Polynomials

Polynomial: Let x be a variable, n be a positive integer and $a_1, a_2, \ldots a_n$ be constants (real numbers).

Then

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is called a **polynomial** in variable x.

In the polynomial
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

 $a_n x^n$, $a_{n-1} x^{n-1}$, $a_1 x$ and a_0 are known as the terms of the polynomial and a_n , a_{n-1} , a_1 , a_0 are their coefficients.

Ex: f(x) = 2x + 3 is a polynomial in variable x.

 $g(y) = 2y^2 - 7y + 4$ is a polynomial in variable y.

Note: The expressions lik $2x^2$ $3\sqrt{x} + 5$, $\frac{1}{x^2 - 2x + 5}$, $2x^3 - \frac{3}{x} + 4$ are not polynomials.

Degree of a Polynomial: The exponent of the highest degree term in a polynomial is known as its degree.

In other words, the highest power of x in a polynomial f(x) is called the degree of the polynomial f(x).

Ex: $f(x) = 5x^3 - 4x^2 + 3x - 4$ is a polynomial in the variable x of degree '3'.

Constant Polynomial: A polynomial of degree zero is called a Constant Polynomial.

Ex:
$$f(x) = 7$$
, $p(t) = 1$

Linear Polynomial: A polynomial of degree 1 is called a linear polynomial.

Ex:
$$p(x) = 4x - 3$$
; $f(t) = \sqrt{3}t + 5$

Quadratic Polynomial: Polynomial of degree 2 is called Quadratic Polynomial.

Ex:
$$f(x) = 2x^2 + 3x - \frac{1}{2}$$

 $g(x) = ax^2 + bx + c$, $a \neq 0$

Note: A quadratic polynomial may be a monomial or a binomial or trinomial.

Ex: $f(x) = \frac{2}{3}x^2$ is a monomial, $g(x) = 5x^2 - 3$ is a binomial and $h(x) = 3x^2 - 2x + 5$

is a trinomial.

Cubic Polynomial: A polynomial of degree 3 is called a cubic polynomial.

Ex:
$$f(x) = \frac{2}{3}x^3 - \frac{1}{7}x^2 + \frac{4}{5}x + \frac{1}{4}$$

Polynomial of nth Degree: $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ is a polynomial of nth degree, where $a_n, a_{n-1}, \dots a_1, a_0$ are real coefficients and $a_n \neq 0$.

Value of a Polynomial: The value of a polynomial P(x) at x = k, where k is a real number, is denoted by P(k) and is obtained by putting k for x in the polynomial.

Ex: Value of the polynomial $f(x) = x^2 - 2x - 3$ at x = 2 is $f(2) = 2^2 - 2(2) - 3 = -3$.

Zeroes of a Polynomial: A real number k is said to be a zero of the polynomial f(x) if f(k) = 0

Ex: Zeroes of a polynomial $f(x) = x^2 - x - 6$ are -2 and 3,

Because
$$f(-2) = (-2)^2 - (-2) - 6 = 0$$
 and $f(3) = 3^2 - 3 - 6 = 0$

Zero of the linear polynomial ax + b, $a \ne 0$ is $\frac{-b}{a}$

Graph of a Linear Polynomial:

- i) Graph of a linear polynomial ax + b, $a \ne 0$ is a straight line.
- ii) A linear polynomial ax + b, $a \ne 0$ has exactly one zero, namely X co-ordinate of the point where the graph of y = ax + b intersects the X-axis.
- iii) The line represented by y = ax + b crosses the X-axis at exactly one point, namely $\left(-\frac{b}{a}, 0\right)$.

Graph of a Quadratic Polynomial:

For any quadratic polynomial $ax^2 + bx + c$, $a \ne 0$, the graph of the corresponding equation $y = ax^2 + bx + c$ either opens upwards like \circ or opens downwards like \circ . This depends on whether a > 0 or a < 0. The shape of these curves are called **parabolas.**

The zeroes of a quadratic polynomial $ax^2 + bx + c$, $a \ne 0$ are precisely the X-coordinates of the points where the parabola representing $y = ax^2 + bx + c$ intersects the X-axis.

- A quadratic polynomial can have at most 2 zeroes.
- A cubic polynomial can have at most '3' zeroes.
- A constant polynomial has no zeroes.
- A polynomial f(x) of degree n, the graph of y = f(x) interacts the X-axis at most

Therefore, a polynomial f(x) of degree n has at most 'n' zeroes.

Relationship between Zeroes and Coefficients of a Polynomial:

- i) The zero of the linear polynomial ax + b, $a \ne 0$ is $-\frac{b}{a}$.
- ii) If α , β are the zeroes of the quadratic polynomial $ax^2 + bx + c$, $a \neq 0$ then

Sum of the zeroes =
$$\alpha + \beta = -\frac{b}{a} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of the zeroes =
$$\alpha\beta = \frac{c}{a} = \frac{Constant term}{Coefficient of x^2}$$

iii) If α , β , γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$, $a \ne 0$ then

$$\alpha + \beta + \gamma = -\frac{b}{a} = \frac{-\left(\text{Coefficient of } x^2\right)}{\text{Coefficient of } x}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x}$$

$$\alpha.\beta.\gamma = -\frac{d}{a} = \frac{(cons tan t term)}{coefficient of x^3}$$

• A quadratic polynomial with zeroes α and β is given by

$$k\{x^2 - (\alpha + \beta) x + \alpha\beta\}$$
, where $k \neq 0$ is real.

• A cubic polynomial with zeroes α , β and γ is given by

$$k\{x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha\beta + \beta\gamma + \alpha\gamma) x - \alpha\beta\gamma\}$$
 where $k \neq 0$ is real.

Division Algorithm for Polynomials: Let p(x) and g(x) be any two polynomials where $g(x) \neq 0$. Then on dividing p(x) by g(x), we can find two polynomials q(x) and r(x) such that

$$p(x) = g(x) \times q(x) + r(x)$$
, where either $r(x) = 0$

Or degree of r(x) < degree of g(x).

This result is known as "Division Algorithm for polynomials".

- **Note:** i) If r(x) = 0, then g(x) will be a factor of p(x).
 - ii) If a real number k is a zero of the polynomial p(x), then (x k) will be a factor of p(x).
 - iii) If q(x) is linear polynomial then r(x) = Constant
 - iv) If p(x) is divided by (x a), then the remainder is p(a).
 - v) If degree of q(x) = 1, then degree of p(x) = 1 + degree of g(x).

Essay Question (5 marks)

(1) Draw the graph of y = 2x - 5 and find the point of intersection on x – axis. Is the X – Coordinates of these points also the zero the polynomial.

(Visualization and Representation)

Solution:
$$Y = 2x - 5$$

The following table lists the values of y corresponding to different values of x.

X	-2	-1	0	1	2	3	4
Y	-9	-7	-5	-3	-1	1	3

The points (-2, -9), (-1, -7), (0, -5), (1, -3), (2, -1), (3, 1) and (4, 3) are plotted on the graph paper on a suitable scale. A line is drawn passing through these points to obtain the graph of the given linear equation.

