Chapter : 1. RELATION

Exercise : 1A

Question: 1

Find the domain a

Solution:

dom (R) = $\{-1, 1, -2, 2\}$ and range (R) = $\{1, 4\}$

Question: 2

Let $R = \{(a, a)\}$

Solution:

range (R) = $\{8\ 27\}$

Question: 3

Let $R = \{(a, a)$

Solution:

(i) $R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

(ii) dom (R) = $\{2, 3, 5, 7\}$

(iii) range (R) = {8, 27, 125, 343}

Question: 4

Let R = (x, y):

Solution:

 $\{3, 2, 1\}$

Question: 5

Let $R = \{(a, b): a$

Solution:

dom (R) = $\{3, 6, 9\}$ and range (R) = $\{3, 2, 1\}$

Question: 6

Let R = {(a, b) :

Solution:

dom (R) = $\{-2, -1, 0, 1, 2\}$ and range (R) = $\{3, 2, 1, 0\}$

Question: 7

 $\operatorname{Let}\left(R\right) = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$

Question: 8

Let $R = \{(a, b) :$

Solution:

dom (R) = $\{1, 2, 3\}$ and range (R) = $\{6, 7, 8\}$

Question: 9

Let S be the set

Solution:

Let $R = \{(A, B) : A \subset B)\}$, i.e., A is a proper subset of B, be a relation defined on S.

Now,

Any set is a subset of itself, but not a proper subset.

 $\Rightarrow (A,A) \notin R \; \forall \; A \in S$

 \Rightarrow R is not reflexive.

Let $(A,B) \in \mathbb{R} \forall A, B \in \mathbb{S}$

- \Rightarrow A is a proper subset of B
- \Rightarrow all elements of A are in B, but B contains at least one element that is not in A.
- \Rightarrow B cannot be a proper subset of A

 \Rightarrow (B,A) ∉ R

For e.g. , if B = {1,2,5} then A = {1,5} is a proper subset of B . we observe that B is not a proper subset of A.

 \Rightarrow R is not symmetric

Let $(A,B) \in \mathbb{R}$ and $(B,C) \in \mathbb{R} \forall A, B,C \in S$

 \Rightarrow A is a proper subset of B and B is a proper subset of C

 \Rightarrow A is a proper subset of C

```
\Rightarrow (A,C) \in R
```

For e.g. , if $B = \{1,2,5\}$ then $A = \{1,5\}$ is a proper subset of B .

And if $C = \{1, 2, 5, 7\}$ then $B = \{1, 2, 5\}$ is a proper subset of C.

We observe that $A = \{1,5\}$ is a proper subset of C also.

 \Rightarrow R is transitive.

Thus, R is transitive but not reflexive and not symmetric.

Question: 10

Let A be the set

Solution:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, A be the set of all points in a plane and O be the origin. Then, $R = \{(P, Q) : P, Q \in A and OP = OQ)\}$

Now,

R is Reflexive if (P,P) ∈ R \forall P ∈ A \forall P ∈ A, we have OP=OP \Rightarrow (P,P) ∈ R Thus, R is reflexive. R is Symmetric if (P,Q) ∈ R \Rightarrow (Q,P) ∈ R \forall P,Q ∈ A Let P, Q ∈ A such that, (P,Q) ∈ R

 $\Rightarrow OP = OQ$

 $\Rightarrow OQ = OP$

 $\Rightarrow (Q,P) \in \mathbb{R}$

Thus, R is symmetric.

<u>R is Transitive if (P,Q) \in R and (Q,S) \in R \Rightarrow (P,S) \in R \forall P, Q, S \in A</u>

Let $(P,Q) \in R$ and $(Q,S) \in R \forall P, Q, S \in A$

 \Rightarrow OP = OQ and OQ = OS

 $\Rightarrow OP = OS$

 \Rightarrow (P,S) \in R

Thus, R is transitive.

Since R is reflexive, symmetric and transitive it is an equivalence relation on A.

Question: 11

On the set S of a

Solution:

Let $R = \{(a, b) : a \le b\}$ be a relation defined on S.

Now,

We observe that any element $x \in S$ is less than or equal to itself.

 $\Rightarrow (\mathbf{x},\mathbf{x}) \in \mathbf{R} \; \forall \; \mathbf{x} \in \mathbf{S}$

 \Rightarrow R is reflexive.

Let $(x,y) \in R \forall x, y \in S$

 \Rightarrow x is less than or equal to y

But y cannot be less than or equal to x if x is less than or equal to y.

 \Rightarrow (y,x) \notin R

For e.g. , we observe that (2,5) \in R i.e. 2 < 5 but 5 is not less than or equal to 2 \Rightarrow (5,2) \notin R

 \Rightarrow R is not symmetric

Let $(x,y) \in R$ and $(y,z) \in R \forall x, y, z \in S$

 $\Rightarrow x \le y \text{ and } y \le z$

 $\Rightarrow x \leq z$

 $\Rightarrow (\mathbf{x},\mathbf{z}) \in \mathbf{R}$

For e.g. , we observe that

 $(4,5) \in \mathbb{R} \Rightarrow 4 \le 5 \text{ and } (5,6) \in \mathbb{R} \Rightarrow 5 \le 6$

And we know that $4 \le 6 \therefore (4,6) \in \mathbb{R}$

 \Rightarrow R is transitive.

Thus, R is reflexive and transitive but not symmetric.

Question: 12

Let $A = \{1, 2, 3,$

Solution:

Given that,

 $A = \{1, 2, 3, 4, 5, 6\} and R = \{(a, b) : a, b \in A and b = a + 1\}.$

 $\therefore \mathbf{R} = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$

Now,

R is Reflexive if $(a,a) \in R \forall a \in A$

Since, $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \notin \mathbb{R}$

Thus, R is not reflexive .

