CBSE Sample Paper-03 (solved) SUMMATIVE ASSESSMENT -I MATHEMATICS **Class - IX**

Time allowed: 3 hours

General Instructions:

- a) All questions are compulsory.
- b) The question paper comprises of 31 questions divided into four sections A, B, C and D. You are to attempt all the four sections.
- c) Questions 1 to 4 in section A are one mark questions. These are MCQs. Choose the correct option.
- d) Questions 5 to 10 in section B are two marks questions.
- e) Questions 11 to 20 in section C are three marks questions.
- f) Questions 21 to 31 in section D are four marks questions.
- g) There is no overall choice in the question paper. Use of calculators is not permitted.

Section A

- The greater between the numbers $\frac{10}{\sqrt{5}}$ and $\frac{14}{\sqrt{7}}$ is Q1.
 - a) $\frac{10}{\sqrt{5}}$

b)
$$\frac{14}{\sqrt{2}}$$

- $\frac{1}{\sqrt{7}}$ c) Both are equal
- d) Can't say
- Zeroes of a polynomial $x^2 2x$ are Q2.
 - a) 0,2
 - b) 0,0
 - c) 2,0
 - d) -2, -2

Q3. In two triangles *ABC* and *XYZ*, *AB* = *ZX*, $\angle A = 30^{\circ}$, $\angle B = 70^{\circ}$, $\angle x = 70^{\circ}$, $\angle y = 80^{\circ}$, then

- a) $\triangle ABC \cong \triangle XYZ$
- b) $\Delta BAC \cong \Delta XYZ$
- c) $\triangle ABC \cong \triangle ZXY$
- d) $\Delta CAB \cong \Delta XYZ$

Maximum Marks: 90

- Q4. Point (0, -2) lies
 - a) In the first quadrant
 - b) On the x-axis
 - c) On the y-axis
 - d) None of these

Section **B**

- Q5. Which of the following rational numbers have the terminating decimal representation?
 - a) $\frac{6}{10}$ b) $\frac{14}{40}$
- Q6. Find the zeroes of the polynomial $5x + 2x^2 + 3$
- Q7. Prove that if a quantity *B* is a part of another quantity *A*, then *A* can be written as the sum of *B* and some third quantity *C*.
- Q8. Two supplementary angles are in the ratio 4:5. Find the angles.
- Q9. If the bisectors of a pair of corresponding angles formed by a transversal with two given lines are parallel, prove that the given lines are parallel.
- Q10. Prove that angles opposite to two equal sides of a triangle are equal.

Section C

- Q11. Represent $\sqrt{5}$ on the number line.
- Q12. For the identity $\frac{7+\sqrt{5}}{7-\sqrt{5}} \frac{7-\sqrt{5}}{7+\sqrt{5}} = a + 7\sqrt{5}b$. Find the value of *a* and *b*.
- Q13. Find p(0), p(1), p(2) for the polynomial $p(y) = y^2 y + 1$.
- Q14. Factorise : $2a^4 32$
- Q15. Prove that the bisectors of the angles of a linear pair are at right angles.
- Q16. Prove that if a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.
- Q17. Prove that the medians of an equilateral triangle are equal.

- Q18. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.
- Q19. Plot the points P(7,0), Q(0,0), R(0,6). Name the figure obtained on joining the points P, Q, R. If possible, find the area of the figure obtained.
- Q20. Area of a given triangle is a_1 sq. units. If the sides of this triangle be doubled, then the area of the new triangle becomes a_2 sq. units. Prove that $a_1 : a_2 = 1 : 4$. Also find the percentage increase in area.

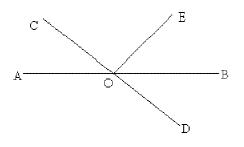
Section D

- Q21. Express each of the following mixed recurring decimals in the form $\frac{p}{2}$
 - a) 4.32
 - b) 0.36
- Q22. Prove that $\sqrt{7}$ is an irrational number.
- Q23. Which of the following polynomials has (x+1) as a factor.