The graph cuts the x- axis at p(

This is also the zero of the liner equation

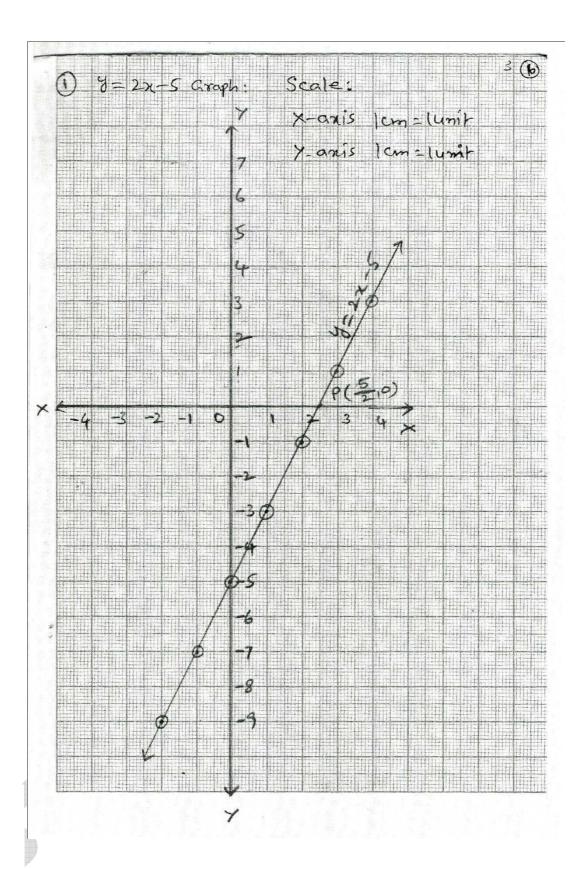
$$Y = 2x - 5$$

Because To find the zero of y = 2x - 5,

$$2x - 5 = 0$$
 \Rightarrow $2x = 5$ \Rightarrow $X = \frac{5}{2}$

 \therefore The zero of the liner equation is $\frac{5}{2}$

Model Question: Draw the graph of y = 2x+3.



(2) Draw the graph of the polynomial $f(x) = x^2-2x-8$ and find zeroes. Verify the zeroes of the polynomial.

Solution: Let
$$y = x^2 - 2x - 8$$

The following table given the values of y for various values of x.

X	-3	-2	-1	0	1	2	3	4	5
$Y = x^2 - 2x - 8$	7	0	-5	-8	-9	-8	-5	0	7
								1	
(x , y)	(-3,7)	(-2,0)	(-1,-5)	(0,-8)	(1, -9)	(2, -8)	(3, -5)	(4, 0)	(5, 7)

The Points (-3, 7), (-2, 0), (-1, -5), (0, -8), (1, -9), (2, -8), (3, -5), (4, 0) and (5, 7) are plotted on the graph paper on the suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^2-2x-8$. This is called a parabola.

The curve cuts the x - axis at (-2, 0) and (4, 0).

The x – coordinates of these points are zeroes of the polynomial $y = x^2-2x-8$. Thus -2 and 4 are the zeroes.

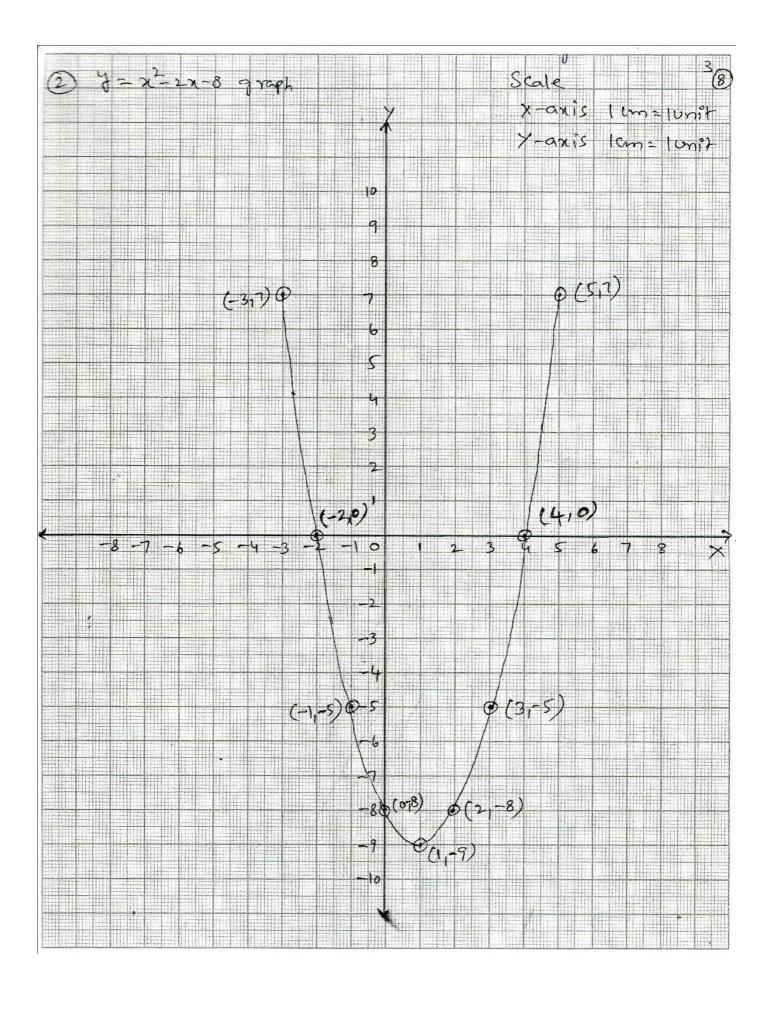
Verification: To find zeroes of x^2-2x-8

$$x^{2}-2x-8 \Rightarrow x^{2}-4x+2x-8 = 0$$

$$x(x-4)+2(x-4) = 0$$

$$(x-4)(x+2) = 0$$

$$x-4 = 0 \text{ or } x+2 = 0 \Rightarrow x = 4 \text{ or } -2 \text{ are the zeroes.}$$



(3) Draw the graph of $f(x) = 3-2x-x^2$ and find zeroes .Find zeroes. Verify the zeroes of the polynomial.

Solution: Let
$$y = 3-2x-x^2$$

The following table given of values of y for various values of x.

X	-4	-3	-2	-1	0	1	2	3
$Y=3-2x-x^2$	-5	0	3	4	3	0	-5	
(x ,y)	(-4,-5)	(-3,0)	(-2,3)	(-1,4)	(0,3)	(1,0)	(2,-5)	(3,-12)

The points (-4,5), (-3,0), (-2,3), (-1,4), (0,3), (1,0), (2,-5) and (3,-12) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

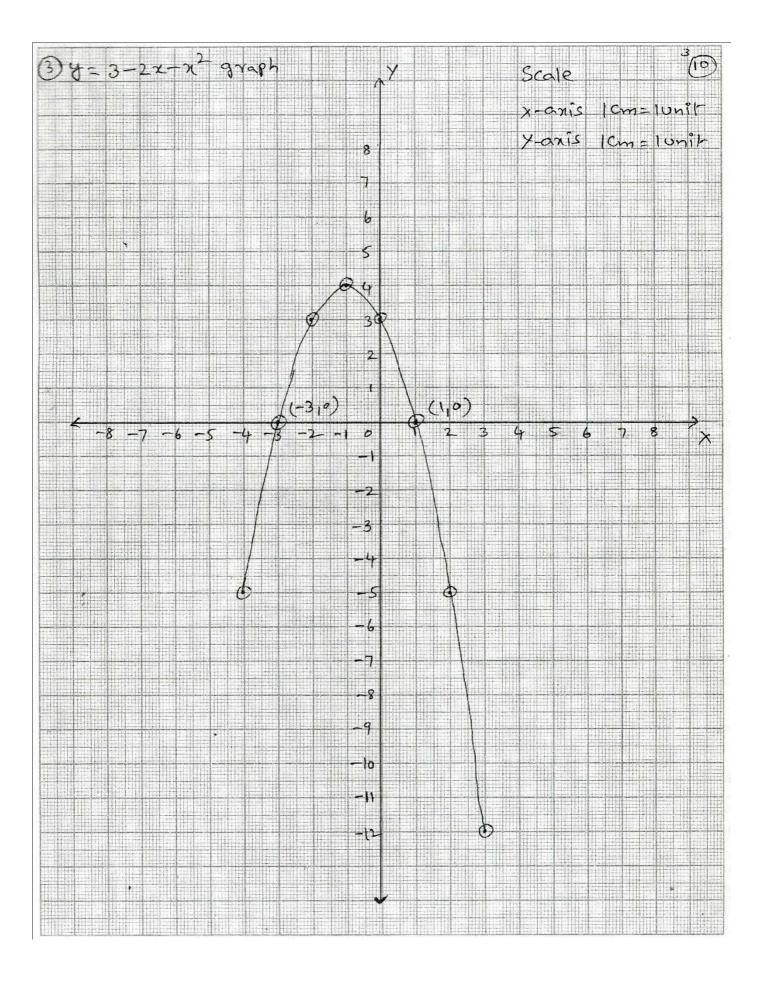
The curve thus obtained represent s the graph of the polynomial $y = 3-2x-x^2$. This called parabola opening downward.

The curve cuts the x- axis at (-3, 0) and (1,0).

The x – coordinates of these points are zeroes of the polynomial. Thus the zeroes are -3, 1

Verification:

To find zeroes of
$$y = 3-2x-x^2$$
,
 $3-2x-x^2 = -x^2-2x+3=0$
 $-x^2-3x+x+3=0$
 $-x(x+3)+1(x+3)=0$
 $(x+3)(1-x)=0$
 $x+3=0 \text{ or } 1-x=0 \implies x=-3 \text{ or } 1 \text{ are the zeroes.}$



(4) Draw the graph of $y = x^2-6x+9$ and find zeroes verify the zeroes of the polynomial.

Solution: Let
$$y = x^2 - 6x + 9$$

The following table gives the values of y for various values of x

X	-2	-1	0	1	2	3	4	5	6
$y = x^2 - 6x + 9$	25	16	9	4	1	0	1	4	9
(x, y)	(-2.25)	(-1,16)	(0.9)	(1.4)	(2.1)	(3.0)	(4.1)	(5,4)	(6,9)
(A, y)	(2,23)	(1,10)	(0,))	(1,7)	(2,1)	(3,0)	(4,1)	(3,4)	(0,))

The point (-2,25), (-1,16), (0,9), (1,4), (2,1), (3,0), (4,1), (5,4) and (6,9) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^2-6x+9$.

The curve touches x-axis at one point (3,0). The x- coordinate of this point is the zero of the polynomial $y = x^2 - 6x + 9$. Thus the zero is 3.

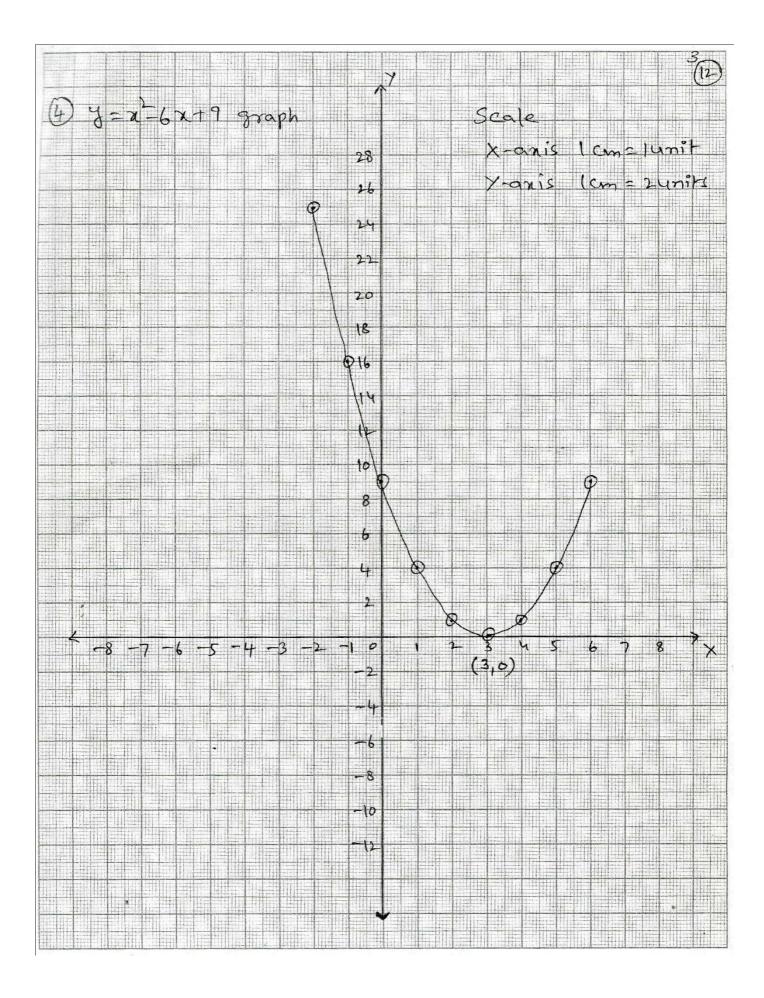
Verification:

To find zeros of
$$x^2-6x+9$$

$$x^2-6x+9=0 \Rightarrow (x-3)^2=0$$

$$x - 3 = 0$$
 or $x - 3 = 0$

x = 3 is the zero.



(5) Draw the graph of the polynomial $y = x^2-4x+5$ and find zeroes . Verify the zeroes of the polynomial.

Solution: $y = x^2-4x+5$

The following table gives the values of y for various values of x.

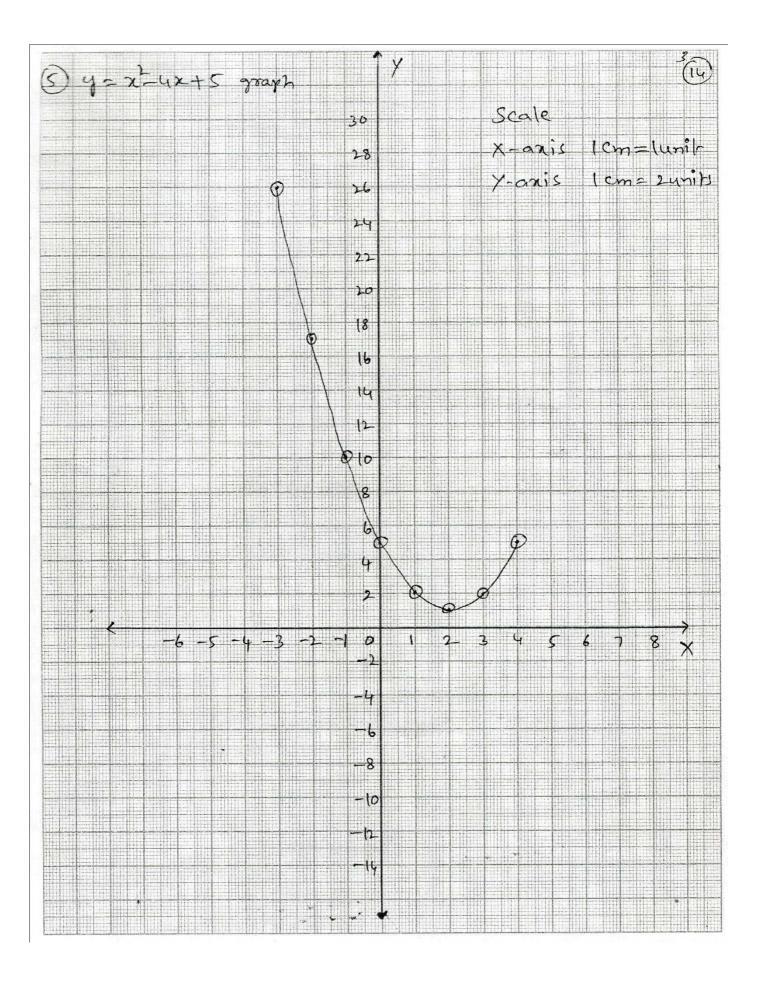
X	-3	-2	-1	0	1	2	3	4
$y = x^2 - 4x + 5$	26	17	10	5	2	1	2	5
(x, y)	(-3,26)	(-2,17)	(-1,10)	(0,5)	(1,2)	(2,1)	(3,2)	(4,5)

The point (-3,26), (-2,17), (-1,10), (0,5), (1,2), (2,1), (3,2) and (4,5) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^2-4x+5$

The curve does not intersect the x-axis.

 \therefore There are no zeroes of the polynomial $y = x^2-4x+5$



(6) Draw the graph of the polynomial $f(x) = x^3-4x$ and find zeroes. Verify the zeros Of the polynomial.

Solution: Let
$$y = x^3 - 4x$$

The following table gives the values of y for various of x.

X	-3	-2	-1	0	1	2	3
$y = x^3 - 4x$	-15	0	3	0	-3	0	15
(x , y)	(-3, -15)	(-2,0)	(-1,3)	(0,0)	(1,-3)	(2,0)	(3,15)

The points (-3,15), (-2,0), (-1,3), (0,0), (1,-3), (2,0) and (3,15) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

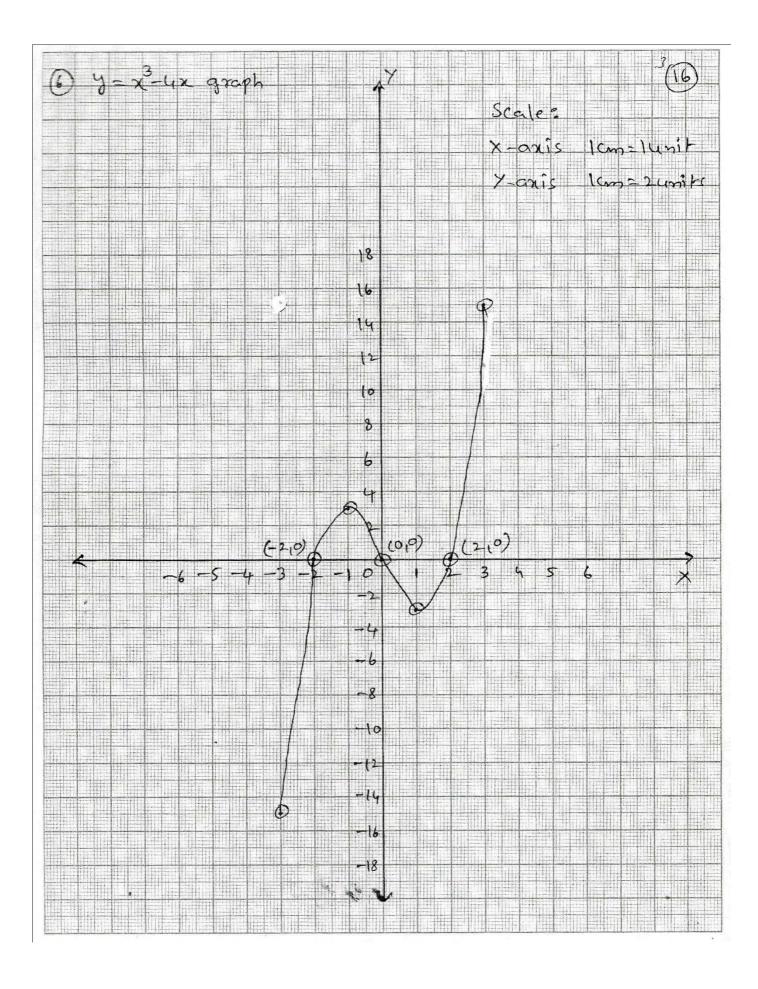
The curve thus obtained represents the graph of the polynomial $y = x^3-4x$.

The curve touches x-axis at (-2,0), (0,0), (2,0) .The x- coordinate of this points are the zero of the polynomial $y = x^3-4x$. Thus -2, 0, 2, are the zeroes of the polynomial.

Verification:

To find zeroes of x^3-4x

$$x^{3}-4x = 0$$
 \Rightarrow $x(x^{2}-4)=0$
 \Rightarrow $x(x-2)(x+2)=0$
 \Rightarrow $x = 0$ or $x - 2 = 0$ or $x + 2 = 0$
 \Rightarrow $x = 0$ or $x - 2$ are the zeroes.



