

Railway, Airport, Dock, Harbour and Tunnel Engineering

Airport

- Q.1 The runway orientation is made so that landing and take off are
 - (a) against the wind direction
 - (b) along the wind direction
 - (c) perpendicular to wind direction
 - (d) none of these
- