2 4s^2$

 $Ti^{+4} \rightarrow 3d^0 4s^0$


- **133.** (a) Atomic no. 58 to 71 are rare earth metals. Lanthanide s
- 58 to 71 and 90 to 103 134. (c). (Lanthanides & actinides).
- **136.** (c) To form complex compounds.
- **137.** (b) *Cu* as it comes after *H* in electrochemical series.
- **139.** (a) Their *d*-orbitals are completely filled.
- 140. (b) Cu as it comes after H in electrochemical series. It has positive standard reduction potential thus does not provide electrons for reduction.
- 144. (b) $6Hg + O_3 \rightarrow 3Hg_2O$ Mercurous oxide During this reaction, mercury loses

its miniscus and starts sticking glass.


- **145.** (d) Ga, In, Tl; they belong to p-block.
- 148. (c) Zn, Cd and Hg are non typical transition elements because they have complete dorbitals.
- **150.** (a) In Cr^{3+} number of unpaired $e^{-} = 3$. A electronic configuration of $Cr^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$.
- 151. (c) Zinc does not have any unpaired electron pair so it forms only colourless compound.

153. (a) VII B groups as the metal must contain 7 electrons in ultimate shell in order to show + 7 oxidation state. $3d^{10}$ $4s^1$

154. (b)

155. (c) Ti^{+3} is paramagnetic due to the presence of an unpaired electron.

- 156. (d) At 350K and 1 atm pressure 1 unit volume of *Pd* absorbs 900 unit volume of H_2 .
- **157.** (b) $Cu^{2+} \rightarrow 3d^9 4s^0$

1 unpaired e^- .

- **159.** (a) Mercury does not give H_2 on reacting with water because its ionisation energy is so much high.
- **160.** (a) Removal of electron is easier in f -block elements due to more shielding.
- **161.** (c) Transition metal show variable valency due to presence of vacant d-orbitals.
- **163.** (b) $Fe^{2+} 1s^2 2s^2 p^6 3s^2 p^6 d^6$.
- **164.** (c) It has 6 electrons in 3*d* orbital.
- 165. (a) They form oxide readily.
- **166.** (d) Cr^{+3} due to presence of unpaired electrons.
- **169.** (d) Fe^{++} due to presence of 4 unpaired electrons.
- **170.** (d) *Fe* because it belongs to transition series.
- **171.** (c) Lanthanide contraction takes place.
- **172.** (a) Variable oxidation states give free valencies.
- **173.** (b) Mn = +2, +3, +4, +5, +6, +7
- 175. (a) *Zn* due to no unpaired electron in *d*-orbital.
- **176.** (c) $1s^2$, $2s^2p^6$, $3s^2p^6d^2$, $4s^2$.
- **179.** (d) $\mu = \sqrt{n(n+2)}$ (μ = magnetic moment)

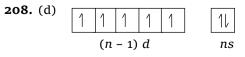
(n = no. of unpaired electron). $2.83 = \sqrt{n(n+2)}$ n(n+2) = 8 $n^2 + 2n - 8 = 0$ n=2.

180. (a) $Cr^{+++} \rightarrow \text{green}$

 $Fe^{+++} \rightarrow Pale-green$

181. (b) Inner transition elements means f-block element, they have three incomplete outer orbitals.

- **185.** (b) d d transition of 3d electrons.
- **186.** (a) $K_4[Fe(CN)_6]_{+1}$


4 + x - 6 = 0x = 6 - 4x = +2.

- **188.** (b) $Mn^{2+} 3d^5 \rightarrow \text{unpaired } e^-$.
- **189.** (a) Very high ionisation energy and weak metallic bond.
- **191.** (c) Iron because mercury does not form amalgam with iron.
- **192.** (c) Chromium gives protective and decorative coating to the base metal.
- **193.** (c) *d*-block elements as last electron enters in *d*-orbital.
- **195.** (d) Highest oxidation state \rightarrow no. of $s - e^- + no.$ of $d - e^-$ 2 + 2 = 4
- 196. (c) Ionic and covalent compounds.
- **198.** (c) $[Kr]4d^{10}5s^1$ (atomic no. = 47)
- **199.** (a) Magnese is stronger oxidising agent in + 7 oxidising state. *e.g.* $KMnO_4$
- **200.** (a) $Cu^+ 3d^{10} 4s^0$; no unpaired e^- .
- **201.** (a) Fe CO Ni. With the increase in the *d*-electrons, screening effect increases, this counter balances the increased nuclear charge due to increase in atomic number. As a result atomic radii remain practically same after chromium.
- **202.** (d) *Ta* because it is non-corrosive.
- **205.** (d) Cobalt due to presence of unpaired e^- .
- **206.** (c) $Ti^{3+} \rightarrow 3d^1 4s^0$; $Sc^{3+} \rightarrow 3d^0$

$$Mn^{2+} \rightarrow 3d^5 4s^0$$
; $Zn^{2+} \rightarrow 3d^{10} 4s^0$

In Mn^{2+} number of unpaired $d e^- = 5$. So it has maximum magnetic moment according to the formula. $\mu = \sqrt{n(n+2)}$

207. (a) + 4 oxidation state of cerium is also known in solution.

 $(n-1) d^5 n s^2$ can achieve the maximum oxidation state of + 7.

209. (b)
$$Ti_{22} = 3d^2 4s^2$$
; $Ti^{2+} = 3d^2$
 $V_{23} = 3d^3 4s^2$; $V^{2+} = 3d^2$
 $Cr_{24} = 3d^4 4s^2$; $Cr^{4+} = 3d^2$
 $Mn_{25} = 3d^5 4s^2$; $Mn^{5+} = 3d^2$

- 210. (a) As sixth period can accommodate only 18 element in the table, 14 member of *HF* series (atomic number 58 ot 71) are separately accommodated in a horizontal row below the periodic table. These are called as lanthanides.
- 212. (b) The oxidation state in both (lanthanide and actinide) is +3. The property of actinide are very similar to those of lanthanide when both are in +3 state.
- **213.** (b) The lanthanide contraction relates to atomic as well as M^{3+} radii in which the regular decrease in the size of lanthanoid ion from La^{3+} to Lu^{3+} are found.
- **214.** (b) Highest magnetic moment depends upon number of unpaired electron since

$$Cr^{2+} = 3d^4 4s^0$$
, $Mn^{2+} = 3d^5 4s^0$
 $Cu^{2+} = 3d^9 4s^0$, $Co^{2+} = 3d^7 4s^0$, $Ni^{2+} = 3d^6 4s^0$

So Mn^{2+} contain maximum number of unpaired electron *i.e.* 5.

- **215.** (c) Cobalt 27 belong to 3*d* transition series having in complete 3*d* orbitals *i.e.*, $3d^7$.
- **216.** (a) It is the Tata iron and steel company.
- **217.** (c) The atomic weight of Co, Ni and Fe are 58.90, 58.60, 55.85 respectively. Therefore Co > Ni > Fe is the correct sequence of atomic weight.
- **218.** (d) The first ionization energies of Ti, V, Cr and Mn are 656, 650, 652 and 717 kJ/mole respectively. I.E. increase in a period from $L \rightarrow R$ hence, manganese has maximum first ionisation potential.
- **219.** (b) Metal *M* belongs to *d*-block. Its electronic configuration can be arranged as, $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$.
- **220.** (b) We know that transition element are those element which have partially filled *d*-subshell in their elementary form. Therefore, the general electronic configuration of *d*-block element is $(n-1) d^{1-10} ns^{1-2}$.
- 221. (b) The element with atomic no. 105 is dubnium. In IUPAC nomenclature, it is known as un-nil pentin.

222. (b) The compound which have the unpaired electron show the paramagnetic property.

- **223.** (b) Among the given choice Mn^{2+} and Fe^{3+} involve isoelectronic ions.
- **224.** (a) Elements or ions containing unpaired electrons are paramagnetic.

$$Ni^{2+} \text{ stage } 3d^{8} 4s_{2} ; Ni^{2+} = [Ar] 3d^{8} 4s^{0}$$

$$Ni^{2+} \text{ stage } 3d \qquad 4s$$

$$1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1$$

Because Ni^{2+} have 2 unpaired electrons in 3d subshell therefore it is paramagnetic.

225. (b) Cr(Z = 24) has electronic configuration

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ (: half filled *d* orbital is more stable than incompletely filled *d* orbital)

226. (b) The expected electronic configuration of *Cu* (29) is $[Ar] 3d^9 4s^2$ but actually it is found to be $[Ar] 3d^{10} 4s^1$. This is because fully filled *d* orbitals are more stable than incompletely filled *d*-orbitals. So there is a migration of one e^- , from 4s orbital to 3d orbital to give a more stable configuration.

