Sample Question Paper - 1 Class – X Session -2021-22 TERM 1 Subject- Mathematics (Standard) 041

Maximum Marks: 40

Time Allowed: 1 hour and 30 minutes

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

	Attempt any 16 questions			
1.	The decimal expansion of the number $\frac{441}{2^2 \times 5^3 \times 7^2}$ has		[1]	
	a) None of these	b) non-terminating and non-repeating decimal		
	c) terminating decimal	d) non-terminating repeating decimal		
2.	The pair of equations 2x + 3y = 5 and 4x + 6y	= 15 has	[1]	
	a) infinitely many solutions	b) exactly two solutions		
	c) no solution	d) a unique solution		
3.	What should be subtracted to the polynomia resulting polynomial?	l x ² - 16x + 30, so that 15 is the zero of the	[1]	
	a) 15	b) 14		
	c) 16	d) 30		
4.	The solution of $rac{a^2}{x} - rac{b^2}{y} = 0$ and $rac{a^2b}{x} + rac{b^2a}{y} =$	= a + b where x, y $ eq$ 0 is	[1]	
	a) $x = -a^2$ and $y = -b^2$	b) $x = a^2$ and $y = -b^2$		
	c) $x = a^2$ and $y = b^2$	d) $x = -a^2$ and $y = b^2$		
5.	If $sin heta-cos heta=0$, then the value of $\sin^4 heta+\cos^4 heta$ is		[1]	
	a) 1	b) $\frac{3}{4}$		
	c) $\frac{1}{4}$	d) $\frac{1}{2}$		
6.	$(2+\sqrt{5})$ is		[1]	
	a) an irrational number	b) not real number		
	c) a rational number	d) an integer		

7.	7. If α, β are the zeros of the polynomial $p(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to		[1]
	a) $\frac{3}{7}$	b) $-\frac{3}{7}$	
	c) $-\frac{7}{3}$	d) $\frac{7}{3}$	
8.	If A (2, 2), B (-4, - 4) and C (5, -8) are the vertic through vertex C is	es of a triangle, then the length of the median	[1]
	a) $\sqrt{113}$	b) $\sqrt{65}$	
	c) $\sqrt{85}$	d) $\sqrt{117}$	
9.	The number of zeroes of a cubic polynomial is		[1]
	a) 3	b) 2	
	c) 4	d) 1	
10.	The sum and product of the zeroes of the polyvalue of k is	ynomial f(x) = $4x^2 - 27x + 3k^2$ are equal, then the	[1]
	a) ± 3	b) 0	
	c) ± 1	d) ± 2	
11.	A die is thrown once. The probability of getti	ng a prime number is	[1]
	a) $\frac{1}{3}$	b) $\frac{1}{6}$	
	c) $\frac{1}{2}$	d) $\frac{2}{3}$	
12.	If HCF (26,169) = 13, then LCM (26,169) =		[1]
	a) 13	b) 26	
	c) 52	d) 338	
13.	13. The distance of a point from the y-axis is called		[1]
	a) origin	b) None of these	
	c) abscissa	d) ordinate	
14.	Points (1, 0) and (-1, 0) lies on		[1]
	a) line x + y = 0	b) y-axis	
	c) x-axis	d) line x - y = 0	
15. If one zero of the quadratic polynomial $kx^2 + 3x + k$ is 2 then the value of k is		3x + k is 2 then the value of k is	[1]
	a) $\frac{-5}{6}$	b) $\frac{-6}{5}$	
	c) $\frac{5}{6}$	d) $\frac{6}{5}$	
16.	$9sec^2A - 9tan^2A =$		[1]
	a) 8	b) 9	
	c) 0	d) 1	
17.	The solution of $\frac{x}{a} + \frac{y}{b} = 2$ and ax - by = a ² - b	² is	[1]
	a) $x = a$ and $y = b$	b) $x = a^2$ and $y = b^2$	

	c) $x = -a^2$ and $y = -b^2$	d) x = -a and y = -b	
18.	Two numbers 'a' and 'b' are selected successively without replacement in that order from the integers 1 to 10. The probability that $\frac{a}{b}$ is an integer, is		[1]
	a) $\frac{17}{45}$	b) $\frac{8}{45}$	
	c) $\frac{1}{5}$	d) $\frac{17}{90}$	
19.	The sum of a rational and an irrational r	number is	[1]
	a) Can be Rational or Irrational	b) Irrational	
	c) Always Rational	d) Rational	
20.	If A(5, 3), B(11, -5) and P(12, y) are the ve	rtices of a right triangle right angled at P, then y =	[1]
	a) -1, 4	b) 2, 4	
	c) -2, 4	d) 2, -4	
		Section B	
		pt any 16 questions	[1]
21.		$2x - 1)^{0}$, $\angle B = (y + 5)^{0}$, $\angle C = (2y + 15)^{0}$ and $\angle D = (4x - 1)^{0}$	[1]
	7)°, then the value of $\angle C$ is		
	a) 550	b) ₁₂₅ 0	
	c) 65º	d) 115°	
22.	A quadratic polynomial whose zeros are $\frac{3}{5}$ and $\frac{-1}{2}$, is		[1]
	a) $10x^2 - x + 3$	b) $10x^2 + x - 3$	
	c) 10x ² - x -3	d) _{10x² + x + 3}	
23.	If $a=2^3 imes3, b=2 imes3 imes5, c=3^n imes4$	5 and LCM (a, b, c) $= 2^3 imes 3^2 imes 5$, then n =	[1]
	a) 1	b) 4	
	c) 3	d) 2	
24.	cos ⁴ A - sin ⁴ A is equal to		[1]
	a) _{2 sin² A - 1}	b) $2 \sin^2 A + 1$	
	c) $2 \cos^2 A + 1$	d) _{2 cos² A - 1}	
25.	5. The sum of the digits of a two digit number is 9. Nine times this number is twice the number obtained by reversing the digits, then the number is		[1]
	a) 72	b) 27	
	c) 18	d) 81	
26.	If $lpha$ and eta are the zeroes of the polynom	iial x 2 - 6x + 8, then the value of $lpha^3+eta^3$ is	[1]
	a) 76	b) 72	
	c) 74	d) 80	

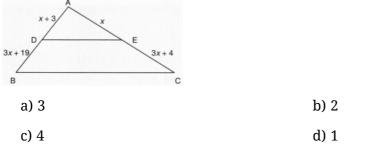
27. Two poles of height 13 m and 7 m respectively stand vertically on a plane ground at a distance **[1]**

of 8 m from each other. The distance between their tops is

- a) 11 m b) 10 m c) 9 m d) 12 m
- 28. The ratio in which the point (1, 3) divides the line segment joining the points (-1, 7) and (4, -3) [1] is

a) 2:3
b) 7:2
c) 3:2
29. If
$$\tan \theta = \frac{1}{\sqrt{7}}$$
 then $\frac{\csc c^2 \theta - \sec^2 \theta}{\csc c^2 \theta + \sec^2 \theta} =$
a) $\frac{1}{12}$
c) $\frac{3}{4}$
b) $\frac{3}{7}$
d) $\frac{5}{7}$
(1)

30. If $x = \alpha$ and $y = \beta$ is the solution of the equations x - y = 2 and x + y = 4, then


a) $\alpha = 1$ and $\beta = 3$ b) $\alpha = 3$ and $\beta = -1$ c) $\alpha = 3$ and $\beta = 1$ d) $\alpha = -3$ and $\beta = 1$ [1]

[1]

[1]

31. The exponent of 2 in the prime factorisation of 144, is

- a) 4 b) 5
- c) 6 d) 3
- 32. In the given figure value of x for which $DE \mid \mid BC$ is

33. If $sinA + sin^2 A = 1$, then the value of the expression ($cos^2A + cos^4A$) is [1]

a)
$$\frac{1}{2}$$
 b) 1
c) 3 d) 2

34. If the point R(x, y) divides the join of $P(x_1, y_1)$ and $Q(x_2, y_2)$ internally in the given ratio m_1 : [1] m_2 , then the coordinates of the point R are

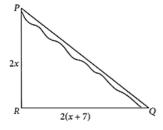
a)
$$\left(\frac{m_2 x_1 - m_1 x_2}{m_1 + m_2}, \frac{m_2 y_1 - m_1 y_2}{m_1 + m_2}\right)$$

b) $\left(\frac{m_2 x_1 - m_1 x_2}{m_1 - m_2}, \frac{m_2 y_1 - m_1 y_2}{m_1 - m_2}\right)$
c) $\left(\frac{m_2 x_1 + m_1 x_2}{m_1 + m_2}, \frac{m_2 y_1 + m_1 y_2}{m_1 + m_2}\right)$
d) None of these

35. A child's game has 8 triangles of which 5 are blue and rest are red and 10 squares of which 6 [1] are blue and the rest are red. One piece is lost at random. The probability that it is a square of blue colour is

a)
$$\frac{4}{9}$$
 b) $\frac{6}{10}$

c)
$$\frac{1}{3}$$
 d) $\frac{2}{3}$


36.	A system of linear equations is said to be consistent, if it has		[1]
	a) two solutions	b) one or many solutions	
	c) no solution	d) exactly one solution	
37.	$(1 + \sqrt{2}) + (1 - \sqrt{2})$ is		[1]
	a) a rational number	b) a non-terminating decimal	
	c) None of these	d) an irrational number	
38.	The value of (tan1° tan2° tan3° tan89°) is		[1]
	a) 0	b) $\frac{1}{2}$	
	c) 1	d) 2	
39.	If two different dice are rolled together, the	probability of getting an even number	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	
	c) $\frac{1}{36}$	d) $\frac{1}{6}$	
40.	If the endpoints of a diameter of a circle are	(-4, -3) and (2, 7), then the coordinates of the	[1]
	centre are		
	a) (1, -2)	b) (0, 0)	
	c) (2, -1)	d) (-1, 2)	

Section C

Attempt any 8 questions

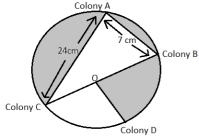
Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

Minister of a state went to city Q from city P. There is a route via city R such that PR \perp RQ. PR = 2x km and RQ = 2(x + 7) km. He noticed that there is a proposal to construct a 26 km highway which directly connects the two cities P and Q.

42.

43.

41. Which concept can be used to get the value of x?


a) Converse of thales theorem	b) Pythagoras theorem	
c) Thales theorem	d) Converse of Pythagoras theorem	
The value of x is		[1]
a) 5	b) 6	
c) 4	d) 8	
The value of PR is		[1]
a) 20 km	b) 25 km	

[1]

	c) 10 km	d) 15 km	
44.	The value of RQ is		[1]
	a) 20 km	b) 12 km	
	c) 24 km	d) 16 km	
45.	How much distance will be saved in reaching city Q after the construction of highway?		[1]
	a) 4 km	b) 9 km	
	c) 8 km	d) 10 km	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

To find the polluted region in different areas of Dwarka (a part of Delhi represented by the circle given below) a survey was conducted by the students of class X. It was found that the shaded region is the polluted region, where O is the centre of the circle.

46.	Find the radius of the circle.		[1]
	a) 13.5 cm	b) 12.5 cm	
	c) 15 cm	d) 16.5 cm	
47.	Find the area of the circle.		[1]
	a) 495.6 cm ²	b) 491.07 cm ²	
	c) _{481.7} cm ²	d) _{490 cm²}	
48.	If D lies at the middle of arc BC, then area of	region COD is	[1]
	a) _{121 cm²}	b) _{126 cm²}	
	c) 122.76 cm ²	d) 129.8 cm ²	
49.	Area of the $ riangle$ BAC is		[1]
	a) _{81 cm²}	b) 79 cm ²	
	c) _{84 cm²}	d) 77 cm ²	
50.	Find the area of the polluted region.		[1]
	a) 280.31 cm ²	b) _{240.31} cm ²	
	c) _{285.31} cm ²	d) _{284.31} cm ²	

Solution

Section A

1. (c) terminating decimal

Explanation: To check if the number is terminating: we will find the lowest form of the number. $\frac{441}{2^2 \times 5^7 \times 7^2}$

 $\begin{array}{l} 2^{2} \times 5^{7} \times 7^{2} \\ \text{Here } 441 = 49 \times 9 = 7^{2} \times 3^{2} \\ \hline \frac{7^{2} \times 3^{2}}{2^{2} \times 5^{7} \times 7^{2}} = \frac{3^{2}}{2^{2} \times 5^{7}} \\ \text{Here denominator} = 2^{2} \times 5^{7} \end{array}$

Here the denominator is of the form $2^m 5^n$

m = 2, n = 7

Hence, the number has a terminal decimal representation.

2. (c) no solution

Explanation: Here, $\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}, \frac{b_1}{b_2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c_1}{c_2} = \frac{-5}{-15} = \frac{1}{3}$ $\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

So, the given system has no solution.

