Acid Base and Salts

ACIDS

1. ACIDS-THE TERM

- THE TERM-'acid' is derived from the latin word meaning 'sour'
- ACIDS ARE DERIVED FROM –both minerals as well as plants.
- ACIDS DERIVED FROM MINERALS are called 'inorganic' or 'mineral acids' e.g. hydrochloric acid, sulphuric acid, nitric acid.
- ACIDS DERIVED FROM PLANTS –are called organic acids e.g. citric acid, tartaric acid.

2. ACIDS- OCCURRENCE [Source]

Oranges & Lemons	Grapes	Apples	Rancid butter	Vinegar
CITRIC ACID	TARTATIC ACID	MALLIC ACID	BUTYRIC ACID	ACETIC ACID
Sour milk	Wasps & white ants	Common salt	Metallic sulphate	Nitre
LACTIC ACID	FORMIC ACID	HYDROCHLORIC	SULPHURIC	NITRIC ACID
		ACID	ACID	

3. CLASSIFICATIONOF ACIDS

Acids dissociate in aqueous solutions – to give hydrogen ions [H⁺]

Based on this dissociation, acids are classified in terms of their strength and basicity.

- STRENGTH OF ACIDS- depends on the 'concentration of hydrogen ions' in solution.
- BASICITY OF ACIDS depends on the 'number of hydrogen ions' in solution.

CLASSIFICATION	DISSOCIATION IN AQUEOUS SOLUTION	EXAMPLE
STRENGTH OF ACIDS		
 Strong acid 	Dissociate completely to give a - high conc. of H ⁺ ions.	HCl
 Weak acid 	Dissociate partially to give a – low conc. of H ⁺ ions.	H ₂ CO ₃
BASICITY OF ACIDS		
 Monobasic acid 	Dissociate to give - one H ⁺ ion per molecule of the acid.	HC1
Dibasic acid	Dissociate to give - two H ⁺ ions per molecule of the acid.	H ₂ SO ₄
Tribasic acid	Dissociate to give – three H ⁺ ions per molecule of the acid.	H ₃ PO ₄

4. PROPERTIES OF ACIDS

Taste	•Acids – are sour in taste			
Corrosive nature	•Strong acids – are highly corrosive in nature.			
	•Weak acids – are le	ess corrosive and harmless.		
Electrical conductivity	 Strong acids – are generally good conductors of electricity. Weak acids – are poor conductors of electricity. 			
	Indicator	Colour change in acid medium		
Indicator	Litmus solution	Blue to red		
properties	Methyl orange	Orange to pink		
	Phenolphthalein	Colourless remains colourless.		

CHEMICAL PROPERTIES OF ACIDS

1. Acids [dilute] – react with bases to give – salt and water only [neutralization reaction].

Base [oxide]		Acid	Salt	Water
CuO + [copper oxide]		H ₂ SO ₄ → [sulphuric acid]	CuSO ₄ + [copper sulphate]	H ₂ O
Base [hydroxide]		Acid	Salt	Water
NaOH	+	HCl →	NaCl +	H ₂ O
[sodium hydroxide]		[hydrochloric acid]	[sodium chloride]	

2. Acids [dilute] – react with active metals to liberate – hydrogen gas.

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

 Acids [dilute] – react with metallic carbonates and bicarbonates to liberate- carbon dioxide gas.

$$Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + H_2O + CO_2$$

4. Acids [dilute] – react with metallic sulphites and bisulphites to liberate-sulphur dioxide gas.

$$Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + H_2O + SO_2$$

5. Acids [dilute] – react with metallic sulphides to liberate- hydrogen sulphide gas.

7. USES OF ACIDS-HYDROCHLORIC, NITRIC AND SULPHURIC ACIDS

	HCl	HNO ₃	H ₂ SO ₄
 INDUSTRIAL USES- Manufacture of 	Dyes and drugs	Dyes, drugs &perfumes	Dyes, drugs & paints
	Silver chloride	Nitrates	Hydrochloric & nitric acid
GENERAL USES-	Glucose	Fertilizers & explosives	 Fertilizers & explosives
Preparation of	• Gases- SO ₂ , CO ₂ and H ₂ S	• Aqua regia-which is 1 part of conc. HNO ₃ + 3 parts of conc. HCl	• Gases- H ₂ , CO, CO ₂ , CO ₂ & H ₂ S
Metallurgy	In cleaning metal surfaces- before galvanizing	For etching simple designs - on copper and brassware	 In cleaning metal surfaces – before galvanizing