227. (d) Ce - 58 have configuration $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^6 4d^{10} 4f^2, 5s^2 5p^6 5d^0, 6s^2$

Since, its last electron enter in *f*- sub-shell, therefore it is a member of *f*-block.

228. (a) $Ni \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$

$$Ni^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$$

 $3d^8 = 10 - 2 = 2$ unpaired electron.

230. (d)
$$_{25}Mn = 3d^54s^2$$

After losing two electron electronic configuration will be like this $(_{25}Mn^{++}3d)$ and this is most stable configuration due to half filled orbitals hence third ionization enthalpy will be highest in this case.

231. (a)
$${}_{21}Sc \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$$

 $Sc^{+3} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$

Due to presence of paired electron it will be colourless.

- **232.** (a) Lanthanum is the first element of Lanthanide series so size decreases with increase in atomic number so *La* has the largest atomic radii.
- **234.** (a) Tl^+ ions are more stable than Tl^{3+} and thus, Tl^{3+} ions change to Tl^+ ions thereby acting as oxidising agents. Tl^{3+} compounds + $2e \rightarrow Tl^+$ compounds

(less stable oxidising (more stable oxidising

237. (a) $Fe^{3^+} \rightarrow [Ar] \ 3d^6 \ 4s^0$, number of unpaired electrons = 5

 $Fe^{2+} \rightarrow [Ar] \ 3d^6 \ 4s^0$, number of unpaired electrons = 4

 $Co^{2+} \rightarrow [Ar] \ 3d^7 \ 4s^0$, number of unpaired electrons = 3

 $Co^{3^+} \rightarrow [Ar] \ 3d^6 \ 4s^0$, number of unpaired electrons = 4

- **238.** (d) Paramagnetic character is actually due to presence of unpaired electrons.
- **239.** (b) Mercury has the property of dissolving nearly all metals, forming liquid or solid solutions called amalgams. It amalgamates well with gold, silver and tin, but does not dissolve iron or platinum. Presence of these may result in sickening or flouring of the mercury.
- **240.** (b) *Ce* -lanthanide, *Cs* -alkali metal, *Cf* -actinide, *Ca* -alkaline earth metal.
- **241.** (b) Where n = number of unpaired electron

For
$$Sc^{3+} = 3d^0, n = 0$$
, $\therefore \mu = 0$

Compounds of Transitional elements

1. (a)
$$MnO_2$$
, MnO_2 , Mn^{24}

In neutral medium : $2KMnO_4 + 3MnSO_4 + 2H_2O \rightarrow$

 $K_2SO_4 + 2H_2SO_4 + 5MnO_2$

In alkaline medium :

$$2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + 3O$$

In acidic medium :

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$$

$$+5H_{2}O+5O$$

- (c) Oxidation state of *Mn* changes from +7 to +2 in acidic medium *i.e.* one mole of it accepts 5 mole of electrons.
- **3.** (d) Since it accept $6e^-$ its

Equivalent weight =
$$\frac{M}{6}$$
.

5. (b) Decreases from + 6 to + 3. $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3O$ $\frac{[H_2S + [O] \rightarrow S + H_2O] \times 3}{K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \rightarrow}$

$$K_2 SO_4 + Cr(SO_4)_3 + 7H_2O + 3S_4$$

6. (c) $FeSO_4$ is oxidised and $KMnO_4$ is reduced.

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$ $[2FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 2H] \times 5$

$$[2H+[O] \rightarrow H_2O] \times 5$$

$$2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow$$

$$K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$$

In this reaction oxidation state of Mn is changing from +7 to +2 while oxidation state of Fe is changing from +2 to +3.

- 7. (a) $Hg_2Cl_2 + 2NH_4OH \rightarrow NH_4Cl + 2H_2O + Hg + HgNH_2Cl$ Calomal
- **8.** (b) Ag^+ forms a complex ion with NH_3

$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$$

9. (b) Four water molecules.

 $CuSO_4.5H_2O$ is a crystalline salt. Four H_2O molecules attach to copper forming a square planar symmetry and two oxygen atoms from SO_4^{2-} ion complete the distorted octahedron. The fifth water molecule is attached through hydrogen bonding between one of the coordinated water molecule and one of the sulphate ion.

10. (d) A_gCl is a covalent compound hence it is insoluble in water also it form complex with NH_4OH , thus is soluble in NH_4OH .

$$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + H_2O$$

11. (a) Basic copper acetate.

(Verdigris - $(CH_3COO)_2Cu.Cu(OH)_2$) is a blue green powder used in green pigment and in dyes. Also in manufacture of insectisides and fungicides.

- **13.** (a) H_2O_2 reduces acidified $KMnO_4$ solution. As a result. The pink colour of $KMnO_4$ is changed.
- **14.** (a) MnO_2 forms amphoteric oxide due to intermediate oxidation state.
- **15.** (a) *MnO* is ionic due to lower oxidation state.
- **17.** (a) Manufacture of blue black ink.
- **18.** (d) As fertilizer because it is not required by plants.
- 20. (b) Since Ag is less reactive than Cu therefore it does not displace Cu from CuSO₄ while other metals are more reactive, they displace Cu from CuSO₄.
- 21. (d) Its reduction to metallic silver.

$$2AgNO_3 \rightarrow 2Ag_{\text{black stain}} + N_2 + 3O_2$$

22. (c) $Na_2S_2O_3 + CuSO_4 \rightarrow NaCuS_2O_3$

23. (e)
$$2HgO \xrightarrow{\Lambda} 2Hg + O_2$$

24. (b) $2Fe + 3Cl_2 \rightarrow 2FeCl_3$

25. (c) $Fe(OH)SO_4$

FeSO
$$_{4} \xrightarrow{H_{2}O} Fe(OH)SO_{4}$$

27. (d) $\frac{1}{5}$ × molecular weight of *KMnO*₄

as transfer of $5e^-$ takes place when $KMnO_4$ acts as oxidant in acidic medium.

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5O$

- 28. (a) Oxidation number of *Cr* in options *a*, *b*, *c* and *d* are +6, +4, +3, +3 respectively.
 In given options (a) has high oxidation number therefore its radii will be low. Atomic radii decreases with increase in oxidation no.
- **33.** (b) Cuprous chloride. $Cu(s) + 2HCl + CuSO_4 \rightarrow 2CuCl + H_2SO_4$ Cuprous chloride
- **34.** (d) Cuprous chloride slowly oxidises to green basic cupric chloride.

$$CuCl \xrightarrow{un} 3CuO.CuCl_2.3H_2O$$

green coloured

- **35.** (a) $2CuCl + 2HCl + [O] \rightarrow 2CuCl_2 + H_2O$
- 38. (b) Equivalent weight of *KMnO*₄ in acidic medium is *M*/5

$$\therefore$$
 Equivalent weight = $\frac{158}{5}$ = 31.6

- **39.** (b) In acidic medium, $KMnO_4$ gives 5 oxygen while acidic $K_2Cr_2O_7$ gives 3 oxygen.
- **41.** (a) Ag_2O is mild oxidising agent as greater the oxidation number of metal stronger oxidising agent.

$$K_2Cr_2O_7 + 3H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3(O) + 3H_2$$

No. of electrons lossed = 12 - 6 = 6
∴ Equivalent weight = $\frac{M}{6} = \frac{294}{6} = 49$.

44. (a)
$$ZnSO_4 \rightarrow Zn^{++} + SO_4^{-2}$$

 $Zn^{++} \approx Cu^{++}$
 $Cu^{+2} \rightarrow 3d^9 - 1$ unpaired

 \therefore paramagnetic in nature.

46. (b) $KMnO_4$ is first reduced to manganate and then to insoluble manganese dioxide. Colour changes first from purple to green and finally becomes colourless.

$$\frac{2KMnO_7 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O}{2K_2MnO_4 + 2H_2O \rightarrow 2MnO_2 + 4KOH + 2O}$$

$$\frac{2KMnO_2 + H_2O \longrightarrow 2MnO_2 + 2KOH + 3[O]}{2KMnO_4 + 3H_2SO_4 + 5C_2H_2O_4 \rightarrow}$$
47. (c) 2KMnO_4 + 3H_2SO_4 + 5C_2H_2O_4 \rightarrow

$$2Mn^{2+} + 8H_2O + 10CO_2$$

48. (b) $2KI + HgI_2 \rightarrow \underbrace{K_2Hgl_4 + KOH}_{\text{Nessler's reagent}}$

50. (c)
$$Cr_2O_7^{2-} + 8H^+ + 2SO_3^{2-} \rightarrow 2Cr^{+3} + 3SO_4^{2-} + 4H_2O_3^{2-}$$

51. (b) $KI + MnO_4^- \rightarrow K^+ IO_3^- + Mn^{+2}$

- **52.** (b) Among all the reactions given $CuSO_4$ does not react with *KCl* to give Cu_2Cl_2 .
- 53. (c) Mohr's salt.