Essay Questions

(1) Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

$$(I)$$
. x^2-2x-8

(ii).
$$6x^2-3-7x$$

Solution: (I) Given polynomial x^2-2x-8 = $x^2-4x+2x-8$ = x(x-4)+2(x-4)= (x-4)(x+2)

For zeroes of the polynomial, the value of $x^2-2x-8=0$

$$(x-4)(x+2) = 0$$

$$x-4 = 0 \text{ or } x+2 = 0$$

$$x = 4 \text{ or } x = -2$$

 \therefore The zeroes of x^2 -2x-8 are -2 and 4.

We observe that

Sum of the zeroes =
$$-2+4 = 2 = -(-2)$$

$$\frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$$

Product of the zeroes = $(-2)\times 4 = -8 = \frac{8}{1} = \frac{\cos \tan t \text{ term}}{\text{coefficient of } x^2}$

(ii). Given polynomial
$$6x^2-3-7x$$

$$= 6x^{2}-7x-3$$

$$= 6x^{2}-9x+2x-3$$

$$= 3x(2x-3)+1(2x-3)$$

$$= (2x-3)(3x+1)$$

For zeroes of the polynomial, the value of $6x^2-3-7x=0$ are

$$(2x-3)(3x+1) = 0$$

$$2x - 3 = 0$$
 or $3x + 1 = 0$

$$x = \frac{3}{2} \text{ or } x = \frac{1}{3}$$

$$\therefore$$
 The zeroes of $6x^2-3-7x = 0$ are $\frac{3}{2}$ and $\frac{1}{3}$

We observe that

Sum of the zeroes =

$$= \frac{-(-7)}{6} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$$

Product of the zeroes $=(\frac{3}{2})(-\frac{1}{3}) = -\frac{1}{2} = -\frac{3}{6} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

(2) Verify that 1, -1 and -3 are the zeroes of the cubic polynomial x^3+3x^2-x-3 and verify the relationship between zeroes and the coefficients.

Solution: Comparing the given polynomial with ax^3+bx^2+cx+d ,

We get
$$a = 1$$
, $b = 3$, $c = -1$, $d = -3$

Let
$$p(x) = x^3 + 3x^2 - x - 3$$

$$P(1) = 1^3 + 3(1)^2 - 1 - 3 = 1 + 3 - 1 + 3 = 0$$

 \therefore P(1) = 0 \Rightarrow 1 is a zero of the polynomial p(x)

$$P(-1) = (-1)^3 + 3(-1)^2 + -(-1) - 3 = -1 + 3 + 1 - 3 = 0$$

 \therefore p(-1) = 0 \Rightarrow -1 is a zero of the polynomial p(x)

$$p(-3) = (-3)^3 + 3(-3)^2 - (-3) = -27 + 27 + 3 - 3 = 0$$

 \therefore P(-3) = 0 \Rightarrow '-3' is a zero of the polynomial p(x)

 \therefore 1, -1, and -3 are the zeroes of x^3+3x^2-x-3 .

So, we take
$$\alpha = 1$$
, $\beta = -1$ $\gamma = -3$

$$\alpha + \beta + \gamma = 1 + (-1) + (-3) = -3 = \frac{-3}{1} = \frac{-b}{a} = \frac{-(coefficient of x)}{coefficient of x^3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = (1)(-1) + (-1)(-3) + (3)(1) = -1 + 3 - 3 = -1$$

$$=\frac{-1}{1}=\frac{c}{a}=\frac{\text{Coefficient of x}}{\text{Coefficient of x}^3}$$

$$\alpha\beta\gamma = (1)(-1)(-3) = \frac{-(-3)}{1} = \frac{-(\cos\tan t \text{ term})}{\text{coefficient of } x^3}$$

(3) If the zeroes of the polynomial x^2+px+q are double in value to the zeroes of $2x^2-5x-3$, find the values of 'p' and 'q'.

Solution: Given polynomial $2x^2-5x-3$

To find the zeroes of the polynomial, we take

$$2x^{2}-5x-3 = 0$$

$$2x^{2}-6x+x-3 = 0$$

$$2x(x-3) + 1(x-3) = 0$$

$$(x-3) (2x+1) = 0$$

$$\Rightarrow x - 3 = 0 \quad \text{or} \quad 2x+1 = 0$$

$$\Rightarrow x - 3 = 0 \quad \text{or} \quad 2x+1 = 0$$

 \therefore The zeroes of $2x^2$ -5x-3 are 3, $\frac{1}{2}$

 \Rightarrow x = 3 or x =

 \therefore zeroes of the polynomial x^2+px+q are double in the value to the zeroes of $2x^2-5x-3$

i.e. . 2(3) and 2
$$\left(\begin{array}{c} -1/2 \\ \end{array}\right)$$
 \Rightarrow 6 and -1

Sum of the zeroes = 6+(-1) = 5

$$\Rightarrow \frac{-p}{1} = 5 \qquad (\because \text{ sum of the zeroes} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2} = \frac{-p}{1}$$

$$p = -5$$

Product of the zeros = (6)(-1) = -6

$$\frac{q}{1} = -6$$
 (: Product of the zeroes = $\frac{\text{constant term}}{\text{coefficient of } x^2} = \frac{q}{1}$

- \therefore The values of p and q are -5, -6
- (4). If α and β are the zeroes of the polynomial $6y^2$ -7y+2, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Solution: The given polynomial is

$$6y^2 - 7y + 2$$

Comparing with ay^2+by+c , we get a=6, b=-7, c=2

$$\therefore \quad \text{Sum of zeroes} = \alpha + \beta = -\frac{b}{a} = \frac{7}{6}$$

$$\alpha + \beta = \frac{7}{6} \qquad \dots > (1)$$

and, a product of zeroes = $\alpha\beta = \frac{c}{a} = \frac{2}{6} = \frac{1}{3}$

$$\alpha\beta = \frac{1}{3} \dots > (2)$$

For a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Sum of zeroes =
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{7}{6}}{\frac{1}{3}}$$
 (:: Form (1) & (2))

$$=\frac{7}{2}$$

Product of zeroes
$$=\frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{(\frac{1}{3})}$$
 (:: From(2))

:. The required quadratic polynomial is

$$K\{x^2 - (\frac{1}{\alpha} + \frac{1}{\beta})x + (\frac{1}{\alpha} \cdot \frac{1}{\beta})\}$$
, where k is real.

$$K(x^2 - \frac{7}{2}x + 3)$$
, K is real.

(5) If α and β are the zeroes of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha - \beta = 8$, find quadratic polynomial having α and β as its zeroes. Verify the relationship between the zeroes and the coefficient of the polynomial.