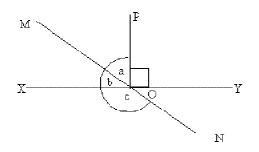
a)
$$x^{3} + x^{2} + x + 1$$

b) $x^{4} + 3x^{3} + 3x^{2} + x + 1$

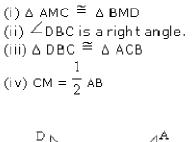
- Q24. Factorise: $x^3 3x^2 9x 5$
- Q25. If $x^3 + ax^2 + bx + 6$ has x 2 is a factor and leaves a remainder 3 when divided by x + 3. Find the values of *a* and *b*.
- Q26. Factorise :
 - a) $x^{3}(y-z)^{3} + y^{3}(z-x)^{3} + z^{3}(x-y)^{3}$ b) $x^{6} - y^{6}$
- Q27. In the figure, lines *AB* and *CD* intersect at *O*. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

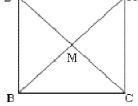


Q28. In the following figure, lines *XY* and *MN* intersect at *O*. If $\angle POY = 90^{\circ}$ and a:b=2:3, find c.



Q29. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:





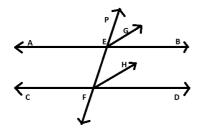
- Q30. Prove that difference of any two sides of a triangle is less than the third side.
- Q31. Outside a mela, *ABCD* is a ground, where three types of vehicles are parked. Cars are parked in the triangular region *ABC*. Scooters and motorbikes are parked in the triangular region *AEC* and bicycles in the triangular region *ECD*. If *E* is the mid point of the side *AD*, how much area is used for parking cars, scooters, motor bikes and bicycles.



CBSE Sample Paper-03 (solved) SUMMATIVE ASSESSMENT –I MATHEMATICS Class – IX

ANSWER KEY

- 1. B
- 2. A
- 3. C
- 4. C
- 5. Both have terminating decimal representation.
- 6. Splitting the middle term, we get $x = -1, \frac{-3}{2}$
- 7. Prove it yourself.
- 8. Two supplementary angles are $80^{\circ}, 100^{\circ}$.
- Given: *AB* and *CD* are two lines where as *PQ* is a transversal line which intersect *AB* at *E* and *CD* at *F* point, *EG* || *FH*.



To prove: *AB* || *CD*

Proof: $EG \parallel FH$

 $\Rightarrow \angle PEG = \angle EFH$ (corresponding angles)

$$\Rightarrow \angle GEB = \angle HFD$$

$$\Rightarrow 2\angle GEB = 2\angle HFD$$

$$\Rightarrow \angle PEB = \angle EFD \ (:: \angle GEB = \frac{1}{2} \angle PEB \text{ and } \angle HFD = \frac{1}{2} \angle EFD \)$$

But, these are corresponding angles where AB and CD are intersected by the transversal PQ.

:: *AB* || *CD* (corresponding angles axiom)

10. Prove it yourself.

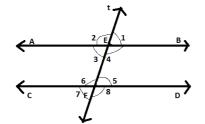
- 11. Do it yourself.
- 12. Rationalising the identity and equating with RHS of the identity, we get $a = 0, b = \frac{1}{11}$

13.
$$p(0)=1, p(1)=1, p(2)=3$$

14.
$$2a^{4} - 32 = 2(a^{4} - 16)$$
$$= ((a^{2})^{2} - (4)^{2})$$
$$= (a^{2} - 4)(a^{2} + 4) \qquad (\therefore a^{2} - b^{2} = (a - b)(a + b))$$
$$= ((a)^{2} - (2)^{2})(a^{2} + 4)$$
$$= (a - 2)(a + 2)(a^{2} + 4) \qquad (\therefore a^{2} - b^{2} = (a - b)(a + b))$$

- 15. Do it yourself.
- 16. **Given**: $AB \parallel CD$ and a transversal *t* intersects *AB* at *E* and *CD* at *F* forming two pairs of consecutive interior angles i.e $\angle 3$, $\angle 6$ and $\angle 4$, $\angle 5$.