 $2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow$

$$K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$$

Mohr's salt decolourises $KMnO_4$ by reducing Mn^{+7} ions to Mn^{+2} ions.

- **55.** (c) Amalgams are alloys which contain mercury as one of the contents.
- 56. (a) In order to make the image permanent, it is necessary to remove the unreduced silver bromide from the surface of the developed film. This operation is called fixing of image. Fixing is done by dipping the developed film or plate in sodium thiosulphate (hypo) solution. the hypo solution dissolves the unreduced silver bromide by forming a complex.

$$AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$$

Sodium argentothi osulphate
(soluble)

Thus sodium thiosulphate acts as a complexing agent.

- **58.** (d) All of these.
- **59.** (b) $Fe^{+3} 3d^5 5$ electrons unpaired. *Fe* will be attracted in magnetic field so will show increase in weight.
- **60.** (d) TiF_6^{2-} and Cu_2Cl_2 due to absence of unpaired electrons.
- **62.** (b) Copper oxide; $2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$
- **63.** (c) Cuprous iodide is precipitated with liberation of iodine.

 $2KI + CuSO_4 \rightarrow CuI_2 + K_2SO_4 + I_2$

64. (a) It is one third of its molecular weight in alkaline medium because it gives 3 nascent oxygen in alkaline medium.

$$2KMnO_4 + H_2O \xrightarrow{+3e} 2KOH + 2MnO_2 + 3[O]$$

 \therefore Equivalent weight = $\frac{M}{3}$

65. (c)
$$NaCl + H_2SO_4 + K_2Cr_2O_7 \rightarrow CrO_2Cl$$

$$CrO_2Cl_2 + K_2SO_4 + Na_2SO_4$$

Chromy1chloride

66. (b) Decomposes in sunlight.

$$2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$$

67. (c) Silver; $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ White ppt. **70.** (c) The formation and thermal decomposition of $Ni(CO)_4$.

71. (a)
$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]^{++}SO_4^{--}$$

72. (a) Equivalent wt. =
$$\frac{\text{molecular wt.}}{\text{total no. of } e^-\text{ gained or lost}} = \frac{M}{1} = M$$

76. (d) $HgI_2 + 2KI \rightarrow K_2[HgI_4] \Rightarrow 2K^+ + [HgI_4]^{--}$

80. (c) The conversion of dichromate to chromate. $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O$

81. (b) $MnO_2 + KOH \rightarrow K_2MnO_4$ pyrollusite

83. (c)

87.

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_5$$

- **84.** (d) Iron; $Fe + H_2 O/H^+ \rightarrow Fe_2 O_3 . xH_2 O$
- **85.** (b) Na_2CdCl_4 no unpaired electrons.

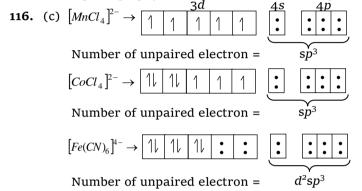
(c)
$$CuCN$$
; $3d^{10}$ 4.5
 Cu^+ $1/$ $1/$ $1/$ $1/$ $1/$

as all the electrons are paired. It is expected to be colourless.

- 88. (c) ZnSO₄, MgSO₄ are isomorphous i.e. having same structure.
- **90.** (a) TiO_2 because of 3d state *i.e.* no unpaired electrons.
- **91.** (b) $CoO \rightarrow Co^{+2}$ is blue colour.
- **92.** (c) $Ca_2P_2O_7 \rightarrow 2Ca^{++} + (P_2O_7)^{4-}Fe^{+3} + (P_2O_7)^{4-} \rightarrow Fe_4(P_2O_7)_3$
- **93.** (d) *AgI* because of high covalent character along with strong Vander Waal's attraction and electrostatic attraction between silver and iodide ions.
- **100.** (c) $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$ Sodium zincate
- **101.** (b) H_gCl_2 compound is easily volatile. They are insoluble in water and soluble in acids.
- **102.** (a) Colourless compounds are those which have no unpaired electrons and paramagnetic substance do have unpaired electrons. Therefore paramagnetic substance possess colour.

107. (c)
$$MnSO_4 \rightarrow Mn^{2+} + SO_4^{2-}$$

$$3d^{5} \qquad 4s^{0}$$
$$Mn^{2+} 1 1 1 1 1 1$$


due to presence of unpaired electrons it will form coloured salt.

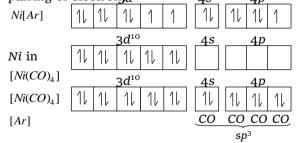
111. (a) Cast iron : iron -93-95%Carbon - 2.5 -5%, impurities about 2%.

- **112.** (a) $FeCl_3$ is a salt of strong acid and weak base. It gives $Fe(OH)_3$ and HCl on hydrolysis. $Fe(OH)_3$ is a weak base and HCl is strong acid. So the aqueous solution of $FeCl_3$ will be acidic in nature
- **113.** (b) $Cr_2^{6+} + 6e^- \rightarrow 2Cr^{3+}$; $Fe^{2+} \rightarrow Fe^{3+} + e^-$
- **114.** (a) CrO_3 and Mn_2O_7 are acidic oxide since they react with water to form acid.

$$CrO_3 + H_2O \rightarrow H_2CrO_4$$
; $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$
Chromic
acid
Permagnic
acid

115. (a) In photography as it is sensitive towards light.

Magnetic moment = $\sqrt{n+2}$


Where, n = number of unpaired electron *i.e.*, greater the number of unpaired electron greater will be the paramagnetic character.

117. (a) In the compound $[Ni(CO)_4]$

Oxidation number of Ni = 0

Co-ordination number of Ni = 4

(Co (carbonyl) is a strong ligand so it cause pairing of electron) d^8 $4s^2$ 4p

118. (a) Applying the oxidation number rule in $[Fe(H_2O)_5(NO)]SO_4$ (:: H_2O and NO are neutral)

 $[x + (0) \times 5 + 0] + (-2) = 0$

 $x + 0 + 0 - 2 = 0 \implies x = +2$

Hence, oxidation number of *Fe* is +2.

119. (c)
$$Zn + NaOH \rightarrow Na_2ZnO_2 + H_2$$

Sodium zincate Hydrogen

Thus in this reaction hydrogen gas is produced when zinc is treated with concentrated *NaOH*.

- **120.** (c) $Fe_2O_3 + 6NaOH \rightarrow 2Fe(OH)_3 \downarrow + 3Na_2O$ Brown (insoluble in NaOH)
- **121.** (c) Mercurous chloride are insoluble in water while rest are soluble in water.
- **122.** (a) *ZnO* is an amphoteric oxide,

 $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$ $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$

- **123.** (a) Fe^{3+} ion has $[Ar] 3d^5$ configuration hence number of unpaired electron is 5.
- **124.** (b) $FeS + H_2SO_4 \rightarrow FeSO_4 + H_2S$
- 125. (c) In this complex CO^{2+} ion have 3 unpaired electron so spin only magnetic moment will be $\sqrt{3(3+2)}$ *i.e.*, $\sqrt{15}$ *B.M.*
- 126. (a) Platinum acts as catalyst in the oxidation of ammonia to form nitric oxide. This reaction is used in the Ostwald's method of nitric acid preparation

$$4NH_{3} + 5O_{2} \xrightarrow{Pt} 4NO + 6H_{2}O$$
$$2NO + O_{2} \rightarrow 2NO_{2}$$
$$4NO_{2} + O_{2} + 2H_{2}O \rightarrow 4HNO_{2}$$

127. (c) Iron is oxidised to ferrous nitrate and nitric acid is changed to ammonium nitrate

 $4Fe + 10HNO_3 \rightarrow 4Fe(NO_3)_2 + NH_4NO_3 + 3H_2O$

128. (a)
$$CrO_3 + 2NaOH \rightarrow Na_2CrO_4 + H_2O$$

129. (c) $2KI + CuSO_4 \rightarrow CuI_2 + K_2SO_4$ Unstable

$$2CuI_2 \rightarrow Cu_2I_2 + I_2$$

Hence, solution contains Cu_2I_2, I_2 and K_2SO_4 .