R is Symmetric if $(a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in A$

We observe that $(1,2)\in \mathbb{R}$ but $(2,1)\notin \mathbb{R}$.

Thus, \boldsymbol{R} is not symmetric .

R is Transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in A$

We observe that $(1,2) \in \mathbb{R}$ and $(2,3) \in \mathbb{R}$ but $(1,3) \notin \mathbb{R}$

Thus, R is not transitive.

Exercise : 1B

Question: 1

Define a relation

Solution:

Relation: Let A and B be two sets. Then a relation R from set A to set B is a subset of A x B. Thus, R is a relation to A to $B \Leftrightarrow R \subseteq A \times B$.

If R is a relation from a non-void set B and if $(a,b) \in R$, then we write a R b which is read as 'a is related to b by the relation R'. if $(a,b) \notin R$, then we write a R b, and we say that a is not related to b by the relation R.

Domain: Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R.

Thus, domain of $R = \{a : (a,b) \in R\}$. The domain of $R \subseteq A$.

Range: let R be a relation from a set A to a set B. then the set of all second component or coordinates of the ordered pairs belonging to R is called the range of R.

Example 1: $R = \{(-1, 1), (1, 1), (-2, 4), (2, 4)\}.$

dom (R) = $\{-1, 1, -2, 2\}$ and range (R) = $\{1, 4\}$

Example 2: $R = \{(a, b): a, b \in N \text{ and } a + 3b = 12\}$

dom (R) = $\{3, 6, 9\}$ and range (R) = $\{3, 2, 1\}$

Question: 2

Let A be the set

Solution:

Let $R = \{(\Delta_1, \Delta_2) : \Delta_1 \sim \Delta_2\}$ be a relation defined on A.

Now,

<u>R is Reflexive if $(\Delta, \Delta) \in \mathbb{R} \forall \Delta \in \mathbb{A}$ </u>

We observe that for each $\Delta \in A$ we have,

 $\Delta \sim \Delta$ since, every triangle is similar to itself.

 $\Rightarrow (\Delta, \Delta) \in \mathbf{R} \; \forall \; \Delta \in \mathbf{A}$

 \Rightarrow R is reflexive.

<u>R is Symmetric if $(\Delta_1, \Delta_2) \in \mathbb{R} \Rightarrow (\Delta_2, \Delta_1) \in \mathbb{R} \forall \Delta_1, \Delta_2 \in \mathbb{A}$ </u>

Let $(\Delta_1, \Delta_2) \in \mathbb{R} \forall \Delta_1, \Delta_2 \in \mathbb{A}$

 $\Rightarrow \Delta_1 \sim \Delta_2$

 $\Rightarrow \Delta_2 \sim \Delta_1$

 $\Rightarrow (\Delta_2,\,\Delta_1) \in \mathbb{R}$

 \Rightarrow R is symmetric

<u>R is Transitive if $(\Delta_1, \Delta_2) \in \underline{R}$ and $(\Delta_2, \Delta_3) \in \underline{R} \Rightarrow (\Delta_1, \Delta_3) \in \underline{R} \forall \Delta_1, \Delta_2, \Delta_3 \in \underline{A}$ </u>

Let $(\Delta_1, \Delta_2) \in \mathbb{R}$ and $((\Delta_2, \Delta_3) \in \mathbb{R} \forall \Delta_1, \Delta_2, \Delta_3 \in \mathbb{A}$

 $\Rightarrow \Delta_1 \sim \Delta_2 \text{ and } \Delta_2 \sim \Delta_3$

$$\Rightarrow \Delta_1 \sim \Delta_3$$

$$\Rightarrow (\Delta_1, \Delta_3) \in \mathbb{R}$$

 \Rightarrow R is transitive.

Since R is reflexive, symmetric and transitive, it is an equivalence relation on A.

Question: 3

Let $R = \{(a, b) :$

Solution:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, $\forall a, b \in Z$, $R = \{(a, b) : (a + b) \text{ is even } \}$.

Now,

<u>R is Reflexive if (a,a) $\in \mathbb{R} \forall a \in \mathbb{Z}$ </u>

For any $a \in A$, we have

a+a = 2a, which is even.

 $\Rightarrow (a,a) \in \mathbf{R}$

Thus, R is reflexive.

<u>R is Symmetric if (a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z</u>

 $(a,b)\in \mathbb{R}$

 \Rightarrow a+b is even.

 \Rightarrow b+a is even.

 $\Rightarrow (b,a) \in \mathbb{R}$

Thus, R is symmetric .

<u>R is Transitive if (a,b)</u> \in <u>R and (b,c)</u> \in <u>R</u> \Rightarrow (a,c) \in <u>R</u> \forall <u>a,b,c</u> \in <u>Z</u>

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in Z$

 \Rightarrow a+b = 2P and b+c = 2Q

Adding both, we get

a+c+2b = 2(P+Q)

 \Rightarrow a+c = 2(P+Q)-2b

 \Rightarrow a+c is an even number

$$\Rightarrow$$
 (a, c) \in R

Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on Z.

Question: 4

Let $R = \{(a, b) :$

Solution:

In order to show R is an equivalence relation, we need to show R is Reflexive, Symmetric and Transitive.

Given that, $\forall a, b \in \mathbb{Z}$, aRb if and only if a – b is divisible by 5.