3. **(a)** 15

Explanation:

We know that, if x = α is zero of a polynomial then x - α is a factor of f(x)

Since 15 is zero of the polynomial $f(x) = x^2 - 16x + 30$, therefore (x - 15) is a factor of f(x)Now, we divide $f(x) = x^2 - 16x + 30$ by (x - 15) we get

$$\frac{x-1}{x-15} + x^2 - 16x + 30$$

$$\frac{\pm x^2 \mp 15x}{-1x+30}$$

$$\frac{\pm 1x \pm 15}{15}$$

Thus we should subtract the remainder 15 from x^2 - 16x + 30.

4. **(c)** $x = a^2$ and $y = b^2$

Explanation: First equation:

$$\frac{a^2}{x} - \frac{b^2}{y} = 0$$

or $\frac{a^2}{x} = \frac{b^2}{y}$
Second Equation:
 $\frac{a^2b}{x} + \frac{b^2a}{y} = a + b$
 $\Rightarrow \left(\frac{b^2}{y}\right) \times b + \frac{b^2a}{y} = a + b$
 $\Rightarrow \left(\frac{b^2}{y}\right) \times (b + a) = a + b$
 $\Rightarrow \frac{b^2}{y} = \frac{a+b}{a+b} = 1$
 $\Rightarrow y = b^2$
 $\frac{a^2}{x} = \frac{b^2}{y}$
 $\Rightarrow \frac{a^2}{x} = \frac{b^2}{b^2} = 1$
 $\Rightarrow x = a^2$
Hence $x = a^2$ and $y = b^2$

- 5. **(d)** $\frac{1}{2}$ **Explanation:** Given: $\sin \theta - \cos \theta = 0$ $\Rightarrow \sin \theta = \cos \theta$ $\Rightarrow \sin \theta = \sin(90^\circ - \theta)$ $\Rightarrow \theta = 90^\circ - \theta \Rightarrow \theta = 45^\circ$ $\therefore \sin^4 \theta + \cos^4 \theta = \sin^4 45^\circ + \cos^4 45^\circ$ $= \left(\frac{1}{\sqrt{2}}\right)^4 + \left(\frac{1}{\sqrt{2}}\right)^4$ $= \frac{1}{4} + \frac{1}{4}$ $= \frac{1}{2}$
- 6. (a) an irrational number

Explanation: The sum of a rational and an irrational number is an irrational number hence it is an irrational number.

7. **(b)** $-\frac{3}{7}$

Explanation: Since α and β are the zeros of the quadratic polynomial $p(x) = 4x^2 + 3x + 7$ $\alpha + \beta = \frac{-\text{Coefficient of } x}{2} = \frac{-3}{2}$

$$\begin{aligned} \alpha + \beta &= \text{Coefficient of } x^2 &= 4 \\ \alpha \beta &= \frac{\text{Constant term}}{\text{coefficient of } x^2} &= \frac{7}{4} \\ \text{Now, } \frac{1}{\alpha} + \frac{1}{\beta} &= \frac{\beta + \alpha}{\alpha \beta} = \frac{\frac{-3}{4}}{\frac{7}{4}} = \frac{-3}{4} \times \frac{4}{7} = \frac{-3}{7} \\ \text{Thus, the value of } \frac{1}{a} + \frac{1}{\beta} \text{ is } \frac{-3}{7}. \end{aligned}$$

8. (c) $\sqrt{85}$

Explanation: Let mid point of A(2, 2), B(-4, -4) be whose coordinates will be

$$= \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(\frac{2-4}{2}, \frac{2-4}{2}\right)$$

or $\left(\frac{-2}{2}, \frac{-2}{2}\right) = (-1, -1)$
 \therefore Length of median CD
 $= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(5+1)^2 + (-8+1)^2}$
 $= \sqrt{(6)^2 + (-7)^2} = \sqrt{36+49}$
 $= \sqrt{85}$ units

9. **(a)** 3

Explanation: The number of zeroes of a cubic polynomial is at most 3 because the highest power of the variable in cubic polynomial is 3, i.e. $ax^3 + bx^2 + cx + d$

10. **(a)** ±3

Explanation: Let $\alpha, \ \beta$ are the zeroes of the given polynomial.

Given: $\alpha + \beta = \alpha \beta$ $\Rightarrow \frac{-b}{a} = \frac{c}{a}$ $\Rightarrow -b = -c$ $\Rightarrow -(-27) = 3k^2$ $\Rightarrow k^2 = 9$ $\Rightarrow k = \pm 3$

11. (c) $\frac{1}{2}$

Explanation: Prime number on a die are 2, 3, 5 \therefore Probability of getting a prime number on the face of the die $=\frac{3}{6}=\frac{1}{2}$

12. **(d)** 338

Explanation: HCF (26, 169) = 13

We have to find the value for LCM (26, 169)

We know that the product of numbers is equal to the product of their HCF and LCM.