130. (a) Cu is placed above Ag in electrochemical series, hence it can replace Ag from its salts solution. Therefore the reaction occurs as follows,

$$\overset{0}{Cu}$$
 + AgNO₃ $\xrightarrow{\text{Oxidation}}$ $\overset{+1}{Cu}$ NO₃ + Ag

- 131. (a) When the quenched steel is heated to temperature below red hot and then allowed to cool slowly, it becomes soft. This process is known as annealing.
- **132.** (a) We know that ammonia the order of solubility is AgCl > AgBr > AgI. Therefore, AgCl is more soluble in ammonia.
- **133.** (d) In alkaline medium, $KMnO_4$ first reduced in manganate & then in insolusle manganese dioxide.

$$2MnO_4^- + H_2O \rightarrow 2MnO_2 + 2OH^- + 3[O]$$

In acidic medium, Manganous sulphate formed

$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$.

134. (c)
$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} 2K_2 CrO_4 + Cr_2 O_3 + \frac{3}{2}O_2$$

135. (a) *HgS* is soluble in aqua-regia and it is insoluble in hot dil. HNO_3 .

136. (d)
$$Ag_2 O \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2$$

- **138.** (a) *H*_g*Cl*₂ show dimerisation. It found in dimer form.
- **139.** (b) Iron pyrites (*FeS* $_2$) is also called 'fools gold'.
- 140. (c) According to Fajan, small anion is polarised to lesser extent than the larger anion. Hence AgF will be the most ionic and has high melting point.
- **141.** (c) Potassium dichromate, on heating gives oxygen and chromic oxide (Cr_2O_3) .

 $4K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2Cr_2O_4 + 3O_2 + 2Cr_2O_3$

142. (a) Nickel is purified by Mond's process

$$\operatorname{Kickel}_{\operatorname{mpure}} + \underbrace{CO}_{\operatorname{Gaseous \ comp.}} Ni(CO)_4 \xrightarrow{180^{\circ}C} Ni + 4CO$$

- 143. (b) Stainless steel contains 11.5% Cr and 2.0% Ni with Fe.
- 144. (d) German silver is an alloy of copper not silver containing Cu = 56.0%, Zn = 24.0% and Ni = 20.0%.
- 145. (e) This scheme take place in Van Arekel process by this process ultrapure metal is prepared, the impure metal is first converted into a volatile stable compound generally iodide(leaving behind the impurities which is then decomposed at a higher temperature to give the pure metal. Metal like titanium, zirconium are purified by this method.
- **146.** (e) *HgS* on strong heating gives *Hg*.
- **147.** (a) $Cr_2O_3.2H_2O$ is known as cruignet green.
- 148. (c) Vanadium (III) oxide is a strong reducing agent vecause vanadium is electropositive metal and have high reduction potential. It has low heat of sublimation, low ionisation potential.
- **149.** (b) Stainless steel does not rust because chromium forms an oxide layer and protect iron from rusting.
- **150.** (b) $HgCl_2 + Na_2CO_3 \rightarrow HgCO_3 + 2NaCl$ $HgCO_3 \xrightarrow{\Lambda} HgO + CO_2$
- **151.** (d) Ni in presence of CN^-

$$[Ni^{2+} \text{ in presence of } CN^{-} = [Ar]]$$

$$\begin{array}{c|c} 3d^{10} & 4s & 4p \\ \hline 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow \\ CN^{-} & CN^{-} CN^{-} CN^{-} \\ dsp^{2} \end{array}$$

d and f-Block Elements 891

As $[Ni(CN)_4]^{2-}$ has no unpaired electron. It is diamagnetic.

- **152.** (a) The solubility of silver bromide in hyposolution due to the formation of $[Ag(S_2O_3)_2]^{3-}$.
- **153.** (b) Brass is an alloy of Zn and Cu.
- **154.** (a) Iodine being a strong reducing agent reduce Cu^{2+} ions to Cu^{+} ions and itself gets oxidised to iodine.

$$2 \overset{+2}{CuSO}_{\text{Reduced}} + \overset{-1}{4KI}_{\text{Oxidised}} \rightarrow \overset{+1}{Cu_2} \overset{0}{I_2} + \overset{0}{I_2} + 2K_2SO_4$$

155. (c) Rust is Fe_2O_3 and $Fe(OH)_3$

156. (a)
$$_{21}Sc = [Ar] 3d^1 4s^2$$

 $Sc^{3+} = [Ar] 3d^0 4s^0$ no unpaired electrons in *d* sub shell, so it is diamagnetic and colourless.

- **157.** (c) Zinc sulphate $(ZnSO_4.7H_2O)$ is called white vitriol. It, when heated with barium sulphide, forms a white pigment lithopone.
- **158.** (a) Isomorphic compound are those compounds which forms same type of crystals *i.e.*, have similar structure. $FeSO_4.7H_2O$ is isomorphous with $ZnSO_4.7H_2O$.
- **159.** (b) Colour of transition metal ion salt is due to d-d transition of unpaired electrons of *d*-orbital. Metal ion salt having similar number of similar number of unpaired electron in *d*-orbitals shows similar colour in aqueous medium

$$V^{4+}: [Ar] 3d^{1} 1$$

$$Cu^{2+}: [Ar] 3d^{9} 1\downarrow 1\downarrow 1\downarrow 1\downarrow 1$$

Number of unpaired electrons = 1

- **160.** (b) *Zn* dissolve in Conc. *NaOH* due to the formation of Sodium Zincate.
 - $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$
- **161.** (b) *CdS* -- Yellow *CuS* -- Black
 - - ZnS -- White
 - CoS -- Black
- **162.** (c) $KMNO_4$ will not be oxidized further by ozone as maganese is already present in its highest possible oxidation state i.e. +7
- **163.** (d) In alkaline medium $2KMnO_4 + KI + H_2O \rightarrow 2MnO_2 + 2KOH + KIO_3$

164. (b)
$$2KI + 2CuSO_4 \rightarrow I_2 + Cu_2I_2 + 2K_2SO_4$$

 $O_1 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$

166. (c) Bronze contain
$$Cu = 75 - 90\%$$
, $Sn = 10 - 25\%$

168. (b) Brass(*Cu* + *Zn*)

German silver (Cu + Zn + Ni)

- **169.** (c) $4Au + 8KCN + 2H_2O + O_2 \rightarrow 4K[Au(CN)_2] + 4KOH (Solube complex)$
- **170.** (d) Platforming is a process for manufacturing platinum.
- 171. (a) We know by reducing auric chloride by stannous chloride, the colloidal solution of gold is obtained. It is known as purple of cassium.

172. (c) List 1List 2(i) Explosive $Pb(N_3)_2$ (ii) Artficial gem Al_2O_3 (iii) Self reductionCu(iv)Magnetic Fe_3O_4 material

178. (b) Fe + Cr + Ni =Stainless steel

- **179.** (c) *CaO* and *MgO* are refractory materials. They have very high melting point.
- **180.** (b) Brass contain Cu = 60% and Zn = 40% in its composition.
- **181.** (a) Annealing is a process of heating steel to redness followed by slow cooling

+ 3 state is most stable because of half filled *d* sub-shell

- **183.** (b) $Fe_{95-97\%}$ and $Ni_{3-5\%}$.
- **185.** (a) The process of producing a hard coating of iron nitride on steel is called nitriding.
- **187.** (c) Iron loses magnetic property at curie point.
- **188.** (d) Heat treatment alters the properties of steel due to change in the lattice structure due to differential rate of cooling.
- **189.** (c) The passivity of iron is due to the formation of a thin insoluble and invisible iron film on surface which prevents its further reactions. The film is due to the formation of Fe_3O_4 .
- **190.** (c) $2Fe + SO_2 \rightarrow FeO + FeS$
- **191.** (a) The steel obtained by this process retains its hardness but is not brittle.
- **192.** (d) In blast furnace at $400-600^{\circ}C$ for the smelting of iron, following takes place:-

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

- **194.** (a) $Cu + Zn + Ni_{20\%} + Ni_{20\%} + Ni_{20\%}$
- **195.** (d) Iron is rendered passive by conc. HNO_3 and other oxidising agents like $K_2Cr_2O_7$, $KMnO_4$, Chloric acid, chromic acid, silver nitrate etc. A

specimen of passive iron can be rendered active by scratching the film mechanically or chemically.