Now,

<u>R is Reflexive if (a,a) $\in \mathbb{R} \forall a \in \mathbb{Z}$ </u> $aRa \Rightarrow (a-a)$ is divisible by 5. $a-a = 0 = 0 \times 5$ [since 0 is multiple of 5 it is divisible by 5] \Rightarrow a-a is divisible by 5 \Rightarrow (a,a) \in R Thus, R is reflexive on Z. <u>R is Symmetric if (a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in Z</u> $(a,b) \in \mathbb{R} \Rightarrow (a-b)$ is divisible by 5 \Rightarrow (a-b) = 5z for some z \in Z $\Rightarrow -(b-a) = 5z$ \Rightarrow b-a = 5(-z) [\because z \in Z \Rightarrow -z \in Z] \Rightarrow (b-a) is divisible by 5 \Rightarrow (b,a) \in R Thus, R is symmetric on Z. <u>R is Transitive if (a,b) \in R and (b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in Z</u> $(a,b) \in R \Rightarrow (a-b)$ is divisible by 5 \Rightarrow a-b = 5z₁ for some z₁ \in Z $(b,c) \in R \Rightarrow (b-c)$ is divisible by 5 \Rightarrow b-c = 5z₂ for some z₂ \in Z Now. $a-b = 5z_1$ and $b-c = 5z_2$ $\Rightarrow (a-b) + (b-c) = 5z_1 + 5z_2$ \Rightarrow a-c = 5(z₁ + z₂) = 5z₃ where z₁ + z₂ = z₃ $\Rightarrow a-c = 5z_3 [\because z_1, z_2 \in Z \Rightarrow z_3 \in Z]$ \Rightarrow (a-c) is divisible by 5. \Rightarrow (a, c) \in R Thus, R is transitive on Z.

Since R is reflexive, symmetric and transitive it is an equivalence relation on $Z. \label{eq:relation}$

Question: 5

Show that the rel

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and

Transitive. Given that, $\forall a, b \in A$, $R = \{(a, b) : |a - b| \text{ is even}\}$. Now, <u>R is Reflexive if (a,a) \in R \forall a \in A</u> For any $a \in A$, we have |a-a| = 0, which is even. \Rightarrow (a,a) \in R Thus, R is reflexive. <u>R is Symmetric if (a,b) \in <u>R</u> \Rightarrow (b,a) \in <u>R</u> \forall <u>a,b</u> \in <u>A</u></u> $(a,b) \in \mathbb{R}$ \Rightarrow |a-b| is even. \Rightarrow |b-a| is even. \Rightarrow (b,a) \in R Thus, R is symmetric. <u>R is Transitive if (a,b) \in R and (b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in A</u> Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in A$ \Rightarrow |a - b| is even and |b - c| is even \Rightarrow (a and b both are even or both odd) and (b and c both are even or both odd) Now two cases arise: Case 1 : when b is even Let $(a,b) \in R$ and $(b,c) \in R$ \Rightarrow |a - b| is even and |b - c| is even \Rightarrow a is even and c is even [: b is even] \Rightarrow |a - c| is even [:: difference of any two even natural numbers is even] \Rightarrow (a, c) \in R Case 2 : when b is odd Let $(a,b) \in R$ and $(b,c) \in R$ \Rightarrow |a - b| is even and |b - c| is even \Rightarrow a is odd and c is odd [\because b is odd] \Rightarrow |a - c| is even [\therefore difference of any two odd natural numbers is even] \Rightarrow (a, c) \in R Thus, R is transitive on Z. Since R is reflexive, symmetric and transitive it is an equivalence relation on Z. **Ouestion: 6** Show that the rel

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, R be the relation in N ×N defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in

```
N ×N.

R is Reflexive if (a, b) R (a, b) for (a, b) in N ×N

Let (a,b) R (a,b)

= a+b = b+a

which is true since addition is commutative on N.

= R is reflexive.

R is Symmetric if (a,b) R (c,d) = (c,d) R (a,b) for (a, b), (c, d) in N ×N

Let (a,b) R (c,d)

= a+d = b+c

= b+c = a+d

= c+b = d+a [since addition is commutative on N]

= (c,d) R (a,b)

= R is symmetric.

R is Transitive if (a,b) R (c,d) and (c,d) R (e,f) = (a,b) R (e,f) for (a, b), (c, d),(e,f) in N ×N

Let (a,b) R (c,d) and (c,d) R (e,f)
```

```
\Rightarrow a+d = b+c and c+f = d+e
```

```
\Rightarrow (a+d) - (d+e) = (b+c) - (c+f)
```

- \Rightarrow a-e= b-f
- \Rightarrow a+f = b+e
- \Rightarrow (a,b) R (e,f)
- \Rightarrow R is transitive.

Hence, R is an equivalence relation.

Question: 7

Let \boldsymbol{S} be the set

Solution:

In order to show R is an equivalence relation we need to show R is Reflexive, Symmetric and Transitive.

Given that, $\forall a, b \in S$, $R = \{(a, b) : a = \pm b \}$

Now,

<u>R is Reflexive if (a,a) $\in \underline{R} \forall \underline{a} \in \underline{S}$ </u>

For any $a \in S$, we have

 $a = \pm a$

 \Rightarrow (a,a) \in R

Thus, R is reflexive.

<u>R is Symmetric if (a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in S</u>

 $(a,b) \in \mathbb{R}$

 $\Rightarrow a = \pm b$

 \Rightarrow b = \pm a

 \Rightarrow (b,a) \in R

Thus, R is symmetric .