Therefore, 13(LCM) = 26(169) LCM = $\frac{26(169)}{13}$ LCM = 338

13. **(c)** abscissa

Explanation: The distance of a point from the y-axis is the x (horizontal) coordinate of the point and is called abscissa.

14. **(c)** x-axis

Explanation: Since the ordinates of given points are 0. Therefore, points lie on x-axis.

15. **(b)** $\frac{-6}{5}$

Explanation: x = 2 satisfies $kx^2 + 3x + k = 0$ $\therefore 4k + 6 + k = 0 \Rightarrow 5k = -6 \Rightarrow k = \frac{-6}{5}$

16. **(b)** 9

Explanation: 9 sec²A - 9 tan²A = 9(sec²A - tan²A) = 9(1) = 9

17. **(a)** x = a and y = b

Explanation: Given $\frac{x}{a} + \frac{y}{b} = 2 \dots$ (i)

 $ax - by = a^2 - b^2 \dots (ii)$

Eq (i) can be written as bx + ay = 2ab ... (iii)

multiply equation (ii) by a and equation (iii) by b and adding

 $a^{2}x + b^{2}x = a^{3} - ab^{2} + 2ab^{2} = a(a^{2} + b^{2})$

x = a

multiply equation (ii) by b and equation (iii) by a and Subtract

 $-b^{2}y - a^{2}y = ba^{2} - b^{3} - 2ba^{2}$ $-y(b^{2} + a^{2}) = -b(b^{2} + a^{2})$ y = b

18. (d) $\frac{17}{90}$

Explanation: a and b are two number to be selected from the integers = 1 to 10 without replacement of a and b

i.e., 1 to 10 = 10 and 2 to 10 = 9 No. of ways = 10 × 9 = 90 Probability of $\frac{a}{b}$ where it is an integer \therefore Possible event will be = (2, 2), (3, 3), (4, 2), (4, 4), (5, 5), (6, 2), (6, 6), (7, 7), (8, 2), (8, 8), (9, 3), (9, 9), (10, 2), (10, 5) (10, 10), = 17 $P(E) = \frac{m}{n} = \frac{17}{90}$

19. **(b)** Irrational

Explanation: Let rational number + irrational number = rational number

And we know " rational number can be expressed in the form of PQ, where p, q are any integers, So, we can express our assumption As :

PQ + x = ab (Here x is a irrational number)

x = ab - PQ

So,

x is a rational number, but that contradicts our starting assumption.

Hence rational number + irrational number = irrational number

20. **(d)** 2, -4

```
Explanation: A(5, 3), B(11, -5) and P(12, y) are the vertices of a right triangle, right-angled at P
\therefore AB^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 [BY P.G.T]
=(11-5)^2+(-5-3)^2=(6)^2+(-8)^2
= 36 + 64 = 100
Similarly BP^2 = (12 - 11)^2 + (y + 5)^2 = (1)^2 + y^2 + 10y + 25
= v^2 + 10v + 26
and AP^2 = (12 - 5)^2 + (y - 3)^2 = (7)^2 + (y - 3)^2
= 49 + y^2 - 6y + 8 = y^2 - 6y + 58
\therefore \triangle ABP is a right triangle
\therefore AB^2 = BP^2 + AP^2
100 = y^2 + 10y + 26 + y^2 - 6y + 58
100 = 2y^2 + 4y + 84
\Rightarrow 2y^2 + 4y + 84 - 100 = 0 \Rightarrow 2y^2 + 4y - 16 = 0
\Rightarrow y<sup>2</sup> + 2y - 8 = 0 (Dividing by 2)
\Rightarrow y^2 + 4y - 2y - 8 = 0 \left\{ \begin{array}{c} \because -8 = 4 \times (-2) \\ 2 = 4 - 2 \end{array} \right\}
\Rightarrow y(y + 4) -2(y + 4) = 0
\Rightarrow (y + 4) (y - 2) = 0
Either y + 4 = 0, then y = -4
or y - 2 = 0, then y = 2
y = 2, -4
```

Section **B**

21. **(d)** 115^o

Explanation: Since the sum of the opposite angles of a cyclic quadrilateral is 180^o