- 199. (b) Fe present in Haemoglobin
- **201.** (d) $2FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3$

203. (a)
$$NO_3^- + H_2SO_4 \rightarrow HNO_3 + HSO_4^-$$

 $2HNO_3 \rightarrow H_2O + 2NO + 3[O]$
 $FeSO_4 + NO + 5H_2O \rightarrow [Fe(H_2O)_5 NO^+]SO_4$
Brown colour

204. (a)
$$K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$$

In this reaction, the stronger Lewis acid SbF_5 displaces the weaker one, MnF_4 from its salt. MnF_4 is unstable and readily decomposes to give MnF_3 and fluorine.

205. (a) Case hardening : The process of hardening the surface of wrought iron by depositing a surface layer of steel on it is called case-hardening it is done by heating wrought iron in contact with potassium ferrocyanide. Alternatively, case hardening can also be done by heating wrought iron with charcoal and

by heating wrought iron with charcoal and then plunging it a suitable oil.

206. (a) Stainless steel is not corroded by air, moisture and small change in *pH*. Made up of Fe, N82% 7%

and $Cr_{11\%}$.

207. (b) Variety of irons	% of Carbon
Cast or Pig iron	2.5 - 4%
Wrought iron	0.12 - 0.25%
Steel	0.2 - 0.5%

- **208.** (a)
- 209. (c) Tempering : If the quenched or hardened steel is reheated to a temperature between 503 to 573 K and then allowed to cool slowly, the process is called tempering.
- **226.** (d) % of carbon in wrought iron is 0.2 0.5%, in steel 0.5 1.5% and in Pig iron 2.5 4%.
- **227.** (a) $Fe + 5CO \rightarrow [Fe(CO)_5]$ Pentacarbonyl iron (*O*)
- **230.** (d) Potash alum $K_2SO_4.Al_2(SO_4)_3.24H_2O_4$
- **231.** (c) A thin layer of Fe_3O_4 is formed on the Fe metal
- **232.** (a) $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$
- **233.** (b) *Mn* used to make alloy steel for armour plates, safes and helmets.
- **236.** (a) Solder (Pb + Sn), Bronze (Cu + Sn), Brass (Cu + Zn), Bell metal (Cu + Sn).
- **241.** (d) $Cu + Sn \rightarrow Bell metal$
- **242.** (b) Turnbull's blue Ferrous ferri cyanide $Fe_3[Fe(CN)_6]_2$
- **244.** (a) $Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$ $Cu + ZnSO_4 \rightarrow \text{no reaction}$

 $Cu + FeSO_4 \rightarrow \text{no reaction}$

$$E^{0}Zn^{+2}/Zn = -0.76 V$$

$$E^{0}Cu^{2+}/Cu = +0.34 V$$

$$E^{0}Fe^{2+}/Fe = -0.40 V$$

$$E^{0}Ag^{+}/Ag = +0.80 V$$

As it is clear that reduction potential of copper is more than Zn and Fe. Hence it is unable to displace them from their salts.

245. (b,c) Ferrous salts react with potassium ferricyanide to give blue colouration due to the formation of Tumbull's blue in this reaction, first ferrous salt is oxidised to ferric salt by the ferricyanide ion which itself is reduced to ferrocyanide.

$$\begin{split} Fe^{+2} + & [Fe(CN)_6]^{3-} \rightarrow Fe^{+3} + & [Fe(CN)_6]^{4-} \\ & \text{Ferricy anide} \\ Fe^{+3} + & [Fe(CN)_6]^{4-} \rightarrow & Fe[Fe(CN)_6]\}^- \\ Fe^{+3} + & [Fe(CN)_6]^{4-} + K^+ \rightarrow & K\{Fe[Fe(CN)_6]\} \\ & \text{Pot. ferric ferrocy anide} \\ & \text{or Tumbull's blue} \end{split}$$

Ferric ions react with potassium thiocyanate to give blood red colouration due to the formation of ferric thiocyanate

$$\begin{array}{c} FeCl_3 + 3KCNS \rightarrow Fe(CNS)_3 + 3KCl \\ & \\ & \\ Ferric thiocy anate \\ & \\ (Blood \ red) \end{array}$$

- **250.** (a) Electric protection : In this *Mg* acts as anode while iron pipe as cathode. *Mg* looses electrons prior to iron.
- **251.** (b) Pyrite (FeS_2) known as fool's gold
- **252.** (a) Stainless steel contains mainly Iron, Carbon, Nickel alongwith Chromium and Manganese.
- **253.** (d) Firstly, carbon which is added along which crushed haematite ore is oxidised to $CO(\text{and } \text{CO}_2)$ and second the produced CO acts as chief reducing agent for the reduction of haematite to steel.
- **255.** (a) By white tin platting iron can be protect by water.
- **256.** (d) $2Fe + 3CO \xrightarrow{\text{Heat}} Fe_2O_3 + 3C$
- **257.** (b) Magnetite is reduced by carbon.
- **258.** (d) Malachite (*Cu*(*OH*)₂.*CuCO*₃) Basic copper carbonate
- **259.** (b) + 2 is most important oxidation state

$$Cu^{+1} + e^{-} \rightarrow Cu$$
; $E^{0} = +0.52 V$

$$Cu^{+2} + 2e^{-} \rightarrow Cu$$
; $E^{0} = +0.34 V$

260. (d)
$$Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

262. (a) Metal Chloride in + 1 + 2 oxidation states

$$\begin{array}{ccc} Cu & CuCl & Cu_2Cl_2 \\ Ag & AgCl & - \end{array}$$

Na NaCl

265. (d) $Cu + HCl \rightarrow$ no reaction

Copper is less reactive than hydrogen. Therefore it is unable to displace hydrogen from acid.

 $E_{Cu}^0 = +0.34$ and $E_H^0 = 0.00$

- **266.** (a) Gun metal contains *Cu* (88%), *Zn* (2%), Sn(10%), *Pb* (0.5%)
- **267.** (b) Solder *Sn* 67% and *Pb* 33%.
- **268.** (c) Brass contains Cu = 80%, Zn = 20%German silver contains Cu = 60%, Zn = 20%, Ni = 20%
- **269.** (b) German silver contain Cu = 60, Zn = 20,Ni = 20%
- **270.** (b) Cu = 88%, Sn = 10%, Zn = 2%, $Pb = 0.5\% \rightarrow$ Gun Metal
- **274.** (b) $4Cu + 2H_2O \rightarrow 2Cu_2O + 2H_2$
- **276.** (b) $2Cu + 2H_2SO_4 + O_2 \rightarrow 2CuSO_4 + 2H_2O$
- **277.** (b) Cuprous ion (Cu^+) $3d^{10}$ Completely filled d sub shell $3d^{10}$

11	11	11	11	11

Cupric iom_d Cu^{+2}

	l 1
--	-----

One unpaired electron

278. (b)
$$CuSO_4 + K_4[Fe(CN)_6] \rightarrow$$
 no reaction
 $4NH_4OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{Deepblue}$
 $CuSO_4 + 5H_2O \rightarrow CuSO_4 . 5H_2O_{Anhydrous}$
 $4FeCl_3 + 3Na_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6] + 12NaCl_{Ferric ferrocy and (Prussian blue)}$
280. (d) $CuSO_4 + 2KCN \rightarrow Cu(CN)_2 + K_2SO_4$

 $2Cu(CN)_2 \rightarrow Cu_2(CN)_2 + (CN)_2$ $Cu_2(CN)_2 + 6KCN \rightarrow 2K_3[Cu(CN)_4]$

281. (a)
$$CuSO_4 + 4NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_4$$

- **282.** (c) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
- **284.** (a) $2Cu + CO_2 + H_2O + O_2 \rightarrow CuCO_3 \cdot Cu(OH)_2$ Basic copper carbonate

285. (a)
$$2CuSO_4 + K_4(Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + 2K_2SO_4$$

287. (d) *CuSO* $_4$ + *Hg* \rightarrow No reaction

 H_g is less reactive than C_u it comes below C_u in the reactivity series

288. (c) $Cu + H_2O \rightarrow$ No reaction

$$E_{Li^+/Li}^0 = -3.04 \ V \qquad E_{H^+/H_2}^0 = 0.00 \ V$$
$$E_{Ca^+/Ca}^0 = -2.87 \ V \qquad E_{Ca^+/Cu}^0 = +0.34 \ V$$

Cu comes below *H* in the electrochemical series. Hence, unable to displace hydrogen from water.