<u>R is Transitive if (a,b) \in <u>R</u> and (b,c) \in <u>R</u> \Rightarrow (a,c) \in <u>R</u> \forall <u>a,b,c</u> \in <u>S</u></u> Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in S$ \Rightarrow a = ± b and b = ± c $\Rightarrow a = \pm c$ \Rightarrow (a, c) \in R Thus, R is transitive. Hence, R is an equivalence relation. **Question: 8** Let S be the set Solution: Given that, $\forall A, B \in S$, $R = \{(A, B) : d(A, B) < 2 \text{ units}\}$. Now, <u>R is Reflexive if (A,A) \in R \forall A \in S</u> For any $A \in S$, we have d(A,A) = 0, which is less than 2 units $\Rightarrow (A,A) \in \mathbb{R}$ Thus, R is reflexive. <u>R is Symmetric if (A, B) \in <u>R</u> \Rightarrow (B,A) \in <u>R</u> \forall <u>A,B</u> \in <u>S</u></u> $(A, B) \in R$ \Rightarrow d(A, B) < 2 units \Rightarrow d(B, A) < 2 units \Rightarrow (B,A) \in R Thus, R is symmetric. <u>R is Transitive if (A, B) \in R and (B,C) \in R \Rightarrow (A,C) \in R \forall A,B,C \in S</u> Consider points A(0,0),B(1.5,0) and C(3.2,0). d(A,B)=1.5 units < 2 units and d(B,C)=1.7 units < 2 units d(A,C)= 3.2 ≮ 2 \Rightarrow (A, B) \in R and (B,C) \in R \Rightarrow (A,C) \notin R Thus, R is not transitive. Thus, R is reflexive, symmetric but not transitive. **Question: 9** Let S be the set Solution: Given that, $\forall a, b \in S$, $R = \{(a, b) : a^2 + b^2 = 1 \}$ Now, <u>R is Reflexive if (a,a) $\in \mathbb{R} \forall a \in S$ </u> For any $a \in S$, we have $a^2 + a^2 = 2 a^2 \neq 1$

 \Rightarrow (a,a) ∉ R Thus, R is not reflexive. <u>R is Symmetric if (a,b) \in R \Rightarrow (b,a) \in R \forall a,b \in S</u> $(a,b) \in \mathbb{R}$ $\Rightarrow a^2 + b^2 = 1$ \Rightarrow b² + a² = 1 \Rightarrow (b,a) \in R Thus, R is symmetric. <u>R is Transitive if (a,b) \in R and (b,c) \in R \Rightarrow (a,c) \in R \forall a,b,c \in S</u> Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in S$ $\Rightarrow a^{2} + b^{2} = 1$ and $b^{2} + c^{2} = 1$ Adding both, we get $a^2 + c^2 + 2b^2 = 2$ $\Rightarrow a^2 + c^2 = 2 - 2b^2 \neq 1$ \Rightarrow (a, c) \notin R Thus, R is not transitive. Thus, R is symmetric but neither reflexive nor transitive.

Question: 10

Let R = {(a, b) :

Solution:

We have, $R = \{(a, b) : a = b^2\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be equal to its square except 1.

 $\Rightarrow (a,a) \notin \mathbb{R} \; \forall \; a \in \mathbb{N}$

For e.g. (2,2) $\notin \mathbb{R} \stackrel{\cdot}{\cdot} 2 \neq 2^2$

 \Rightarrow R is not reflexive.

Let (a,b) $\in \mathbb{R} \; \forall$ a, b $\in \mathbb{N}$

 $\Rightarrow a = b^2$

But b cannot be equal to square of a if a is equal to square of b.

⇒ (b,a) ∉ R

For e.g., we observe that (4,2) $\in \mathbb{R}$ i.e $4=2^2$ but $2\neq 4^2 \Rightarrow (2,4) \notin \mathbb{R}$

 \Rightarrow R is not symmetric

Let $(a,b) \in R$ and $(b,c) \in R \forall a, b,c \in N$

 \Rightarrow a = b² and b = c²

$$\Rightarrow a \neq c^2$$

⇒ (a,c) ∉ R

For e.g., we observe that

 $(16,4) \in \mathbb{R} \Rightarrow 16 = 4^2$ and $(4,2) \in \mathbb{R} \Rightarrow 4 = 2^2$

But $16 \neq 2^2$

⇒ (16,2) ∉ R

 \Rightarrow R is not transitive.

Thus, R is neither reflexive nor symmetric nor transitive.

Question: 11

Show that the rel

Solution:

We have, $R = \{(a, b) : a > b\}$ relation defined on N.

Now,

We observe that, any element $a \in N$ cannot be greater than itself.

 $\Rightarrow (a,a) \notin \mathbb{R} \; \forall \; a \in \mathbb{N}$

 \Rightarrow R is not reflexive.

Let (a,b) $\in \mathbb{R} \forall a, b \in \mathbb{N}$

 \Rightarrow a is greater than b

But b cannot be greater than a if a is greater than b.

⇒ (b,a) \notin R

For e.g., we observe that (5,2) \in R i.e 5 > 2 but 2 \geq 5 \Rightarrow (2,5) \notin R

 \Rightarrow R is not symmetric

Let (a,b) $\in \mathbb{R}$ and (b,c) $\in \mathbb{R} \; \forall$ a, b,c $\in \mathbb{N}$

 \Rightarrow a > b and b > c

 \Rightarrow a > c

 $\Rightarrow (a,c) \in \mathbb{R}$

For e.g., we observe that

 $(5,4) \in \mathbb{R} \Rightarrow 5 > 4$ and $(4,3) \in \mathbb{R} \Rightarrow 4 > 3$

And we know that $5 > 3 \therefore (5,3) \in \mathbb{R}$

 \Rightarrow R is transitive.

Thus, R is transitive but not reflexive not symmetric.

Question: 12

Let $A = \{1, 2, 3\}$

Solution:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1\}, (2, 2), (3, 3), (1, 2), (2, 3)\}.$

Now,

R is reflexive ∵ (1,1),(2,2),(3,3) ∈ R

R is not symmetric ∵ (1,2),(2,3) ∈ R but (2,1),(3,2) ∉ R

R is not transitive \therefore (1,2) \in R and (2,3) \in R \Rightarrow (1,3) \notin R

Thus, R is reflexive but neither symmetric nor transitive.