To prove: $\angle 3 + \angle 6 = 180^{\circ}, \angle 4 + \angle 5 = 180^{\circ}$



Proof: Since ray *EF* stands on line *AB*, we have $\angle 3 + \angle 4 = 180^{\circ}$ (linear pair)

But $\angle 4 = \angle 6$ (alt. int angles)

 $\therefore \angle 3 + \angle 6 = 180^{\circ}$

Similarly, $\angle 4 + \angle 5 = 180^{\circ}$.

Hence proved.

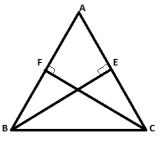
17. Prove it yourself.

18. **Given**: A $\triangle ABC$ in which altitudes *BE* and *CF* from *B* and *C* resp. on *AC* and *AB* are equal.

To prove: $\triangle ABC$ is isosceles i.e. AB = AC.

Proof: In $\triangle ABC$ and $\triangle ACF$, we have

 $\angle AEB = \angle AFC = 90^{\circ}$



 $\angle BAE = \angle CAF(common)$

BE = CF(given)

 $\therefore \Delta ABE \cong \Delta ACF \text{ (by AAS)}$

 $\therefore AB = AC$ (by CPCT)

Hence, ΔABC is isosceles.

- 19. 21 sq.units
- 20. Let a_1 be the original area of triangle and a_2 be the new area

Let *b* be the base and *h* be the height.

$$a_1 = \frac{bh}{2}$$
$$a_2 = \frac{1}{2} \times 2b \times 2h = 2bh$$

Increase in area = $2bh - \frac{bh}{2} = \frac{3bh}{2}$

Ratio:
$$\frac{a_1}{a_2} = \frac{bh/2}{2bh} = \frac{bh}{4bh} = \frac{1}{4}$$

 $\therefore a : a_2 = 1:4$

Percentage increase: $\frac{3bh/2}{bh/2} \times 100 = 300\%$

- 21. Do it yourself
- 22. Do it yourself.

23.

- a) x+1 is a factor as p(-1)=0
- b) x+1 is not a factor as $p(-1) \neq 0$
- 24. Using trial and error method, we get p(-1) = 0

```
\Rightarrow x+1 is a factor of p(x)
```

Dividing $x^3 - 3x^2 - 9x - 5$ by x + 1, we get $x^2 - 4x - 5$ as the quotient

$$\therefore p(x) = (x+1)(x^2-4x-5)$$

Splitting the middle term, we get

$$p(x) = (x+1)^2 (x-5)$$

25.
$$a = \frac{1}{5}, b = \frac{-37}{5}$$

26. Let
$$x(y-z) = a, y(z-x) = b, z(x-y) = c$$

 $\therefore a+b+c=0$
Using the identity: if $a++c=0$ $\therefore a^3+b^3+c^3=3abc$
 $\therefore x^3(y-z)^3+y^3(z-x)^3+z^3(x-y)^3=3xyz(y-z)(z-x)(x-y)$

27.

Solution: Given: -
$$\angle AOC + \angle BOE = 70^{\circ}$$
equation (i)
And $\angle BOD = 40^{\circ}$.

Now, $\therefore \quad \angle AOC = \angle BOD$ {vertically opposite angles}

$$\therefore \quad \angle AOC = 40^{\circ}, \dots, equation (ii) \{\forall \angle BOD = 40^{\circ}, given\}$$

Now, putting the value of equation (ii) in equation (i),

$$\angle AOC + \angle BOE = 70^{\circ}$$

$$\Rightarrow \qquad 40^{\circ} + \angle BOE = 70^{\circ}$$

$$\Rightarrow \qquad \angle BOE = 70^{\circ} - 40^{\circ}$$

$$\Rightarrow \qquad \angle BOE = 30^{\circ}$$

 $\therefore \qquad \angle BOE = 30^{\circ}$

Now, $\angle AOC + \angle BOE + \angle COE = 180^{\circ}$ {Angles at a common point on a line}

⇒ 70° +
$$\angle COE$$
 = 180° {from equation (i)}
⇒ $\angle COE$ = 180° - 70°
⇒ $\angle COE$ = 110°
Reflex $\angle COE$ = 360° - 110° = 250°
Hence, $\angle BOE$ = 30°
And Reflex $\angle COE$ = 250°

101201200120

28.