Solution: α and β are the zeroes of a quadratic polynomial.

$$\alpha + \beta = 24$$
(1)

$$\alpha - \beta = 8 \dots > (2)$$

Adding (1) + (2) we get
$$2\alpha = 32 \implies \alpha = 16$$

Subtraction (1) & (2) we get
$$2\beta = 16 \implies \beta = 8$$

The quadratic polynomial having α and β as its zeroes is $k\{x^2-(\alpha+\beta)x+\alpha\beta\}$, where k is real.

$$\Rightarrow$$
 K{ $x^2 - (16+8)x + (16)(8)$ }, k is a real

$$\Rightarrow$$
 K{x²-24x+128}, k is a real

$$\Rightarrow$$
 K x²-24kx+128k, k is real

Comparing with ax^2+bx+c , we get a = k, b = -24k, c = 128k

Sum of the zeroes
$$= -\frac{b}{a} = \frac{24k}{k} = 24 = \alpha + \beta$$

Product of the zeroes =
$$\frac{c}{a} = \frac{128k}{k} = 128 = \alpha\beta$$

Hence, the relationship between the zeroes and the coefficients is verified.

(6) Find a cubic polynomial with the sum, sum of product of its zeroes taken two at a time, and product of its zeroes as 2, -7, -14 respectively.

Solution: Let α , β and γ are zeroes of the cubic polynomial

Given
$$\alpha + \beta + \gamma = 2$$
 $\alpha\beta + \beta\gamma + \gamma\alpha = -7$ $\alpha\beta\gamma = -14$

Cubic polynomial whose zeroes are α , β and γ is

$$\Rightarrow x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$

$$\Rightarrow x^3 - 2x^2 + (-7)x - (-14)$$

$$\Rightarrow x^3 - 2x^2 - 7x + 14$$

 \therefore Required cubic polynomial is $x^3-2x^2-7x+14$

(7) Divide x^4-3x^2+4x+5 , by x^2+1-x , and verify the division algorithm.

Solution: Dividend =
$$x^4-3x^2+4x+5$$

= $x^4+0x^3-3x^2+4x+5$

Divisor =
$$x^2-x+1$$

$$x^{2}$$
- x + 1) x^{4} + 0 x^{3} - 3 x^{2} +4 x + 5 (x^{2} + x - 3 x^{4} - x^{3} + x^{2}

(-)
$$(+)$$
 (-)
 $-3x^2 + 3x + 5$
 $-3x^2 + 3x - 3$
 $(+)$ (-) $(+)$

8

First term quotient

$$X = X$$

sec ond term of quotient

$$X = X$$

third term of quotient

$$= \frac{-3x^2}{x} = -3$$

We stop here since degree of the remainder is less than the degree of $(x^2 + x - 3)$ the divisor.

So, quotient = $x^2 + x - 3$, remainder = 8

Verification:

(Divisor x Quotient)+ Remainder
=
$$(x^2-x+1)(x^2+x-3)+8$$

= $x^4+x^3-3x^2-x^3-x^2+3x+x^2+x-3+8$
= x^4-3x^2+4x+5 = dividend

- \therefore Dividend = (Divisor × quotient) + Remainder
 - \therefore The division algorithm is verified.

(8) Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are

Solution: Since, two zeroes are
$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$

Therefore,

$$(x-\sqrt{\frac{5}{3}}) (x+\sqrt{\frac{5}{3}}) = x^2 - \frac{5}{3}$$
 is a factor of the given polynomial,

Now, we apply the division algorithm to the given polynomial and

So,
$$3x^4+6x^3-2x^2-10x-5 = (x^2-\frac{5}{3})(3x^2+6x+3)$$

Now $3x^2+6x+3 = 3(x^2+2x+1) = 3(x+1)^2$

So, its zeros are -1, and -1

:. The other zeroes of the given fourth degree polynomial are -1 and -1.

(9) On division x^3-3x^2+x+2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

Solution: Given

Dividend =
$$x^3-3x^2+x+2$$

Divisor =
$$g(x)$$

Quotient =
$$x - 2$$

Remainder =
$$-2x+4$$

By division algorithm

 $Dividend = ((Divisor \times quotient) + Remainder$

$$Divisor = \frac{Dividend - Re \, mainder}{Quotient}$$

$$g(x) = (x -3x +x+2) - (-2x+4)$$

$$g(x) = {x - 3x + 3x + 2 \dots (1)}$$

$$x-2$$
) $x^3 - 3x^2 + 3x - 2$ ($x^2 - x + 1$) $x^3 - 2x^2$ (-) (+) $x^2 + 3x$ $-x^2 + 2x$ (+) (-) $x - 2$ $x - 2$

From equation (1)

$$g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2} = x^2 - x + 1$$

(10) Check by division whether x^2 -2 is a factor of $x^4 + x^3 + x^2 - 2x - 3$

Solution:

Dividend =
$$x^4 + x^3 + x^2 - 2x - 3$$

Divisor = $x^2 - 2$

$$x^{2}-2 \quad) \quad x^{4}+x^{3}+x^{2}-2x-3 \quad (x^{2}+x+3)$$

$$x^{4}-2x^{2}$$

$$(-) \quad (+)$$

$$x^{3}+3x^{2}-2x$$

$$x^{3}-2x$$

$$(-) \quad (+)$$

$$3x^{2}-3$$

$$3x^{2}-6$$

$$(-) \quad (+)$$

$$3$$

Since, remainder = $3 \ (\neq 0)$

 \therefore $x^2 - 2$ is a not a factor of $x^4 + x^3 + x^2 - 2x - 3$

Short Answer Question

(1) If $P(t) = t^3 - 1$, find the value of P(1), P(-1), P(0), P(2), p(-2)

Solution:
$$P(t) = t^3 - 1$$

 $P(1) = 1^3 - 1 = 1 - 1 = 0$
 $P(-1) = (-1)^3 - 1 = -1 - 1 = -2$
 $P(0) = 0^3 - 1 = -1$
 $P(2) = 2^3 - 1 = 8 - 1 = 7$
 $P(-2) = (-2)^3 - 1 = -8 - 1 = -9$

(2) Check whether 3 and -2 are the zeros of the polynomial P(x) when $p(x) = x^2-x-6$

Solution: Given
$$p(x) = x^2-x-6$$

$$P(x) = 3^2-3 - 6 = 9-3-6 = 0$$

$$P(x) = (-2)^2 - (-2)-6$$

$$= 4 + 2 - 6$$

$$= 0$$

Since p(3) = 0, P(-2) = 0

3 and -2 are zeroes of $p(x) = x^2-x-6$

Find the number of zeroes of the given polynomials. And also find their values **(3)**

(i).
$$P(x) = 2x+1$$

(i).
$$P(x) = 2x+1$$
 (ii) $q(x) = y^2 -1$ (iii) $r(z) = z^3$

(iii)
$$\mathbf{r}(\mathbf{z}) = \mathbf{z}^3$$

Solution:

(i). P(x) = 2x+1 is a linear polynomial. It has only one zero.

To find zeroes.

Let
$$p(x) = 0$$

$$2x + 1 = 0$$

$$\therefore x = -\frac{1}{2}$$

The zero of the given polynomial is $-\frac{1}{2}$

(ii) $q(y) = y^2 - 1$ is a quadratic polynomial. It has at most two zeroes.