Question: 13

Let A = (1, 2, 3,

Solution:

Given that, $A = \{1, 2, 3\}$ and $R = \{1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 2)\}$. Now,

R is reflexive \because (1,1),(2,2),(3,3),(4,4) \in R

R is not symmetric ∵ (1,2),(1,3),(3,2) ∈ R but (2,1),(3,1),(2,3) ∉ R

R is transitive \because (1,3) \in R and (3,2) \in R \Rightarrow (1,2) \in R

Thus, R is reflexive and transitive but not symmetric.

Exercise : OBJECTIVE QUESTIONS

Question: 1 Mark the tick aga Solution: Given set $A = \{1, 2, 3\}$ And $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 2), (1, 2)\}$ Formula For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Since , $(1,1) \in \mathbb{R}$, $(2,2) \in \mathbb{R}$, $(3,3) \in \mathbb{R}$ Therefore, R is reflexive (1) Check for symmetric Since $(1,3) \in \mathbb{R}$ but $(3,1) \notin \mathbb{R}$ Therefore, R is not symmetric (2) Check for transitive Here, $(1,3) \in \mathbb{R}$ and $(3,2) \in \mathbb{R}$ and $(1,2) \in \mathbb{R}$ Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (B) **Question: 2** Mark the tick aga Solution: Given set $A = \{a, b, c\}$ And $R = \{(a, a), (a, b), (b, a)\}$ **Formula**

For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if (a , b) $\in \mathbb{R}$, then (b , a) $\in \mathbb{R}$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Since , (b,b) \notin R and (c,c) \notin R Therefore, R is not reflexive (1) Check for symmetric Since , (a,b) $\in \mathbb{R}$ and (b,a) $\in \mathbb{R}$ Therefore, R is symmetric (2) Check for transitive Here , (a,b) \in R and (b,a) \in R and (a,a) \in R Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (C) **Question: 3** Mark the tick aga Solution: Given set $A = \{1, 2, 3\}$ And $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ <u>Formula</u> For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in R$ for every a $\in A$ Symmetric The relation is Symmetric if (a , b) $\in R$, then (b , a) $\in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Since , $(1,1) \in \mathbb{R}$, $(2,2) \in \mathbb{R}$, $(3,3) \in \mathbb{R}$ Therefore, R is reflexive(1) Check for symmetric

Since , $(1,2) \in \mathbb{R}$ and $(2,1) \in \mathbb{R}$ $(2,3) \in \mathbb{R}$ and $(3,2) \in \mathbb{R}$ Therefore, R is symmetric (2) Check for transitive Here, $(1,2) \in \mathbb{R}$ and $(2,3) \in \mathbb{R}$ but $(1,3) \notin \mathbb{R}$ Therefore, R is not transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (A) **Question: 4** Mark the tick aga Solution: According to the question, Given set $S = \{x, y, z\}$ And $R = \{(x, y), (y, z), (x, z), (y, x), (z, y), (z, x)\}$ <u>Formula</u> For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Since , (x,x) \notin R , (y,y) \notin R , (z,z) \notin R Therefore, R is not reflexive (1) Check for symmetric Since , (x,y) $\in R$ and (y,x) $\in R$ $(z,y) \in R$ and $(y,z) \in R$ $(x,z) \in R$ and $(z,x) \in R$ Therefore, R is symmetric (2) Check for transitive Here, $(x,y) \in R$ and $(y,x) \in R$ but $(x,x) \notin R$ Therefore, R is not transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (B)

Question: 5

Mark the tick aga

Solution:

According to the question, Given set $S = \{x, y, z\}$ And $R = \{(x, x), (y, y), (z, z)\}$ *Formula* For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if (a , b) $\in R$, then (b , a) $\in R$ Transitive Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Since , $(x,x) \in \mathbb{R}$, $(y,y) \in \mathbb{R}$, $(z,z) \in \mathbb{R}$ Therefore, R is reflexive (1) Check for symmetric Since , $(x,x) \in R$ and $(x,x) \in R$ $(y,y) \in R$ and $(y,y) \in R$ $(z,z) \in R$ and $(z,z) \in R$ Therefore, R is symmetric (2) Check for transitive Here, $(x,x) \in R$ and $(y,y) \in R$ and $(z,z) \in R$ Therefore, R is transitive (3) Now , according to the equations (1) , (2) , (3)Correct option will be (D) **Question: 6** Mark the tick aga Solution: According to the question , Given set $Z = \{1, 2, 3, 4,\}$ And $R = \{(a, b) : a, b \in Z \text{ and } (a-b) \text{ is divisible by } 3\}$ Formula For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if (a , b) $\in R$, then (b , a) $\in R$

Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider, (a,a) (a - a) = 0 which is divisible by 3 $(a,a) \in \mathbb{R}$ where $a \in \mathbb{Z}$ Therefore, R is reflexive (1) Check for symmetric Consider , $(a,b) \in \mathbb{R}$ \therefore (a - b) which is divisible by 3 - (a - b) which is divisible by 3 (since if 6 is divisible by 3 then -6 will also be divisible by 3) \therefore (b - a) which is divisible by 3 \Rightarrow (b,a) \in R For any $(a,b) \in \mathbb{R}$; $(b,a) \in \mathbb{R}$ Therefore, R is symmetric (2) Check for transitive Consider , (a,b) $\in R$ and (b,c) $\in R$ \therefore (a - b) which is divisible by 3 and (b - c) which is divisible by 3 [(a-b)+(b-c)] is divisible by 3] (if 6 is divisible by 3 and 9 is divisible by 3 then 6+9 will also be divisible by 3) \therefore (a - c) which is divisible by 3 \Rightarrow (a,c) \in R Therefore $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$ Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (D) **Question:** 7 Mark the tick aga Solution: According to the question, Given set N = $\{1, 2, 3, 4, \dots\}$ And $R = \{(a, b) : a, b \in N \text{ and } a \text{ is a factor of } b\}$ **Formula** For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in R$ for every a $\in A$ Symmetric The relation is Symmetric if (a , b) $\in \mathbb{R}$, then (b , a) $\in \mathbb{R}$