- **289.** (d) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$
- **291.** (c) $Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2.CuCO_3$
- **292.** (d) Orford process \rightarrow During electrolytic refining of *Ni* from orford bottoms the *Pt* metal together with gold and silver collect as anode mud in concentrated form which is later processed to separate the metals.
- **294.** (b) *A*_{*g*}*B*_{*r*} is used in photography because it is light sensitive.
- **296.** (b) $4AgCl + 2Na_2CO_3 \rightarrow 4Ag + 4NaCl + 2CO_2 + O_2$

297. (d)
$$2AgNO_3 + K_2CrO_4 \rightarrow Ag_2CrO_4 + 2KNO_{(Red)}$$

298. (c)
$$3Ag + 4HNO_3 \xrightarrow{\text{heat}} 3AgNO_3 + NO + 2H_2O_{\text{dilute}}$$

- **299.** (d) $AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$ (soluble complex)
- **301.** (b) AgBr is most sensitive to light and undergoes photochemical reduction $2AgBr \xrightarrow{\text{Light}} 2Ag + Br_2$
- **302.** (a) $NaNO_3$ is purely ionic while AgCl is covalent other compounds reacts with AgCl

$$2AgCl + Na_2CO_3 \rightarrow 2Ag + 2NaCl + CO_2 + \frac{1}{2}O_2$$
$$AgCl + 2Na_2CO_3 \rightarrow Na_2[Ag(S_2O_3)_2] + NaCl$$
$$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2Cl] + 2H_2O$$

- **304.** (a) A very dilute solution is used in causterisation of eyes and dental antiseptic
- **305.** (a) $2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$
- **306.** (a) $2AgNO_3 \xrightarrow{PH_3} 2Ag + 2NO_2 + O_2$
- **307.** (b) $2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4 + SO_2 + 2H_2O$
- **308.** (c) Ag salts on strong heating from Ag
- **309.** (a) Silver metal is extracted from the argentite ore (Ag_2S) by the cyanide process, in which ore is treated with sodium cyanide sold. Dicyanoargentate(I) $[2Na{Ag(CN)_2}]$ is formed.
- **310.** (b) When a strip of copper is dipped in the solution of silver nitrate, the solution becomes blue. *Cu* is placed above Ag in electrochemical series. $2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$
- **311.** (d) $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$
- **312.** (d) $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ $2Al + 2NaOH \rightarrow 2NaAlO_2$
- **314.** (d) The white solid dissolves to form a blue solution.

$$CuSO_4 + dil.H_2SO_4 \rightarrow CuSO_4.5H_2O_{blue vitriol}$$

317.

$$ZnSO_4 + 2NaHCO_3 \rightarrow ZnCO_3 + Na_2SO_4 + H_2O + CO_2$$

318. (b) $Zn + 2NaOH \xrightarrow{\text{heat}} Na_2ZnO_2 + H_2$

319. (d)
$$ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$$

320. (c) Very dil $HNO_3 :\rightarrow$ Ammonium nitrate is formed

 $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$

$$4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$$

321. (d)
$$Zn_{30} \rightarrow 3d^{10}$$
, $4S^2$

(c)

$$Zn^{+2} \rightarrow 3d^{10}$$

No unpaired electrons

11

- **323.** (d) Sodium tetraborate decahydrate $(Na_2B_4O_7.10H_2O)$
- **324.** (a) *Zn* does not react with cold water. However it reacts with hot water and yield H_2

$$Zn + H_2O \xrightarrow{\text{Boil}} ZnO + H_2$$

$$Zn + H_2SO_4(\text{dil}) \rightarrow ZnSO_4 + H_2$$

$$Zn + 2HCl(\text{dil}) \rightarrow ZnCl_2 + H_2$$

$$Zn + 2NaOH \xrightarrow{\text{heat}} Na_2ZnO_2 + H_2$$

325. (b) $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

- **327.** (a) The compound $ZnFe_2O_4$ is a normal spinel compound.
- **328.** (a) $ZnO + BaO \xrightarrow{1100^{\circ}C} BaZnO_{2}$
- **329.** (b) $4Zn + 10HNO_3 \rightarrow 4Z(NO_3)_2 + NH_4NO_3 + 3H_2O_3$
- **330.** (d) Lead is used for making radiation shield.
- **331.** (b) $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$

333. (d) In Mc Arthur Forest method, Silver is extarcted from solution of sodium argenticyanide by using *Zn*

$$2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(Cn)_4] + 2Ag \downarrow$$

338. (d)
$$Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$$

$$2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$$

342. (c) Self reduction

 $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

345. (c) $FeO + SiO_2 \rightarrow FeSiO_3$ _{Impurity} Flux Slag **346.** (c) Parke's process is used to extract silver from argentiferrous lead.

347. (c)
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$$

348. (d) Copper metallurgy involves bessemerisation. In bessemerisation converter, the impurities of Ferric Oxide forms slag with Silica and Copper Oxide gets reduced to give blister copper.

$$FeO + SiO_2 \longrightarrow FeSiO_3$$

$$Slag$$

$$Cu_2S + Cu_2O \longrightarrow 6Cu \downarrow + SO_2 \uparrow$$

349. (c) Bessemer converter is used to purify Pig Iron by passing compressed air over pig iron in Bessemer converter to produce slag.

$$2Mn + O_2 \longrightarrow 2MnO$$
; $Si + O_2 \longrightarrow SiO_2$

 $2C + O_2 \longrightarrow 2CO$; $MnO + SiO_2 \longrightarrow MnSiO_3$

- 353. (d) 1% Impure copper
- **358.** (c) None of the above. Since, gold is a noble metal and common acids do not attack on it if used singly.
- **359.** (a) Due to reduction of copper

 $Zn + CuSO_4 \rightarrow Cu + ZnSO_4$

360. (a) Reduction of Cu^{++} .

 $Fe + CuSO_4 \rightarrow FeSO_4 + Cu$

Critical Thinking Questions

- (c) Transition metal which have low oxidation number show the oxidising nature because of great tendency to lose the electron.
- **2.** (b) Cr^{+2} and Fe^{+2}

 $Cr^{+2} - 3d^4$ 4 unpaired electrons

 $Fe^{+2} - 3d^{6}$ 4 unpaired electrons

3. (d) The solubility order is :

 $AgF > AgCl > AgBr > AgI > Ag_2S$.

4. (d) No of unpaired electron in different ion are as under

 $Mg^{2+} \rightarrow 1s^{2}, 2s^{2}2p^{6}, 3s^{0} = 0$ $Ti^{3+} \rightarrow 1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{6}3d^{1}, 4s^{0} = 1$ $V^{3+} \rightarrow 1s^{2}, 2s^{2}2p^{6}, 3s^{2}3p^{6}3d^{2}, 4s^{0} = 2$ $Fe^{2+} \rightarrow 1s^{2}, 2s^{2}sp^{6}, 3s^{2}3p^{6}3d^{6}, 4s^{0} = 4$ 5. (a) The magnitude of stability constants for some divalent metal ions of the first transition series with oxygen or nitrogen donar ligands increases in the order.

 $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$

6. (c) Strong oxidising agents such as PbO_2 or sodium bismulthate (*NaBiO*₃) oxidise Mn^{2+} to MnO_4^- or Mn^{7+} .

7. (c) Given
$$n = 4 x = 5$$

So
$$(4-1)s^{2}(4-1)p^{6}(4-1)d^{5}4s^{2}$$

Total electron = 2 + 6 + 5 + 2 = 15Electron in 1 + 2 orbit = 2 + 8 = 10Total electron = 10 + 15 = 25No. of electron = No. of proton So total proton = 25

8. (b) Iron decomposes steam into hydrogen when it is passed over red hot iron

$$2Fe + 3H_2O \rightarrow Fe_2O_3 + 3H_2$$

9. (d) $CoCl_3 - Co^{+3} - 3d^6 4s^0$

4 unpaired electrons. So it will be coloured.

- 10. (a) Due to Lanthanoid contraction order will be Yb $^{+3}$ < Pm $^{3+}$ < Ce $^{+3}$ < La $^{3+}$
- 11. (d) In this reaction

$$\underset{1}{MnO_{4}^{-}+5Fe^{2+}+8H^{+}} \rightarrow Mn^{2+}+5Fe^{3+}+4H_{2}O$$

5 time quantity of Fe^{2+} consumed.

So 5 time of FeSO $_4$ will be equivalent to 50 ml

12. (abc) Due to less capacity of hydrogen bonding of I_2 with water HgI_2 is less soluble in water.