To find zeroes, Let q(y) = 0

$$y^2 - 1 = 0$$

$$(y+1)(y-1) = 0$$

$$y = -1$$
 or $y = 1$

: The zeroes of the polynomial are -1 and 1

(iii) $r(z) = z^3$ is a cubic polynomial .It has at most there zeroes .

Let
$$r(z) = 0$$

$$z^{3} = 0$$

$$z = 0$$

4

 \therefore The zero of the polynomial is '0'.

Find the quadratic polynomial, with the zeroes $\sqrt{3}$ and $-\sqrt{3}$ **Solution:** Given

The zeroes of polynomial $\alpha = \sqrt{3}$, $\beta = \sqrt{3}$

$$\alpha + \beta = -\sqrt{3} + \sqrt{3} = 0$$

$$\alpha\beta = (-\sqrt{3})(\sqrt{3}) = -3$$

The quadratic polynomial with zeroes α and β is given by

$$K\{x^2 - (\alpha + \beta)x + \alpha \beta\}, K(\neq 0)$$
 is real

$$K(x^2-0x-3)$$
 $k \neq 0$ is real

$$k \neq 0$$
 is real

$$K(x^2-3)$$
 $K (\neq 0)$ is real.

(5) If the Sum and product of the zeroes of the polynomial ax^2 -5x+c is equal to 10 each, find the values of 'a' and 'c'.

Solution: Given polynomial $ax^2 - 5x + c$

Let the zeroes of the polynomial are α , β

Given
$$\alpha + \beta = 10$$
(1)

And
$$\alpha \beta = 10$$
(2)

We know that

$$\alpha + \beta = -\frac{b}{a} = \frac{-(-5)}{a} = \frac{5}{a} = 10$$
 : (from (1))

$$a = \frac{5}{10} = \frac{1}{2}$$

$$\alpha\beta = > =$$

$$C = 5$$

$$\therefore$$
 a = 1, c = 5

(6) If the Sum of the zeroes of the polynomial $P(x) = (a+1) x^2 + (2a+3)x + (3a+4)$, then find the product of its zeroes.

Solution: Given polynomial $P(x) = (a+1) x^2 + (2a+3)x + (3a+4)$

Compare with ax^2+bx+c ,

we get
$$a = a + 1$$

$$b = 2a + 3$$

$$c = 3a + 4$$

$$\alpha + \beta = -\frac{b}{a}$$

$$-1 = \frac{-(2a+3)}{a+1}$$

$$\Rightarrow -a - 1 = -2a - 3$$

$$\Rightarrow -a + 2a = -3 + 1$$

$$\Rightarrow a = -2$$

Product of the zeroes
$$= \alpha \beta = \frac{c}{a} = \frac{3a+4}{a+1}$$

$$= \frac{3(-2)+4}{-2+1} = \frac{-2}{-1} = 2$$

(7) On dividing the polynomial $2x^3+4x^2+5x+7$ by a polynomial g(x), the quotient and the remainder were 2x and 7-5x respectively. Find g(x)

Solution: Given

Dividend =
$$2x^3+4x^2+5x+7$$

$$Divisor = g(x)$$

Quotient =
$$2x$$

Remainder =
$$7 - 5x$$

By division algorithm

Dividend =
$$(divisor \times quotient) + remainder$$

$$g(x) = \frac{(2x^3 + 4x^2 + 5x + 7) - (7 - 5x)}{2x}$$

$$= \frac{2x^3 + 4x^2 + 5x + 7 - 7 + 5x}{2x}$$

$$= \frac{2x^3 + 4x^2 + 10x}{2x}$$

$$= \frac{2x(x^2 + 2x + 5)}{2x}$$

$$g(x) = x^2 + 2x + 5$$

(8) If $p(x) = x^3-2x^2+kx+5$ is divided by (x-2), the remainder is 11. Find K.

Solution:

$$x-2$$
) $x^3 - 2x^2 + kx + 5$ ($x^2 + k$) $x^3 - 2x^2$ (-) (+) $kx+5$ $kx - 2k$ (-) (+) $2k+5$

Remainder = 2k+5 = 11 (given)

$$k = \frac{11-5}{2} = 3$$

Very Short Answer Questions

(1) Write a quadratic and cubic polynomials in variable x in the general form. **Solution:**

The general form of the a quadratic polynomial is ax^2+bx+c , $a \neq 0$ The general form of a cubic polynomial is ax^3+bx^2+cx+d , $a \neq 0$

- (2) If $p(x) = 5x^7 6x^5 + 7x 6$, find (Problem solving)
 - (i)
 - Co efficient of x^5 (ii) degree of p(x)

Solution:

Given polynomial $p(x) = 5x^7 - 6x^5 + 7x - 6$

- Co efficient of x^5 is '-6' (i)
- Degree of p(x) is '7' (ii)
- Check whether -2 and 2 are the zeroes of the polynomial x^4 16 **(3)** (Reasoning proof)

Solution: $p(x) = x^4 - 16$ $P(2) = 2^4 - 16 = 16 - 16 = 0$ $P(-2) = (-2)^4 - 16 = 16 - 16 = 0$

Since P(2) = 0 and P(-2) = 0

∴ -2, 2 are the zeroes of given polynomial

(4) Find the quadratic polynomial whose sum and product of its zeroes

respectively
$$\sqrt{2}$$
, $\frac{1}{3}$ (Communication)

Solution: Given

Sum of the zeroes
$$\alpha + \beta = \sqrt[3]{}$$
>(1)

Product of the zeroes
$$\alpha \beta = \frac{1}{3}$$
> (2)

The quadratic polynomial with α and β as zeroes is $K\{x^2-(\alpha+\beta)x+\alpha\beta\}$, where $k(\neq 0)$ is a real number.

$$K\{x^2 - \sqrt{2}x + \frac{1}{3}\}, \quad K(\neq 0) \text{ is a real number}$$
 (From (1) & (2))

$$k(\frac{3x^2-3\sqrt{2}x+1}{3})$$
, $k(\neq 0)$ is real number

We can put different values of 'k'

: when
$$k = 3$$
, we get $3x^2 - 3/2x + 1$

(5) If the sum of the zeroes of the quadratic polynomial $f(x) = kx^2-3x+5$ is 1 . Write the value of K .

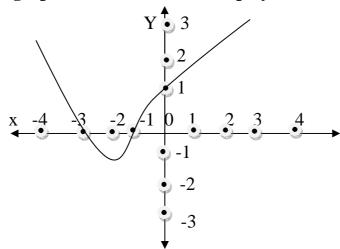
Solution: Given polynomial $f(x) = kx^2-3x+5$

Sum of the zeroes
$$\alpha + \beta = \frac{-b}{a}$$

$$1 = \frac{-(-3)}{k} \quad (\because \text{ Given } \alpha + \beta = 1)$$

$$K = 3$$

(6) From the graph find the zeroes of the polynomial.



Solution: The zeroes of the polynomial are precisely the x- co-ordinates of the point . Where the curve intersects the x- axis

- \therefore From the graph the zeroes are -3 and -1.
- (7) If a-b, a+b are zeroes of the polynomial $f(x)=2x^3-6x^2+5x-7$, write the value of the a.