Transitive Relation is Transitive if (a , b) $\in R$ & (b , c) $\in R$, then (a , c) $\in R$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider, (a,a) a is a factor of a (2,2), (3,3)... (a,a) where $a \in N$ Therefore, R is reflexive (1) Check for symmetric a R b \Rightarrow a is factor of b $b R a \Rightarrow b is factor of a as well$ $\operatorname{Ex}_{-}(2,6) \in \mathbb{R}$ But (6,2) ∉ R Therefore, R is not symmetric (2) Check for transitive a R b \Rightarrow a is factor of b $b R c \Rightarrow b is a factor of c$ a R c \Rightarrow b is a factor of c also Ex (2,6), (6,18) \therefore (2,18) \in R Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (B) **Question: 8** Mark the tick aga Solution: According to the question, Given set $Z = \{1, 2, 3, 4,\}$ And $R = \{(a, b) : a, b \in Z \text{ and } a \ge b\}$ Formula For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$

Equivalence

If the relation is reflexive , symmetric and transitive , it is an equivalence relation. Check for reflexive Consider , (a,a) (b,b) \therefore a \ge a and b \ge b which is always true. Therefore, R is reflexive (1) Check for symmetric $a R b \Rightarrow a \ge b$ $b R a \Rightarrow b \ge a$ Both cannot be true. Ex_If a=2 and b=1 $\therefore 2 \ge 1$ is true but $1 \ge 2$ which is false. Therefore, R is not symmetric (2) Check for transitive $a R b \Rightarrow a \ge b$ $b R c \Rightarrow b \ge c$ $\therefore a \ge c$ Ex a=5, b=4 and c=2 \therefore 5≥4 , 4≥2 and hence 5≥2 Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (C) **Question: 9** Mark the tick aga Solution: According to the question, Given set $S = \{\dots, -2, -1, 0, 1, 2, \dots\}$ And $R = \{(a, b) : a, b \in S \text{ and } |a| \le b \}$ <u>Formula</u> For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive

Consider , (a,a)

 \therefore $|a| \le a$ and which is not always true. Ex if a = -2 $|-2| \leq -2 \Rightarrow 2 \leq -2$ which is false. Therefore , R is not reflexive (1) Check for symmetric $a R b \Rightarrow |a| \le b$ $b R a \Rightarrow |b| \le a$ Both cannot be true. Ex If a=-2 and b=-1 $\therefore 2 \leq -1$ is false and $1 \leq -2$ which is also false. Therefore, R is not symmetric (2) Check for transitive $a R b \Rightarrow |a| \le b$ $b R c \Rightarrow |b| \le c$ $|a| \le c$ Ex a=-5, b=7 and c=9 \therefore 5 \leq 7 , 7 \leq 9 and hence 5 \leq 9 Therefore, R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (C) **Question: 10** Mark the tick aga Solution: According to the question, Given set $S = \{\dots, -2, -1, 0, 1, 2, \dots\}$ And $R = \{(a, b) : a, b \in S \text{ and } |a - b| \le 1 \}$ <u>Formula</u> For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider, (a,a) \therefore $|a - a| \le 1$ and which is always true.

Ex if a=2 $\therefore |2-2| \le 1 \Rightarrow 0 \le 1$ which is true. Therefore, R is reflexive (1) Check for symmetric $a R b \Rightarrow |a - b| \le 1$ $b R a \Rightarrow |b - a| \le 1$ Both can be true. Ex If a=2 and b=1 \therefore $|2 - 1| \le 1$ is true and $|1 - 2| \le 1$ which is also true. Therefore, R is symmetric (2) Check for transitive $a R b \Rightarrow |a - b| \le 1$ $b R c \Rightarrow |b - c| \le 1$ $|\dot{a} - c| \le 1$ will not always be true Ex a=-5, b=-6 and c=-7 $|6-5| \le 1$, $|7-6| \le 1$ are true But $|7-5| \le 1$ is false. Therefore , R is not transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (A) **Question: 11** Mark the tick aga Solution: According to the question, Given set $S = \{\dots, -2, -1, 0, 1, 2, \dots\}$ And $R = \{(a, b) : a, b \in S \text{ and } (1 + ab) > 0 \}$ <u>Formula</u> For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in R$ for every a $\in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in \mathbb{R}$ & (b , c) $\in \mathbb{R}$, then (a , c) $\in \mathbb{R}$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider, (a,a) \therefore (1 + a×a) > 0 which is always true because a×a will always be positive. Ex if a=2

 \therefore (1 + 4) > 0 \Rightarrow (5) > 0 which is true. Therefore, R is reflexive (1) Check for symmetric $a R b \Rightarrow (1 + ab) > 0$ $b R a \Rightarrow (1 + ba) > 0$ Both the equation are the same and therefore will always be true. Ex If a=2 and b=1 \therefore (1 + 2×1) > 0 is true and (1+1×2) > which is also true. Therefore, R is symmetric (2) Check for transitive $a R b \Rightarrow (1 + ab) > 0$ $b R c \Rightarrow (1 + bc) > 0$ (1 + ac) > 0 will not always be true Ex a=-1, b=0 and c=2 $(1 + -1 \times 0) > 0$, $(1 + 0 \times 2) > 0$ are true But $(1 + -1 \times 2) > 0$ is false. Therefore, R is not transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (A) **Question: 12** Mark the tick aga Solution: According to the question, Given set S = {...All triangles in plane....} And $R = \{(\Delta_1, \Delta_2) : \Delta_1, \Delta_2 \in S \text{ and } \Delta_1 \equiv \Delta_2\}$ *Formula* For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in \mathbb{R}$ for every $a \in A$ Symmetric The relation is Symmetric if (a , b) $\in \mathbb{R}$, then (b , a) $\in \mathbb{R}$ Transitive Relation is Transitive if $(a, b) \in R \& (b, c) \in R$, then $(a, c) \in R$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider , (Δ_1, Δ_1) : We know every triangle is congruent to itself. $(\Delta_1, \Delta_1) \in \mathbb{R} \text{ all } \Delta_1 \in \mathbb{S}$