 $\therefore \angle A + \angle C = 180^{\circ}$ $\Rightarrow 2x - 1 + 2y + 15 = 180^{\circ}$ $\Rightarrow x + y = 83^{\circ} \dots (i)$ And $\angle B + \angle D = 180^{\circ}$ $\Rightarrow y + 5 + 4x - 7 = 180^{\circ}$ $\Rightarrow 4x + y = 182^{\circ} \dots (ii)$ Subtracting eq. (ii) from eq. (i), we get $-3x = -99^{\circ}$ $\Rightarrow x = 33^{\circ}$ Putting the value of x in eq. (i), we get $33^{\circ} + y = 83^{\circ}$ $\Rightarrow y = 50^{\circ}$ $\therefore \angle C = (2y + 15)^{\circ} = (2 \times 50 + 15)^{\circ} = 115^{\circ}$ (c) $10x^{2} - x - 3$

Explanation: $\alpha + \beta = \left(\frac{3}{5} - \frac{1}{2}\right) = \frac{1}{10}, \alpha\beta = \frac{3}{5} \times \left(\frac{-1}{2}\right) = \frac{-3}{10}$ Required olynomial is $x^2 - \frac{1}{10}x - \frac{3}{10}$, i.e., $10x^2 - x - 3$

23. **(d)** 2

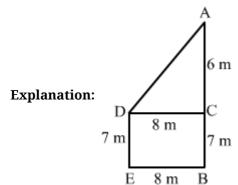
22.

Explanation: LCM (a, b, c) $= 2^3 \times 3^2 \times 5$ (I) we have to find the value of n Also we have $a = 2^3 \times 3$

b=2 imes 3 imes 5 $c = 3^n \times 5$ We know that the while evaluating LCM, we take greater exponent of the prime numbers in the factorisation of the number. Therefore, by applying this rule and taking $n \ge 1$ we get the LCM as LCM (a, b, c) = $2^3 \times 3^n \times 5$ (II) On comparing (I) and (II) sides, we get: $2^3 imes 3^2 imes 5=2^3 imes 3^n imes 5$ n = 2 (d) 2 cos² A - 1 24. **Explanation:** We have, $\cos^4 A - \sin^4 A = (\cos^2 A + \sin^2 A) (\cos^2 A - \sin^2 A)$ $= 1 (\cos^2 A - \sin^2 A) = \cos^2 A - (1 - \cos^2 A)$ $= \cos^2 A - 1 + \cos^2 A$ $= 2 \cos^2 A - 1$ 25. (c) 18 Explanation: Let unit digit = x, Tens digit = y, therefore original no will be 10y + x Sum of digits are 9 So that $x + y = 9 \dots$ (i)

nine times this number is twice the number obtained by reversing the order of the digits 9(10y + x) = 2(10x + y)

90y + 9x = 20 x + 2y 88y - 11x = 0 Divide by 11 we get 8y - x = 0 ... (ii) Adding equations (i) and (ii), we get


9y = 9
y =
$$\frac{9}{9}$$
 = 1
Putting this value in equation 1 we get
x + y = 9
y + 1 = 9

x + 1 = 9 x = 8 Therefore the number is 10(1) + 8 = 18

26. **(b)** 72

Explanation: Here a = 1, b = -6, c = 8
Since
$$\alpha^3 + \beta^3 = (\alpha + \beta) [\alpha^2 + \beta^2 - \alpha\beta] = (\alpha + \beta) [(\alpha + \beta)^2 - 2\alpha\beta - \alpha\beta]$$

 $= (\alpha + \beta) [(\alpha + \beta)^2 - 3\alpha\beta]$
 $= \left(\frac{-b}{a}\right) \left[\left(\frac{-b}{a}\right)^2 - 3 \times \frac{c}{a}\right]$
 $= \left(\frac{-b}{a}\right) \left[\frac{b^2}{a^2} - \frac{3c}{a}\right]$
 $= \left(\frac{-b}{a}\right) \left[\frac{b^2 - 3ac}{a^2}\right]$
 $= \frac{-b^3 + 3abc}{a^3}$

Putting the values of a,b and c, we get = $\frac{-(-6)^3 + 3 \times 1 \times (-6) \times 8}{(1)^3} = \frac{216 - 144}{1} = 72$