8. USES OF OTHER ACIDS

Acid	Uses		
1. CITRIC ACID 2. ACETIC ACID	• As a food preservative •As a source of vitamin C [citrus fruits]		
3. TARTARIC ACID 4. BORIC ACID	 As a food preservative •In flavouring and cooking[vinegar] • In the preparation of baking powder 		
5. CARBONIC ACID 6. OXALIC ACID	 As an eye wash In flavouring drinks For removing ink stains 		

BASES

1. BASES – THE TERM

- THE TERM- 'Bases' are oxides or hydroxides of metals. [including ammonium hydroxide]
- BASES ARE COMPOUNDS which react with acids to give salt and water

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O [base] [acid] [salt] [water]

2. ALKALIS

THE TERM - 'Alkalis' are bases which are soluble in water ALL ALKALIS ARE BASES – but all bases are not alkalis Since certain bases are insoluble in water.

EXAMPLE OF BASES AND ALKALIS

Bases [insoluble in water]	Alkalis [bases soluble in water]
OXIDES OF METALS	OXIDES OF METALS
•CuO • MgO • PbO	• K ₂ O • Na ₂ O

HYDROXIDES OF METALS
Fe(OH)₂ • Pb(OH)₂ • Al(OH)₃

HYDROXIDES OF METALSNaOHKOHNH₄OH

3. CLASSIFICTION OF BASES [ALKALIS]

Bases dissociate in aqueous solutions- to give hydroxyl ions [OH-] Based on this dissociation, bases are classified in terms of their strength and acidity.

- STRENGTH OF BASES depends on the 'concentration of hydroxyl ions' in solution.
- ACIDITY OF BASES-depends on the -'number of hydroxyl ions' in solution.

CLASSIFICATION	DISSOCIATION IN AQUEOUS SOLUTION	EXAMPLE
STRENGTH OF BASES		
 Strong alkali 	Dissociate completely to give a - high conc. of OH ions.	KOH
 Weak alkali 	Dissociate partially to give a - low conc. of OH ions.	NH ₄ OH
ACIDITY OF BASES		
Monoacidic base	Dissociate to give – one OH ion per molecule of the base.	NaOH
Diacidic base	Dissociate to give – two OH ions per molecule of the base.	Ca(OH) ₂
Triacidic base	Dissociate to give - three OH ions per molecule of the base.	Fe(OH) ₃
- Illaciale dase		[insoluble]

5. PREPARATION OF BASES

METHOD					BASE FORMED	
 DIRECT COMBINATION combination of metal and oxygen 	4Na Metal	+	O ₂ Oxygen	→	2Na ₂ O	
DISSOLUTION IN WATER						
 dissolution of basic oxides in water 	Na ₂ O Basic oxide	+	H ₂ O Water	>	2NaOH	
 dissolution of active metals in water 	2Na Active metal	+	2H ₂ O Water	\rightarrow	2NaOH	+ H ₂
PRECIPITATION METHOD • reaction of						
aq. salt soln. & strong base	AlCl ₃ Salt [soln.]	+	3NaOH Base	\rightarrow	Al(OH) ₃ ↓ Precipitate	+ 3NaCl

PROPERTIES OF BASES:

Taste	•Bases – are bitter in	n taste			
Corrosive nature	•Strong bases [caustic alkalis] – are highly corrosive in nature.				
	•Weak bases – are le	ess corrosive			
Electrical conductivity	•Strong alkalis – are generally good conductors of electricity •Weak alkalis – are poor conductors of electricity				
	Indicator	Colour change in alkali medium			
Indicator	Litmus solution Red to blue				
properties	Methyl orange	Orange to yellow			
	Phenolphthalein	Colourless to pink			

CHEMICAL PROPERTIES OF BASES

1. Bases — react with acids to give - salt and water only [neutralization reaction].

Base [oxide]	Acid	Salt	Wate
CuO + [copper oxide]	H ₂ SO ₄ → [sulphuric acid]	CuSO ₄ + [copper sulphate]	H ₂ O
Base [hydroxide]	Acid	Salt	West
NaOH + [sodium hydroxide]	HCl → [hydrochloric acid]	NaCl + [sodium chloride]	H ₂ O

2. Alkalis –react with ammonium salts to liberate – ammonia gas.

$$NH_4C1 + NaOH \rightarrow NaC1 + H_2O + NH_3$$
 [ammonium [ammonia] chloride]

3. Alkalis — react with salt solutions to give – precipitates of insoluble metallic hydroxides.

CuSO₄ + 2NaOH
$$\rightarrow$$
 Na₂SO₄ + Cu(OH)₂ \downarrow [copper sulphate] [copper hydroxide - blue ppl.]