Therefore, R is reflexive (1) Check for symmetric $(\Delta_1 \text{ , } \Delta_2) \in R$ then Δ_1 is congruent to Δ_2 $(\Delta_2, \Delta_1) \in \mathbb{R}$ then Δ_2 is congruent to Δ_1 Both the equation are the same and therefore will always be true. Therefore, R is symmetric (2) Check for transitive Let Δ_1 , Δ_2 , $\Delta_3 \in S$ such that $(\Delta_1, \Delta_2) \in R$ and $(\Delta_2, \Delta_3) \in R$ Then $(\Delta_1, \Delta_2) \in \mathbb{R}$ and $(\Delta_2, \Delta_3) \in \mathbb{R}$ $\Rightarrow \Delta_1$ is congruent to Δ_2 , and Δ_2 is congruent to Δ_3 $\Rightarrow \Delta_1$ is congruent to Δ_3 $\therefore (\Delta_1, \Delta_3) \in \mathbb{R}$ Therefore , R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (D) **Question: 13** Mark the tick aga Solution: According to the question, Given set $S = \{\dots, -2, -1, 0, 1, 2, \dots\}$ And R = {(a, b) : a, b \in S and $a^2 + b^2 = 1$ } Formula For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in R$ for every a $\in A$ **Symmetric** The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in R \& (b , c) \in R$, then (a , c) $\in R$ Equivalence If the relation is reflexive, symmetric and transitive, it is an equivalence relation. Check for reflexive Consider , (a,a) $\therefore a^2 + a^2 = 1$ which is not always true Ex if a=2 $\therefore 2^2 + 2^2 = 1 \Rightarrow 4 + 4 = 1$ which is false. Therefore, R is not reflexive(1) Check for symmetric

a R b \Rightarrow a² + b² = 1

 $b R a \Rightarrow b^2 + a^2 = 1$

Both the equation are the same and therefore will always be true.

Therefore , R is symmetric (2)

Check for transitive

 $a R b \Rightarrow a^2 + b^2 = 1$

 $b R c \Rightarrow b^2 + c^2 = 1$

 $\therefore a^2 + c^2 = 1$ will not always be true

 $Ex_a{=}{-}1$, $b{=}\ 0$ and $c{=}\ 1$

 \therefore (-1)² + 0² = 1 , 0² + 1² = 1 are true

But $(-1)^2 + 1^2 = 1$ is false.

Therefore , R is not transitive (3)

Now , according to the equations $\left(1\right)$, $\left(2\right)$, $\left(3\right)$

Correct option will be (A)

Question: 14

Mark the tick aga

Solution:

According to the question ,

 $R = \{(a, b), (c, d) : a + d = b + c \}$

<u>Formula</u>

For a relation R in set A

Reflexive

The relation is reflexive if (a , a) $\in R$ for every a $\in A$

Symmetric

The relation is Symmetric if (a , b) $\in R$, then (b , a) $\in R$

Transitive

Relation is Transitive if (a , b) $\in R$ & (b , c) $\in R$, then (a , c) $\in R$

Equivalence

If the relation is reflexive , symmetric and transitive , it is an equivalence relation.

Check for reflexive

Consider , (a, b) R (a, b)

(a, b) R (a, b) \Leftrightarrow a + b = a + b

which is always true .

Therefore , R is reflexive (1)

Check for symmetric

(a, b) R (c, d) \Leftrightarrow a + d = b + c

(c, d) R (a, b) \Leftrightarrow c + b = d + a

Both the equation are the same and therefore will always be true.

Therefore, R is symmetric (2) Check for transitive (a, b) R (c, d) \Leftrightarrow a + d = b + c (c, d) R (e, f) \Leftrightarrow c + f = d + e On adding these both equations we get , a + f = b + eAlso, (a, b) R (e, f) \Leftrightarrow a + f = b + e ∴ It will always be true Therefore , R is transitive (3) Now, according to the equations (1), (2), (3)Correct option will be (D) **Question: 15** Mark the tick aga Solution: According to the question, O is the origin $R = \{(P, Q) : OP = OQ \}$ *Formula* For a relation R in set A Reflexive The relation is reflexive if (a , a) $\in R$ for every a $\in A$ Symmetric The relation is Symmetric if $(a, b) \in R$, then $(b, a) \in R$ Transitive Relation is Transitive if (a , b) $\in R \& (b , c) \in R$, then (a , c) $\in R$ Equivalence If the relation is reflexive , symmetric and transitive , it is an equivalence relation. Check for reflexive Consider , (P , P) $\in \mathbb{R} \Leftrightarrow OP = OP$ which is always true. Therefore, R is reflexive(1) Check for symmetric $(P, Q) \in R \Leftrightarrow OP = OQ$ $(Q, P) \in R \Leftrightarrow OQ = OP$ Both the equation are the same and therefore will always be true. Therefore, R is symmetric (2) Check for transitive $(P, Q) \in R \Leftrightarrow OP = OQ$

 $(\mathsf{Q} \ , \, \mathsf{R}) \in \mathsf{R} \Leftrightarrow \mathsf{O}\mathsf{Q} = \mathsf{O}\mathsf{R}$

On adding these both equations, we get , OP = ORAlso,

 $(\mathsf{P} \ , \ \mathsf{R}) \in \mathsf{R} \Leftrightarrow \mathsf{OP} = \mathsf{OR}$

 \therefore It will always be true

Therefore , R is transitive (3)

Now , according to the equations (1) , (2) , (3)

Correct option will be (D)

Question: 16

Mark the tick aga

Solution:

According to the question ,

Q is set of all rarional numbers

 $R = \{(a, b) : a * b = a + 2b \}$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider , a * b = a + 2b

And , b * a = b + 2a

Both equations will not always be true .