Let AB and DE be the two poles. According to the question: AB = 13 m DE = 7 m Distance between their bottoms = BE = 8 m Draw a perpendicular DC to AB from D, meeting AB at C. We get: DC = 8m, AC = 6 m Applying Pythagoras theorem in right-angled triangle ACD, we have: $AD^2 = DC^2 + AC^2 = 8^2 + 6^2 = 64 + 36 = 100$ $AD = \sqrt{100} = 10m$

28. **(a)** 2 : 3

Explanation: Given: (x, y) = (1, 3), (x₁, y₁) = (-6, 10), (x₂, y₂) = (3, -8)

Let $m_1 : m_2 = k : 1$ $\therefore x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$ $1 = \frac{k \times 4 + 1 \times (1)}{k + 1}$ k + 1 = 4k - 1 $\Rightarrow k = \frac{2}{3}$

Therefore, the required ratio is 2 : 3

29. (c) $\frac{3}{4}$

30.

Explanation: $\tan \theta = \frac{1}{\sqrt{7}} = \frac{\text{Perpendicular}}{\text{Base}}$ By Pythagoras Theorem, $(\text{Hyp.})^2 = (\text{Base})^2 + (\text{Perp.})^2$ $= (1)^2 + (\sqrt{7})^2 = 1 + 7 = 8$ $\therefore \text{ Hyp.} = \sqrt{8} = 2\sqrt{2}$ Now, $\csc \theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{2\sqrt{2}}{1}$ $\sec \theta = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{2\sqrt{2}}{\sqrt{7}}$ Now, $\frac{\csc 2\theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{\left(\frac{2\sqrt{2}}{1}\right)^2 - \left(\frac{2\sqrt{2}}{\sqrt{7}}\right)^2}{\left(\frac{2\sqrt{2}}{1}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{7}}\right)^2}$ $-\frac{8 - \frac{8}{7}}{8 + \frac{8}{7}}$ $= \frac{\frac{56 - 8}{7}}{\frac{56 + 8}{7}} = \frac{\frac{48}{7}}{\frac{64}{7}}$ $= \frac{48}{7} \times \frac{7}{64} = \frac{3}{4}$ (c) $\alpha = 3$ and $\beta = 1$

Explanation: Given: x - y = 2 ... (i) ... (i) And x + y = 4 ... (ii) Adding eq. (i) and (ii) for the elimination of y, we get 2x = 6 $\Rightarrow x = 3$ Putting the value of x in eq. (i), we get 3 - y = 2 $\Rightarrow y = 1$ $\therefore x = \alpha = 3$ and $y = \beta = 1$

31. **(a)** 4

32.

33.

Explanation:

Using the factor tree for prime factorisation, we have:

$$(144)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(44)$$

$$(2)$$

$$(3)$$

$$(44)$$

$$(2)$$

$$(5)$$

$$(2)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

34. **(c)**
$$\left(\frac{m_2 x_1 + m_1 x_2}{m_1 + m_2}, \frac{m_2 y_1 + m_1 y_2}{m_1 + m_2}\right)$$

Explanation: If the point R(x, y) divides the join of $P(x_1, y_2)$ and $Q(x_2, y_2)$ internally in the given ratio $m_1 : m_2$,

then the coordinates of the point R are $\left(rac{m_2x_1+m_1x_2}{m_1+m_2},rac{m_2y_1+m_1y_2}{m_1+m_2}
ight)$

35. (c) $\frac{1}{3}$

Explanation: Total number of pieces = 8 triangles + 10 squares = 18 Number of blue squares = 6 Number of possible outcomes = 6 Number of total outcomes = 8 + 10 = 18 \therefore Required Probability = $\frac{6}{18} = \frac{1}{3}$

36. **(b)** one or many solutions

Explanation: A system of linear equations is said to be consistent if it has at least one solution or can have many solutions. If a consistent system has an infinite number of solutions, it is dependent. When you graph the equations, both equations represent the same line. If a system has no solution, it is said to be inconsistent. The graphs of the lines do not intersect, so the graphs are parallel and there is no solution.

37. (a) a rational number

Explanation: $(1 + \sqrt{2}) + (1 - \sqrt{2}) = 1 + \sqrt{2} + 1 - \sqrt{2} = 1 + 1 = 2$ And 2 is a rational number. Therefore the given number is rational number.