SALT - The Term -

NEUTRALIZATION REACTION INVOLVES A reaction of a base with an acid to give - salt and water only.

REPLACEMENT OF H⁺ ION OF THE ACID The hydrogen ion 1H⁺J aq. of the acid is replaced by the metal atom (Na⁺) of the base - forming a salt - NaCl.

 A SALT - is a compound formed by partial or complete replacement of the hydrogen ion [H⁺] of an acid - by a metal [basic radical].

IMPORTANT TYPES OF SALTS

NORMAL SALT	Formed by - complete replacement of the -	$2Na OH + H_2 SO_4 \rightarrow Na SO_4 + 2$ Normal salt	H ₂ C
	hydrogen ion of an acid by a metal.		
ACID	Formed by –	NaOH + H ₂ SO ₄ → NaHSO ₄ + H	I ₂ O
SALT	partial replacement of the -	Acid salt	
	hydrogen ion of an acid by a metal.		
BASIC	Formed by -	$Zn (OH)_2 + H Cl \rightarrow Zn (OH) Cl + H$	I ₂ O
SALT	incomplete neutralization of a -	Basic salt	
	base with an acid.		
HYDRATEI	A salt which contains a -	Copper sulphate CuSO ₄ • 5H ₂ O	
SALT	definite number of water molecules -	Sodium carbonate Na ₂ CO ₃ • 10H.	,0
	as water of crystallization.		

PREPARATION OF SOLUBLE SALTS –general methods **3.** ACTION OF ACID ON-

- 1. Active metals 2. Metallic oxides 3. Metallic carbonates hydroxides
- 4. Metallic

REACTANT			ACID [D	[L]	SOLUBLESA	LT	
ACTIVE METAL							
Zinc	Zn	+	H ₂ SO ₄	\rightarrow	$ZnSO_4$	+	H ₂
Iron	Fe	+	H ₂ SO ₄	\rightarrow	FeSO ₄	+	H ₂
METAL OXIDE							
Copper oxide	CuO	+	H ₂ SO ₄	\rightarrow	CuSO ₄	+	H ₂ O
Lead oxide	PbO	+	2HNO ₃	\rightarrow	Pb(NO ₃) ₂	+	H ₂ O
METAL CARBONATE							
Magnesium carbonate	MgCO ₃	+	H ₂ SO ₄	\rightarrow	MgSO ₄	+	$H_2O + CO_2$
Lead carbonate	PbCO ₃	+	2HNO ₃	\rightarrow	Pb(NO ₃) ₂	+	$H_2O + CO_2$
METAL HYDROXIDE					-		
Sodium hydroxide [soluble	2NaOH	+	H ₂ SO ₄	\rightarrow	Na ₂ SO ₄	+	2H ₂ O
Copper hydroxide [insoluble	Cu(OH) ₂	+	H ₂ SO ₄	\rightarrow	CuSO ₄	+	2H ₂ O

4. PREPARATION OF INSOLUBLE SALTS – General methods A. PRECIPITATION

By double decomposition of two salt solutions

SALT SOLUTION I	SALT SOLUTION II	SOLUBLE SALT	INSOLUBLE SALT [PRECIPITATED]
Pb(NO ₃) ₂ + Lead nitrate	2NaCl → Sodium chloride	2NaNO ₃ +	PbCl ₂ ↓ Lead chloride
CaCl ₂ + Calcium chloride	Na ₂ CO ₃ → Sodium carbonate	2NaCl +	CaCO ₃ ↓ Calcium carbonate

B. DIRECT COMBINATION OR SYNTHESIS

METAL	4	NON-METAL	INSOLUBLE SALT	
Zn Zinc	+	S Sulphur	$\stackrel{\Delta}{\Rightarrow}$	ZnS Zinc sulphide
Fe Iron	+	S Sulphur	$\xrightarrow{\Delta}$	FeS Iron [II] sulphide

6. USES OF SOME SALTS

SALT	USES		
 SODIUM CHLORIDE SODIUM CARBONATE COPPER SULPHATE AMMONIUM NITRATE 	 Cooking food preservative, manufacture of chlorine Manufacture of –glass, detergents Electroplating and fungicide Fertilizers 		