# Sample Question Paper - 37 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

### **General Instructions :**

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- *3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.*
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. *It contains two case study based questions.*

### **SECTION - A**

- 1. Solve the quadratic equation  $9x^2 6b^2x (a^4 b^4) = 0$  for *x*.
- 2. What will be the  $21^{st}$  term of the A.P. whose first two terms are -3 and 4?
- 3. In the given figure, *AOB* is a diameter of a circle with centre *O* and *AC* is a tangent to the circle at *A*. If  $\angle BOC = 130^\circ$ , then find  $\angle ACO$ .





In the given figure, if  $\angle AOB = 130^\circ$ , then find  $\angle COD$ .



- 4. If a = -7, b = 12 in  $x^2 + ax + b = 0$ , then find the smaller root of the given equation
- 5. If the mean of *a*, *b*, *c* is *M* and ab + bc + ca = 0, then the mean of  $a^2$ ,  $b^2$ ,  $c^2$  is  $kM^2$ . Find the value of *k*.
- 6. The dimensions of a metallic cuboid are  $100 \text{ cm} \times 80 \text{ cm} \times 64 \text{ cm}$ . It is melted and recast into a cube. Find the edge of the cube.

OR

A cube of side 6 cm is cut into a number of cubes, each of side 2 cm. Find the number of cubes formed.

Maximum Marks : 40

## **SECTION - B**

7. Find the mode of the following data :

| Marks     | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|
| Frequency | 7    | 14    | 13    | 12    | 20    | 11    | 15    | 8     |

**8.** In the given figure, the chord *AB* of the larger of the two concentric circles, with centre *O*, touches the smaller circle at *C*. Prove that *AC* = *CB*.



#### OR

In figure, find the perimeter of  $\triangle ABC$ , if AP = 12 cm.



9. Find the mean of the given distribution by direct method.

| Class-interval | 0-10 | 11-20 | 21-30 | 31-40 | 41-50 |
|----------------|------|-------|-------|-------|-------|
| Frequency      | 3    | 4     | 2     | 5     | 6     |

**10.** A ladder of length 6 m makes an angle of 45° with the floor while leaning against one wall of a room. If the foot of the ladder is kept fixed on the floor and it is made to lean against the opposite wall of the room, it makes an angle of 60° with the floor. Find the distance between these two walls of the room.

## **SECTION - C**

11. Ramkali required ₹2500 after 12 weeks to send her daughter to school. She saved ₹100 in the first week and increased her weekly saving by ₹20 every week. Find whether she will be able to send her daughter to school after 12 weeks.

### OR

The 16<sup>th</sup> term of an A.P. is 1 more than twice its 8<sup>th</sup> term. If the 12<sup>th</sup> term of the A.P. is 47, then find its  $n^{\text{th}}$  term.

**12.** Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.

## Case Study - 1

**13.** In the evening, Mona and her mother went to ice-cream parlour to eat ice cream. Mona observe that ice cream seller has two different kinds of container as given below.



- (i) Find the total surface area of the type (I) container.
- (ii) Find the volume of type-II container.

# Case Study - 2

**14.** In an exhibition, a statue stands on the top of a pedestal. From the point on ground where a girl is clicking the photograph of the statue the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of pedestal is 45°.



Based on the above information, answer the following questions.

- (i) If the height of the pedestal is 20 m, then find the height of the statue.
- (ii) If the height of the statue is 1.6 m, then find the height of the pedestal.

### Solution

### **MATHEMATICS BASIC 241**

### **Class 10 - Mathematics**

1)d

1. We have, 
$$9x^2 - 6b^2x - (a^4 - b^4) = 0$$
  
 $\Rightarrow 9x^2 - 6b^2x - a^4 + b^4 = 0$   
 $\Rightarrow \{(3x)^2 - 2(3x)b^2 + (b^2)^2\} - (a^2)^2 = 0$   
 $\Rightarrow (3x - b^2)^2 - (a^2)^2 = 0$   
 $\Rightarrow (3x - b^2 + a^2)(3x - b^2 - a^2) = 0$   
 $\Rightarrow 3x - b^2 + a^2 = 0 \text{ or } 3x - b^2 - a^2 = 0$   
 $\Rightarrow 3x - b^2 + a^2 = 0 \text{ or } 3x - b^2 - a^2 = 0$   
 $\Rightarrow 3x = b^2 - a^2 \text{ or } 3x = b^2 + a^2$   
 $\Rightarrow x = \frac{b^2 - a^2}{3} \text{ or } x = \frac{a^2 + b^2}{3}$   
2. Given,  $a = -3$  and  $a + d = 4$   
 $\Rightarrow -3 + d = 4 \Rightarrow d = 7$   
 $\therefore a_{21} = a + (21 - 1)d$  [ $\because a_n = a + (n - a^2) + (20)^2 = -3 + 140 = 137$   
3. Given,  $\angle BOC = 130^\circ$   
Since, AC is a tangent to the circle at A.

 $\therefore \ \angle OAC = 90^{\circ} \quad [\because \text{Radius is perpendicular to the} \\ \text{tangent at point of contact}] \\ \text{Now, } \ \angle AOC + \ \angle BOC = 180^{\circ} \qquad [\text{Linear pair}] \\ \Rightarrow \ \angle AOC = 180^{\circ} - 130^{\circ} = 50^{\circ} \\ \text{In } \ \triangle AOC, \ \angle AOC + \ \angle ACO + \ \angle OAC = 180^{\circ} \\ \text{[Angle sum property]} \\ \Rightarrow \ \angle ACO = 180^{\circ} - 50^{\circ} - 90^{\circ} = 40^{\circ} \\ \end{cases}$ 

#### OR

Since opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

- $\therefore \ \angle AOB + \angle COD = 180^{\circ}$
- $\Rightarrow 130^{\circ} + \angle COD = 180^{\circ}$
- $\Rightarrow \angle COD = 180^{\circ} 130^{\circ} = 50^{\circ}$
- 4. We have,  $x^2 + ax + b = 0$ , where a = -7, b = 12
- $\therefore x^2 7x + 12 = 0$
- $\Rightarrow x^2 4x 3x + 12 = 0$
- $\Rightarrow x(x-4) 3(x-4) = 0$
- $\Rightarrow (x-4)(x-3) = 0$
- $\Rightarrow x = 4 \text{ or } x = 3$

Thus, smaller root of the given equation is 3.

5. Given, mean of a, b and c is M.

$$\therefore \quad a+b+c=3M \qquad \qquad \dots (i)$$

Also, ab + bc + ca = 0 [Given] ...(ii) Now,  $a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)$   $\Rightarrow a^2 + b^2 + c^2 = (3M)^2 - 2(0)$  [From (i) and (ii]  $\Rightarrow a^2 + b^2 + c^2 = 9M^2 - 0 = 9M^2$   $\therefore$  Mean of  $a^2$ ,  $b^2$  and  $c^2 = \frac{a^2 + b^2 + c^2}{3} = \frac{9M^2}{3} = 3M^2$ 6. Volume of given cuboid =  $100 \times 80 \times 64$   $= 512000 \text{ cm}^3$ Now, cuboid is melted and recast into a cube. Let side of the cube = a cmAlso, volume of the cube = volume of the cuboid  $\Rightarrow a^3 = 512000 \Rightarrow a = 80$ 

Hence, edge of the cube is 80 cm.

### OR

Number of cubes formed

$$=\frac{\text{Volume of given cube}}{\text{Volume of each small cube}} = \frac{6 \times 6 \times 6}{2 \times 2 \times 2} = 27.$$

7. From the given data, we observe that, highest frequency is 20, which lies in the class-interval 40-50.

$$\therefore l = 40, f_1 = 20, f_0 = 12, f_2 = 11, h = 10$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 40 + \left(\frac{20 - 12}{40 - 12 - 11}\right) \times 10$$

$$= 40 + \frac{80}{17} = 40 + 4.7 = 44.7$$

8. Given : Two concentric circles  $C_1$  and  $C_2$  with centre *O* and *AB* is the chord of  $C_1$  touching  $C_2$  at *C*. To Prove : AC = CBConstruction : Join *OC*.

Proof : We know that, tangent at any point to the circle is perpendicular to the radius at the point of contact.  $\therefore OC \perp AB$  ( $\because AB$  is tangent for  $C_2$ ) Since, perpendicular drawn from the centre to the chord bisects the chord.

$$\therefore AC = CB \qquad (\because AB \text{ is a chord for } C_1)$$

OR

As we know that, tangents drawn from an external point are equal in length.

 $\therefore BP = BD \text{ and } CD = CQ \qquad \dots(i)$ Also, AP = AQ = 12 cm $\Rightarrow AB + BP = 12 \text{ cm and } AC + CQ = 12 \text{ cm}$  $\Rightarrow AB + BD = 12 \text{ cm and } AC + CD = 12 \text{ cm} \qquad \dots(ii)$ 

[Using (i)]

Now, perimeter of  $\triangle ABC = AB + BC + CA$ 

$$= AB + BD + DC + AC$$
  
= 12 + 12 [Using (ii)]  
= 24 cm

**9.** Let us construct the following table for the given data.

| Class-<br>interval | Frequency<br>(f <sub>i</sub> ) | Class mark<br>(x <sub>i</sub> ) | $f_i x_i$              |
|--------------------|--------------------------------|---------------------------------|------------------------|
| 0 - 10             | 3                              | 5.0                             | 15.0                   |
| 11 - 20            | 4                              | 15.5                            | 62.0                   |
| 21 - 30            | 2                              | 25.5                            | 51.0                   |
| 31 - 40            | 5                              | 35.5                            | 177.5                  |
| 41 - 50            | 6                              | 45.5                            | 273.0                  |
| Total              | $\sum f_i = 20$                |                                 | $\sum f_i x_i = 578.5$ |

:. Mean = 
$$\frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{578.5}{20} = 28.925$$