38. **(c)** 1

Explanation: We have, tan 1°. tan 2°.tan 3° tan 89° = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.tan 45°.tan 46°.tan 47°...tan 87°.tan 88°.tan 89° = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan 46°.tan 47°...tan 87°.tan 88°.tan 89° (·. tan 45° = 1) = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan(90° - 44°).tan(90° - 43°)...tan(90° - 3°). tan(90° - 2°).tan(90° - 1°) = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.1.cot 44°.cot 43°...cot 3°.cot 2°.cot 1° (·. tan(90°-θ)=cot θ) = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.1. $\frac{1}{\tan 44^\circ} \cdot \frac{1}{\tan 43^\circ} \cdot \dots \frac{1}{\tan 3^\circ} \cdot \frac{1}{\tan 2^\circ} \cdot \frac{1}{\tan 1^\circ}$ (·. tan $\theta = \frac{1}{\cot \theta}$) = $\left(\tan 1^\circ \times \frac{1}{\tan 1^\circ}\right) \cdot \left(\tan 2^\circ \times \frac{1}{\tan 2^\circ}\right) \dots \left(\tan 44^\circ \times \frac{1}{\tan 44^\circ}\right) = 1$ Hence, tan 1°.tan 2°.tan 3° tan 89° = 1

39. **(b)** $\frac{1}{4}$

Explanation: Rolling two different dice, Number of total events = $6 \times 6 = 36$ Number of even number on both dice are {(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6) }= 9 \therefore Probability = $\frac{9}{36} = \frac{1}{4}$

40. **(d)** (-1, 2)

Explanation: Let the coordinates of centre O be (x, y).

The endpoints of a diameter of the circle are A(- 4, - 3) and B(2, 7).

Since centre is the midpoint of diameter.

$$\therefore \mathbf{x} = \frac{x_1 + x_2}{2} = \frac{-4 + 2}{2} = \frac{-2}{2} = -1 \text{ and}$$
$$\mathbf{y} = \frac{y_1 + y_2}{2} = \frac{-3 + 7}{2} = \frac{4}{2} = 2$$

Therefore, the coordinates of the centre O is (-1, 2)

Section C

41. **(b)** Pythagoras theorem

Explanation: Pythagoras theorem

42. **(a)** 5

Explanation: Using Pythagoras theorem, we have $PQ^2 = PR^2 + RQ^2$ $\Rightarrow (26)^2 = (2x)^2 + (2(x + 7))^2 \Rightarrow 676 = 4x^2 + 4(x + 7)^2$ $\Rightarrow 169 = x^2 + x^2 + 49 + 14x \Rightarrow x^2 + 7x - 60 = 0$ $\Rightarrow x^2 + 12x - 5x - 60 = 0 \Rightarrow x(x + 12) - 5(x + 12) = 0 \Rightarrow (x - 5) (x + 12) = 0$ $\Rightarrow x = 5, x = -12$ $\therefore x = 5$ [Since length can't be negative]

- 43. (c) 10 km Explanation: PR = 2x = 2 × 5 = 10 km
- 44. **(c)** 24 km **Explanation:** RQ = 2(x + 7) = 2(5 + 7) = 24 km

- 45. (c) 8 km Explanation: Since PR + RQ = 10 + 24 = 34 km Saved distance = 34 - 26 = 8 km
- 46. **(b)** 12.5 cm **Explanation:** Since BOC is the diameter and $\angle BAC = 90^{\circ}$ $\therefore BC^2 = AB^2 + AC^2$ $= 7^2 + 24^2 = 625$
 - \Rightarrow BC = 25 cm
 - \therefore Radius of circle = $\frac{25}{2}$ cm = 12.5 cm
- 47. **(b)** 491.07 cm²

Explanation: Area of circle = $\pi(12.5)^2 = \frac{22}{7} \times 12.5 \times 12.5$ = 491.07 cm²

48. **(c)** 122.76 cm²

Explanation: Clearly, \angle COD = 90° [$\therefore \angle$ COB = 180° and equal arcs subtends equal angles at the centre] Area of region COD = $\frac{90^{\circ}}{360^{\circ}} \times \pi r^2$ = $\frac{1}{4}$ (491.07) = 122.76 cm²

49. **(c)** 84 cm²

Explanation: Area of $\triangle BAC = \frac{1}{2} \times AB \times AC$ = $\frac{1}{2} \times 7 \times 24 = 84 \text{ cm}^2$

50. **(d)** 284.31 cm²

Explanation: Area of the polluted region = Area of circle - Area of sector COD - Area of \triangle ABC = 491.07- 122.76 - 84

 $= 284.31 \text{ cm}^2$