13. (c)
$$\frac{\text{Transition element } + \text{Inner tran sition element}}{\text{Total element}} \times 100$$

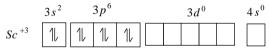
$$\frac{33+28}{105} \times 100 = 58.09 \approx 60\%$$

- 14. (a) All metal carbonyls are diamagnetic cyanide complexes are also diamagnetic.
- 15. (c) 22 carat gold is alloy of copper and gold.
- 16. (b) Fe^{3+} have highest no. of unpaired electron so it will be more paramagnetic.
- 17. (d) *p*-electrons in Cl^- (atomic no. of Cl = 17)

 $Cl^{-} \to 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$ $Fe^{2+} \to 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{6}$

In Fe^{+2} total number of $de^- = 6$ which is not equal to pe^- in $Cl^- = 12$.

- 18. (a) Basic character of oxide decreases from left to right in a period of periodic table.
- **19.** (b) $CuSO_4.5H_2O$ because it has only one unpaired electrons.
- **20.** (c) The existence of Fe^{2+} and NO^+ in Ntroprusside ion $[Fe(CN)_5 NO]^{2-}$ can be established by measuring the magnetic moment of the solid compound which should correspond to $(Fe^{2+} = 3d^6)$ four unpaired electrons.
- **21.** (c) $V^{+4} \rightarrow 3d^1 4s^0$


1 unpaired electrons. Hence, it is paramagnetic and coloured compound.

22. (a)
$$3MnO_4^- + 5(Fe^{2+} + C_2O_4^{2-}) + 24H^+ \rightarrow 3M 5M$$

 $3Mn^2 + 5Fe^{3+} + 10CO_2 + 12H_2O$

Thus 5*M* of FeC_2O_4 is oxidised by 3*M* of $KMnO_4$ then 1*M* of FeC_2O_4 is oxidised by 3/5 mole of $KMnO_4$.

- **23.** (b) $2MnO_4^- + 16H^+ + C_2O_4^{--} \rightarrow 2Mn^{+2} + 2CO_2 + 8H_2O$
- **24.** (b) $ScCl_3 \rightarrow Sc^{+3} + 3Cl^{-1}$

No unpaired electron so will show diamagnetic character and will be repelled, so will weigh less.

- **25.** (a) $(Ar) 3s^{1} + 3 = Ti$, it means M^{3+} form Ti^{3+} ion.
- 26. (b) $V = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$ $Cr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ $Mn = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$ $Fe = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

In second ionization enthalpy Cr^+ has exact half filled *d*-sub shell.

Assertion and Reason

- (b) Zn²⁺ is dimagnetic because it has no unpaired electrons
- **3.** (c) The assertion is correct but the reason is false. Actually transition metal show variable

valency due to very small difference between the ns^2 and (n-1)d electrons, Therefore, assertion is correct but reason is false.

(e) The aqueous solution of *FeCl*₃ is acidic in nature because *FeCl*₃ hydrolyse in water to produce acid ion.

 $FeCl_3 + 3H_2O \rightarrow Fe(OH)_3 + 3HCl$

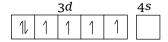
Therefore, assertion is false but reason is true.

5. (a) AgCl on adding to a solution of NH_4OH solution dissolves to form a complex diamine silver chloride.

 $AgCl + 2NH_4OH \rightarrow Ag(NH_2)_2Cl + 2H_2O$

Therefore, both assertion and reason are true and reason is a correct explanation of assertion.

- 6. (c) Pure iron is not used for making tools and machines as it is soft. Therefore, cannot be used for this purpose. Assertion is true but reason is false.
- 7. (a) A solution of Na_2CrO_4 in water is intensely coloured due to oxidation state of chromium in Na_2CrO_4 is +6. Here both assertion and reason are correct.
- (d) Copper corrods at negligible rates in 8. unpolluted air, water and deaerated nonoxidizing acids. Pure copper and the high copper alloys can be considered to exhibit similar resistance to most corrosive environments. They posses excellent resistance to atmospheric environments. Corrosion is a spontaneous process for which free energy change must be negative.
- **9.** (c) $_{24} Cr \rightarrow [Ar] 3d^4 4s^2$


$$Cr \rightarrow [Ar] 3d^5 4s^1$$

Full-filled *s*-orbital has greater stability.

10. (a) *Fe* has atomic no. 26.

So its electronic configuration is $[Ar] 3d^6 4s^2$.

 Fe^{2+} has electronic configuration [Ar] $3d^{6}$.

It has four unpaired electrons and it is paramagnetic.

- (b) Due to larger surface area and variable valencies to form intermediate absorbed complex easily, transition metals are used as good catalysts.
- 12. (c) Rusting involves reduction of absorbed oxygen to OH^- ions and oxidation of iron to Fe^{2+} ions. The two ions combine to yield $Fe(OH)_2$ which gets oxidized to give $Fe_2O_3.nH_2O$ (rust). The presence of acid helps dissolution of pure iron to ferrous ions while electrolytes increase the conductivity and assist the cell action.
- 13. (b) AgBr is the most sensitive silver halide to photo reduction. Hence it is used as the light sensitive material in photographic films. The unchanged AgBr is dissolved in hypo solution to cast an image on photographic plate.

 $2AgBr \xrightarrow{hv} 2Ag + Br_2$

- 14. (a) Tungsten is a metal of high melting point and its filament gives brilliant light on passing electric current.
- 17. (b) The magnetic moments are lesser than the fact that 5*f* electrons of actinides are less effectively shielded which results in quenching of orbital contribution.
- 18. (b) The higher the charge on the metal ion, smaller is the ionic size and more is the complex forming decreases in the order $M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+$. The higher tendency of complex formation of MO_2^{2+} of charge on metal atom *M* in MO_2^{2+}
- 20. (d) Extraction of iron metal from iron oxide ore is carried out by heating with coke and flux (calcium carbonate). Flux is a slag forming substance. It converts infusible impurities into fusible slag.

The reaction : $Fe_2O_3 (s) \rightarrow Fe(s) + 3 / 2 O_2 (g)$ is not a spontaneous process. Fe_2O_3 is converted to *FeO* at about 400°*C*. *FeO* is converted to *Fe* at about 800°*C* – 1000°*C*.

- 1. The equivalent weight of $MnSO_4$ is half of its molecular weight when it is converted to
 - (a) Mn_2O_3 (b) MnO_2
 - (c) MnO_4^- (d) MnO_4^{2-}
- 2. In which compound chromium has +6 oxidation state

[CPMT 2003]

(a) $K_2 Cr_2 O_7$ (b) $CrCl_3$

- (c) $Cr(SO_4)_3$ (d) None of these
- **3.** Which of the following metal does not show variable valency

[RPET 2000]

- (a) Fe
 (b) Hg
 (c) Zn
 (d) Cu
- Which of the following metals will not react with solution of CuSO 4 [CPMT 1974, 80; MH CET 2004]

(a)	Fe	(b) <i>Zn</i>
(c)	Mg	(d) Ag

5. Which metal among following has strongest tendency to undergo oxidation [CPMT 1989]

(a) <i>Zn</i>	(b) <i>Cu</i>
(c) <i>Mg</i>	(d) <i>Al</i>

6. Which of the following has highest paramagnetic character

(a) <i>Mn</i> (II)	(b) <i>Fe</i> (II)
(c) <i>Co</i> (II)	(d) <i>Ni</i> (II)

7. Ammonia is a Lewis base. It forms complexes with cations. Which one of the following cations does not form complex with ammonia