Solution: Let α , β , γ are the zeroes of cubic polynomial

$$ax^3+bx^2+cx+d$$
 then $\alpha + \beta + \gamma = \frac{-b}{a}$

$$a - b + a + a + b = \frac{-(-6)}{2}$$

$$3a = 3$$

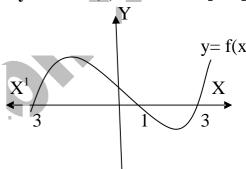
$$a = 1$$

Objective Type Questions

- (1) The graph of the polynomial f(x) = 3x 7 is a straight line which intersects the x- axis at exactly one point namely 1
 - (A) $(\frac{-7}{3}, 0)$ (B) $(0, \frac{-7}{3})$ (C) $(\frac{7}{3}, 0)$ (D) $(\frac{7}{3}, \frac{-7}{3})$

- In the given figure, the number of zeros of the polynomial f(x) are **(2)**

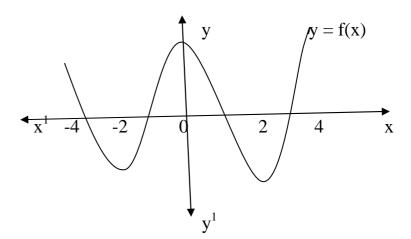
- (A) 1 (B) 2 (C) 3 (D) 4



 \mathbf{Y}^1

- (3) The number of zeros lying between -2 and 2 of the polynomial f(x) whose graph is given figure is]
 - (A) 2

- (B) 3 (C) 4 (D) 1



(A) $X^2 + 3x + 4$		(B) x^2-3x+4			
(C) $6+(x^2-4x)$		(D) $(x-3)(x+3)$	3)- (x^2+7x)		
(5) The degree of the	constant polyn	omial is		[]
(A) 0	(B) 1	(C) 2	(D) 3		
(6) The zero of p(x)	= ax - b is	••••••		[]
(A) a	(B) b	(C) $-b$,	(D) b a		
(7) Which of the following	lowing is not a	zero of the polynomia	$1 x^3 - 6x^2 + 11x - 6$?[]
(A) 1	(B) 2	(C) 3	(D) 0		
(8) If α and β are the	zeroes of the po	olynomial 3x ² +5x+2,th	en the value of	α+β+α [βis
(A) -1	(B) - 2	(C) 1	(D) 4		
(9) If the sum of the takes the value(s)		polynomial $p(x) = (k^2 - \dots)$	$(14)x^2 - 2x - 12$ is 1	l , then [_
$(A) \qquad \overline{14}$	(B) -14	(C) 2	(D) ± 4		
(10) If α , β are zeroes	of $p(x) = x^2 - 5x +$	-k and $\alpha - \beta = 1$ then	the value of k is	s []
(A) 4	(B) - 6	(C) 2	(D) 5		

(11) If α , β , γ are the zeros of the polynomial ax^3+bx^2+cx+d , then the value of							
$\frac{1}{\alpha} + \frac{1}{\beta}$	$+\frac{1}{\gamma}$ Is	•••	[]				
(A) $\frac{c}{d}$	(B) $\frac{-c}{d}$	(C) $\frac{b}{d}$	(D) $\frac{-b}{d}$				
(12) If the product o	of the two zeros of the	polynomial x ³ -6x ² +11x	x-6 is 2 is then the				
third zero is	•••••		[]				
(A) 1	(B) 2	(C) 3	(D) 4				
(13) The zeros of th	te polynomial is x^3-x^2	are	[]				
(A) 0, 0, 1	(B) 0, 1, 1	(C) 1, 1, 1	(D) $0, 0, 0$				
(14) If the zeroes of	The polynomial x^3-3x	x^2+x+1 are , a and	ar then the value of				
a is	••••••		[]				
(A) 1	(B) -1	(C) 2	(D) - 3				
(15) If α and β are	e the zeroes of the qua	ndratic polynomial 9x ² -	-1, find the value of				
$\alpha^2+\beta^2$			[]				
(A) 1/9	(B) $\frac{2}{9}$	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$				

(16) If α , β , γ are the	he zeroes of the polyr	nomial x³+px²+qx+r then f	ind []
$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma}$	$+\frac{1}{\gamma\alpha}$		
(A) $\frac{p}{r}$	(b) $-\frac{p}{r}$	(C) $\frac{q}{r}$	(D) $\frac{-q}{r}$
(17) The number to	be added to the poly	nomial x^2 -5x+4, so that 3	is the zero of the
polynomial is	•••••		[]
(a) 2	(B) -2	(C) 0	(D) 3
(18). If α , and β a	are zeroes of $p(x) = 2x$	x^2 -x-6 then the value of α	$^{-1} + \beta^{-1}$ is [
(A) 1/6	$(B) \frac{-1}{6}$	$(C) \frac{1}{2}$	(D) $\frac{-1}{3}$
	coefficient of the first	t term of the quotient whe	n $3x^3+x^2+2x+5$ is
(A) 1	(B) 2	(C) 3 (D) 5	
(20) If the divisor is	$s x^2$ and quotient is x	while the remainder 1, the	
			[]
$(A) x^2$	(B) x	(C) x^3 (D) x^3+1	
1.C 2.C 3. A	4. D 5. A 6. I	D 7. D 8. A 9. D	10. C
11 R 12 C 13 /	14 R 15 R 16	Δ 17 Δ 18 R 19 C	20 D

Fill in the Blanks

- (1) The maximum number of zeroes that a polynomial of degree 3 can have is 3
- (2) The number of zeroes that the polynomial $f(x) = (x-2)^2 + 4$ can have is 2
- (3) The graph of the equation $y = ax^2 + bx + c$ is an upward parabola, If (a > 0)
- (4) If the graph of a polynomial does not intersect the x axis, then the number zeroes of the polynomial is 0
- (5) The degree of a biquadratic polynomial is 4
- (6) The degree of the polynomial $7\mu^6$ $\frac{3}{2}$ μ^4 +4 μ + μ -8 is 6
- (7) The values of $p(x) = x^3 3x 4$ at x = -1 is -2
- (8) The polynomial whose whose zeroes are -5 and 4 is x^2+x-20
- (9) If -1 is a zeroes of the polynomial $f(x) = x^2 7x 8$ then other zero is 8
- (10) If the product of the zeroes of the polynomial $ax^3 6x^2 + 11x 6$ is 6, then the
- (11) A cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes are 2, -7 and -14 respectively, is $x^3-2x^2-7x+14$
- (12) For the polynomial $2x^3-5x^2-14x+8$, find the sum of the products of zeroes, taken two at a time is $-\frac{7}{2}$

(13) If the zeroes of the quadratic polynomial ax^2+bx+c are reciprocal to each other,

Then the value of c is **a**

(14) What can be the degree of the remainder at most when a biquadrate polynominal is divided by a quadratic polynomial is <u>1</u>