Therefore , * is not commutative (1)

Check for associative

Consider , (a * b) * c = (a + 2b) * c = a+2b + 2c

And , a * (b * c) = a * (b+2c) = a+2(b+2c) = a+2b+4c

Both the equation are not the same and therefore will not always be true.

Therefore , * is not associative (2)

Now , according to the equations (1) , (2)

Correct option will be (C)

Question: 17

Mark the tick aga

Solution:

According to the question ,

 $Q = \{a,b\}$

 $R = \{(a, b) : a * b = a + ab \}$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

```
Consider , a * b = a + ab
```

And , b * a = b + ba

Both equations will not always be true .

Therefore, * is not commutative (1)

Check for associative

Consider , (a * b) * c = (a + ab) * c = a+ab + (a+ab)c=a+ab+ac+abc

And , a * (b * c) = a * (b+bc) = a+a(b+bc) = a+ab+abc

Both the equation are not the same and therefore will not always be true.

Therefore , * is not associative (2)

Now , according to the equations (1) , (2)

Correct option will be (B)

Question: 18

Mark the tick aga

Solution:

According to the question ,

Q = { Positive rationals }

$$R = \{(a, b) : a * b = ab/2 \}$$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider , a * b = ab/2

And , b * a = ba/2

Both equations are the same and will always true .

Therefore , * is commutative (1)

Check for associative

Consider , (a * b) * c = (ab/2) * c = $\frac{ab}{2} \times c$ = abc/4

And , a * (b * c) = a * (bc/2) = $\frac{a \times \frac{bc}{2}}{2}$ = abc/4

Both the equation are the same and therefore will always be true.

Therefore , * is associative (2)

Now , according to the equations (1) , (2)

Correct option will be (D)

Question: 19

Mark the tick aga

Solution:

According to the question ,

Q = { All integers }

 $R = \{(a, b) : a * b = a - b + ab \}$

<u>Formula</u>

* is commutative if a * b = b * a * is associative if (a * b) * c = a * (b * c)Check for commutative Consider, a * b = a - b + abAnd , b * a = b - a + baBoth equations are not the same and will not always be true . Therefore, * is not commutative (1) Check for associative Consider , (a * b) * c = (a - b + ab) * c= a - b + ab - c + (a - b + ab)c=a - b + ab - c + ac - bc + abcAnd , a * (b * c) = a * (b - c + bc)= a - (b - c + bc) + a(b - c + bc)=a - b + c - bc + ab - ac + abcBoth the equation are not the same and therefore will not always be true. Therefore, * is not associative (2) Now, according to the equations (1), (2) Correct option will be (C) **Question: 20** Mark the tick aga Solution: According to the question, $Q = \{ All integers \}$ $R = \{(a, b) : a * b = a + b - ab \}$ <u>Formula</u> * is commutative if a * b = b * a* is associative if (a * b) * c = a * (b * c)Check for commutative Consider , a * b = a + b - abAnd , b * a = b + a - baBoth equations are the same and will always be true .

Therefore , * is commutative (1)

Check for associative

Consider , (a * b) * c = (a + b - ab) * c

= a + b - ab + c - (a + b - ab)c

=a + b - ab + c - ac - bc + abc

And , a * (b * c) = a * (b + c - bc)

= a + (b + c - bc) - a(b + c - bc)

=a + b + c - bc - ab - ac + abc

Both the equation are the same and therefore will always be true.

Therefore , * is associative (2)

Now , according to the equations (1) , (2)

Correct option will be (D)

Question: 21

Mark the tick aga

Solution:

According to the question ,

Q = { All integers }

 $R = \{(a, b) : a * b = a^b \}$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider , $a * b = a^b$

And , $b * a = b^a$

Both equations are not the same and will not always be true .

Therefore, * is not commutative (1)

Check for associative

Consider , $(a * b) * c = (a^b) * c = (a^b)^c$

And , a * (b * c) = a * (b^c) = $a^{(b^c)}$

Ex a=2 b=3 c=4

 $(a * b) * c = (2^3) * c = (8)^4$

 $a * (b * c) = 2 * (3^4) = 2^{(81)}$

Both the equation are not the same and therefore will not always be true.

Therefore , * is not associative (2)

Now , according to the equations (1) , (2)

Correct option will be (C)

Question: 22

Mark the tick aga

Solution:

According to the question ,

 $R = \{(a, b) : a * b = a + b + ab \}$

<u>Formula</u>

* is commutative if a * b = b * a

* is associative if (a * b) * c = a * (b * c)

Check for commutative

Consider , a * b = a + b + ab

And , b * a = b + a + ba

Both equations are same and will always be true .

Therefore , * is commutative (1)

Check for associative

Consider , (a * b) * c = (a + b + ab) * c

= a + b + ab + c + (a + b + ab)c

=a + b + c + ab + ac + bc + abc

And , a * (b * c) = a * (b + c + bc)

= a + b + c + bc + a(b + c + bc)

=a +b + c + ab + bc + ac + abc

Both the equation are same and therefore will always be true.

Therefore , * is associative (2)

Now , according to the equations (1) , (2)

Correct option will be (D)