**10.** Let *AB*, *CB* be the ladder and *AE*, *CD* are the walls of the room.



Also let BD = x m and BE = y m In  $\triangle ABE$ ,

$$\cos 45^\circ = \frac{BE}{AB} = \frac{y}{6} \implies y = 6 \times \frac{1}{\sqrt{2}} = 3\sqrt{2}$$

In  $\triangle DBC$ ,  $\cos 60^\circ = \frac{BD}{BC} = \frac{x}{6} \implies x = 6 \times \frac{1}{2} = 3$ 

Now, distance between the walls = DE

$$= x + y = 3 + 3\sqrt{2} = 3(1 + \sqrt{2}) m$$

**11.** Saving of first week = ₹100 Saving of second week = ₹100 + ₹20 = ₹120 Saving of third week = ₹120 + ₹20 = ₹140 So, 100, 120, 140, ...... [forms an A.P.] Here, *a* = 100 and *d* = 120 - 100 = 20, *n* = 12

$$\therefore S_{12} = \frac{12}{2} \{2 \times 100 + (12 - 1)20\}$$
$$\left[ \because S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$
$$= 6 \{200 + 220\} = 2520$$

Since ₹2520 > ₹2500

So, she would be able to send her daughter to school after 12 weeks.

OR

Let *a* be the first term and *d* be the common difference of the A.P.

According to question, 
$$a_{16} = 2a_8 + 1$$
  
 $\Rightarrow a + 15d = 2[a + 7d] + 1 \Rightarrow a + 15d = 2a + 14d + 1$   
 $\Rightarrow d = a + 1$  ...(i)  
Also,  $a_{12} = 47 \Rightarrow a + 11d = 47$   
 $\Rightarrow a + 11(a + 1) = 47$  [Using (i)]  
 $\Rightarrow a + 11a + 11 = 47 \Rightarrow 12a = 36 \text{ or } a = 3$   
 $\therefore d = 3 + 1 = 4$   
Now,  $n^{\text{th}}$  term of the A.P.,  $a_n = a + (n - 1)d$   
 $\therefore a_n = 3 + (n - 1) 4 = 3 + 4n - 4 = 4n - 1$ 

### 12. Steps of construction:

**Step-I** : Draw a line segment AB = 7 cm. **Step-II** : Draw any ray AX making an acute angle with AB.

**Step-III** : On ray *AX*, mark 2 + 3 = 5 points  $A_1, A_2, A_3$ ,  $A_4, A_5$  such that  $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$ . **Step-IV** : Join  $A_5B$ .

**Step-V :** From  $A_2$ , draw  $A_2P||A_5B$ , meeting *AB* at *P*. Thus *P* divides *AB* in the ratio 2 : 3.



13. (i) We have, 
$$r = 20 \text{ cm}$$
,  $h = 30 \text{ cm}$   
Total surface area of type (I) container  
 $= 2\pi rh + \pi r^2 + 2\pi r^2$   
 $= 2\pi rh + 3\pi r^2 = 2 \times \frac{22}{7} \times 20 \times 30 + 3 \times \frac{22}{7} \times 20 \times 20$   
 $= \frac{22}{7} \times 20[60 + 60] = \frac{22 \times 20 \times 120}{7} = \frac{52800}{7}$   
 $= 7542.86 \text{ cm}^2$   
(ii) We have,  $r = 20 \text{ cm}$   
Volume of type (II) container  $= \frac{2}{3}\pi r^3$   
 $= \frac{2}{3} \times \frac{22}{7} \times 20 \times 20 \times 20 = \frac{352000}{21} = 16761.90 \text{ cm}^3$   
14. (i) In  $\triangle ACD$ ,  
 $\tan 45^\circ = \frac{CD}{AC} = 1$   
 $A \xrightarrow{45^\circ} 60^\circ$   
 $A \xrightarrow{45^\circ} 60^\circ$   
 $A \xrightarrow{45^\circ} 60^\circ$   
 $A \xrightarrow{C} = CD$ 

$$AC = CD = 20 \text{ m}$$
 ...(i)

Let, BD = h m be the height of the statue.

In 
$$\triangle ABC$$
,  $\tan 60^\circ = \frac{BC}{AC} \Rightarrow \frac{BD + CD}{AC} = \sqrt{3}$   
 $\Rightarrow \frac{20 + h}{20} = \sqrt{3} [\operatorname{using}(i)] \Rightarrow h = 20 (\sqrt{3} - 1) \text{ m.}$   
(ii) Since, in  $\triangle ACD$ ,  $\angle DAC = 45^\circ$   
 $\therefore AC = CD (\operatorname{say} x)$   
In  $\triangle BAC$ ,  $\tan 60^\circ = \frac{BC}{AC}$   
 $\Rightarrow \frac{1.6 + x}{x} = \sqrt{3} \Rightarrow 1.6 = x (\sqrt{3} - 1)$   
 $\Rightarrow x = \frac{1.6}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = 0.8 (\sqrt{3} + 1) \text{ m}$