Solution: Given: - $\angle POY = 90^{\circ}$ And a : b = 2 : 3. $\therefore \qquad \frac{a}{b} = \frac{2}{3}$ $a = \frac{2}{3}b$ equation (i) ⇒ Now, $\angle POX + \angle POY = 180^{\circ}$ $\Rightarrow \angle POX + 90^\circ = 180^\circ$ $\Rightarrow \angle POX = 1800 - 900$ \Rightarrow $\angle POX = 90^{\circ}$ $\Rightarrow a+b=90^{\circ} \qquad \{ \because \angle POX = a+b \}$ $\Rightarrow \quad \frac{2}{3}b + b = 90^{\circ}$ $\Rightarrow \quad \frac{2b+3b}{2} = 90^{\circ}$ ⇒ 2b + 3b = 90° ×3 5b = 270° \Rightarrow $b = \frac{270^{\circ}}{5}$ ⇒ ⇒ b = 54°

Putting the value of \boldsymbol{b} in equation (i)

$$a = \frac{2}{3}b$$

Or, $a = \frac{2}{3} \times 54^{\circ} = 36^{\circ}$
Now, $b + c = 180^{\circ}$ {Angles at a common point on a line}
 $\Rightarrow c = 126^{\circ}$

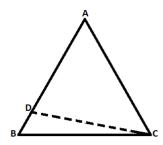
Q29.

Answer: In $\angle AMC & \angle BMD$ BM=AV (M is midpoint) DM=CM (given) $\angle DMB = \angle AMC$ (opposite angles) SO, $\angle AMC \cong \angle BMD$ Hence, DB=AC $\angle DBA = \angle BAC$ SO, DB |AC (alternate angles are equal) SO, $\angle BDC = \angle ACB =$ Right Angle) (internal angles are complementary in Case of transversal of parallel lines)

 $\Delta DBC & \Delta ACB$ DB=AC (proved earlier) BC=BC (Common side) $\angle BDC = \angle ACB \text{ (proved earlier)}$ So, $\Delta DBC \cong \Delta ACB$ So, AB=DC So, AM=BM=CM=DM $\frac{1}{2}AB$

30. **To prove**: AB - AC < BC

Construction: From AB cut AD = AC. Join D and C



Proof: AD = AC

 $\Rightarrow \angle ADC = \angle ACD$ (angles opposite to equal sides are equal)

In $\triangle ADC$, ext. $\angle BDC > \angle ACD$ (ext. angle of a triangle is greater than its int. opp. Angle)

 $\Rightarrow \angle BDC > \angle ADC$ Similarly, in $\triangle BDC$ Ext. $\angle ADC > \angle BCD$ $\Rightarrow \angle BDC > \angle ADC > \angle BCD$ $\Rightarrow \angle BDC > \angle BCD$ $\therefore \text{ In } \triangle BDC, \angle BDC > \angle BCD$ $\Rightarrow BC > BD$ BD < BC AB - AD < BC $AB - AC < BC(\because AD = AC)$

31. Using heron's formula, area of $\triangle ABC = 160\sqrt{2}sq.m$ Area of $\triangle ACD = 384sq.m$ Since *E* is the mid-point of *AD* and *CE* is the bisector,

$$\therefore ar(\Delta ACE) = ar(\Delta ECD) = \frac{1}{2}ar(\Delta ACD)$$
$$\therefore ar(\Delta ACE) = ar(\Delta ECD) = \frac{1}{2}ar(\Delta ACD) = 192sq.m$$