(a) Ag ⁺	(b) <i>Cu</i> ⁺⁺
(c) Cd ⁺⁺	(d) <i>Pb</i> ⁺⁺
	(-11

8. Which of the following is expected to form colourless complex [AMU 2000]

(a)	Ni^{2+}	(b)	Cu^+

- (c) Ti^{3+} (d) Fe^{3+}
- **9.** Which of the following is ferromagnetic

(a)	Cr	(b)	Mn

(c) W (d) Co

10. The most stable oxidation state of Mn is(a) +2(b) +4(c) +5(d) +711. The number of unpaired electrons in Mn^{+3} is(a) 4(b) 3(c) 2(d) Zero12. The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is(a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39, La = 57, Eu = 63, Lu = 71$)13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium(MP PET 1997)(a) 1(b) 3(c) 5(d) 614. The atomic radii from Cr to Cu is almost identical because of(a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons(c) Increased screening effect to nullify increased nuclear charge(d) All the above15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively(MP PET 1991, 2001](a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6		
(c) +5 (d) +7 11. The number of unpaired electrons in Mn^{+3} is (a) 4 (b) 3 (c) 2 (d) Zero 12. The correct order of ionic radii of Y^{3-},La^{3+},Eu^{3+} and Lu^{3+} is [CBSE PMT 2003] (a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6	10.	The most stable oxidation state of <i>Mn</i> is
11.The number of unpaired electrons in Mn^{+3} is(a) 4(b) 3(c) 2(d) Zero12.The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is[CBSE PMT 2003](a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < La^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$)13.One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium[MP PET 1997](a) 1(b) 3(c) 5(d) 614.The atomic radii from Cr to Cu is almost identical because of(a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons(c) Increased screening effect to nullify increased nuclear charge(d) All the above15.Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively(m) PET 1991, 2001](a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6		(a) +2 (b) +4
(a) 4 (b) 3 (c) 2 (d) Zero 12. The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is [CBSE PMT 2003] (a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < La^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		(c) +5 (d) +7
(a) 4 (b) 3 (c) 2 (d) Zero 12. The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is [CBSE PMT 2003] (a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < La^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6	11.	The number of unpaired electrons in Mn^{+3} is
(c) 2 (d) Zero 12. The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is [CBSE PMT 2003] (a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		
12.The correct order of ionic radii of Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is [CBSE PMT 2003](a) $La^{3+}, Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < La^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$)13.One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 614.The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above15.Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7		
(a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$ (b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) $+ 6$ and $+ 7$ (b) $+ 6$ and $+ 6$ (c) $+ 7$ and $+ 7$ (d) $+ 7$ and $+ 6$	12.	
(b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$ (c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		Y^{3-}, La^{3+}, Eu^{3+} and Lu^{3+} is [CBSE PMT 2003]
(c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		(a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$
(c) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. Y = 39, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		(b) $Y^{3-} < La^{3+} < Eu^{3+} < Lu^{3+}$
(d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		
(Atomic No. $Y = 39$, $La = 57$, $Eu = 63$, $Lu = 71$) 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from Cr to Cu is almost identical because of (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		
 13. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997] (a) 1 (b) 3 (c) 5 (d) 6 14. The atomic radii from <i>Cr</i> to <i>Cu</i> is almost identical because of (a) Increasing nuclear charge from <i>Cr</i> to <i>Cu</i> (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in <i>K</i>₂<i>MnO</i>₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		
oxidises the following number of moles of ferrous sulphate in acidic medium [MP PET 1997](a) 1(b) 3(c) 5(d) 614. The atomic radii from Cr to Cu is almost identical because of(a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons(c) Increased screening effect to nullify increased nuclear charge(d) All the above15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001](a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6	13.	
sulphate in acidic medium[MP PET 1997](a) 1(b) 3(c) 5(d) 614. The atomic radii from Cr to Cu is almost identical because of(a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons(c) Increased screening effect to nullify increased nuclear charge(d) All the above15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively(a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6	-5.	
 (c) 5 (d) 6 14. The atomic radii from <i>Cr</i> to <i>Cu</i> is almost identical because of (a) Increasing nuclear charge from <i>Cr</i> to <i>Cu</i> (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in <i>K</i>₂<i>MnO</i>₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		sulphate in acidic medium [MP PET 1997]
 14. The atomic radii from <i>Cr</i> to <i>Cu</i> is almost identical because of (a) Increasing nuclear charge from <i>Cr</i> to <i>Cu</i> (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in <i>K</i>₂<i>MnO</i>₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		(a) 1 (b) 3
 identical because of (a) Increasing nuclear charge from <i>Cr</i> to <i>Cu</i> (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in <i>K</i>₂<i>MnO</i>₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		(c) 5 (d) 6
 (a) Increasing nuclear charge from <i>Cr</i> to <i>Cu</i> (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in <i>K</i>₂<i>MnO</i>₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 	14.	
 (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in K₂MnO₄ and in <i>KMnO</i>₄ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		
 (c) Increased screening effect to nullify increased nuclear charge (d) All the above 15. Oxidation number of <i>Mn</i> in K₂MnO₄ and in <i>KMnO</i>4 are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6 		
nuclear charge (d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		
(d) All the above 15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		
15. Oxidation number of Mn in K_2MnO_4 and in $KMnO_4$ are respectively [MP PET 1991, 2001] (a) + 6 and + 7 (b) + 6 and + 6 (c) + 7 and + 7 (d) + 7 and + 6		-
$KMnO_4$ are respectively[MP PET 1991, 2001](a) + 6 and + 7(b) + 6 and + 6(c) + 7 and + 7(d) + 7 and + 6	15.	
(a) $+ 6$ and $+ 7$ (b) $+ 6$ and $+ 6$ (c) $+ 7$ and $+ 7$ (d) $+ 7$ and $+ 6$		
(c) + 7 and + 7 $(d) + 7 and + 6$		
	16.	

ET Self Evaluation Test -19

When phosphine is passed through aqueous solution of copper sulphate, the product produced is

(a)
$$Cu(OH)_2$$
 (b) Cu_3P_2

(c)
$$[Cu(PH_3)_4]^{2+}$$
 (d) $[Cu(PH_3)_2]^{2+}$

[NCERT 1973, 77; MNR 1984; KCET 1992]

- (a) $Al(OH)_3$ (b) $Fe(OH)_3$ (c) $Cr(OH)_3$ (d) $Cu(OH)_2$
- **18.** Which of the following pair of transitional elements exhibit highest and lowest density
 - (a) Os and Sc (b) Os and Pt
 - (c) Hg and Sc (d) Os and Ir

 When an acidified solution of ferrous ammonium sulphate it treated with potassium permanganate solution, the ion which is oxidised is [BHU 1979]

(a) MnO_4

(c) *Fe*⁺⁺

(b) NH_4^+

(d) SO_4^{2-}

(SET -19)

Answers and Solutions

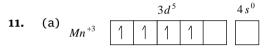
1. (b) $MnSO_4 \xrightarrow{-2e^-} MnO_2$

Equivalent wt. = $\frac{\text{molecular wt.}}{\text{total no. of } e^-\text{ gained or lost}} = \frac{M}{2}$

- **2.** (a) In $K_2Cr_2O_7$, Cr has + 6 oxidation state.
- **3.** (c) Zn shows only + 2 valency.
- 4. (d) Because Ag comes below in the electromotive series also standard electrode potential of Cu and Ag are:

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s); [SEP - E_{298}^{o}(volt) = +0.18]$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s); [SEP - E_{298}^{o} (volt) = +0.80]$$


- **5.** (c) M_g ; because of its high hydration energy.
- 6. (a) $Mn^{+2} 3d^5$

5 unpaired element in *d*-subshell so it has highest paramagnetic.

- 7. (d) Pb^{++} because it does not have vacant *d*-orbitals nor high nuclear charge and it does not belong to transition series.
- 8. (b) In Cu^{+1} (cuprous ion) d orbitals are completely filled so it will form colourless complex.
- **9.** (d) The substances which are strongly attracted by magnetic field and show permanent magnetism even in absence of magnetic field are ferromagnetic *e.g.*. *Co*,*Fe*,*Ni*
- 10. (a)

	$3d^5$					4 <i>s</i>	2
Mn	1	1	1	1	1] [1,	,
Mn^{+2}	1	1	1	1	1		

As half filled orbitals are more stable than partial filled ones. Therefore, + 2 is most stable oxidation state.

12. (c) Lanthanide contraction results in small size of Lu^{3+} , so

$$Lu^{3+} < Y^{3+} < Cu^{3+} < La^{3+}$$

- 13. (d) Oxidation number of chromium in potassium dichromate is +6 so it oxidise 6 moles of ferrous sulphate in acidic medium.
- 14. (c) Increased screening effect to nullify increased nuclear charge.
- **15.** (a) O.N. of $K_2 MnO_4$

$$2+x-8=0$$

 $x = 6$
O.N. of *KMnO*₄
 $1+x-8=0$
 $x = 7$

- **16.** (b) $3CuSO_4 + 2PH_3 \rightarrow Cu_3P_2 + 3H_2SO_4$
- 17. (d) Due to formation of complex $Cu(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4](OH)_2$
- **18.** (a) Os and Sc

$$Os = 22.60 \ gm/cm^3$$

 $Sc = 3.01 \ gm/cm^3$

(c)
$$Fe^{2+} \xrightarrow{\text{oxidises}} Fe^{3+}$$

19.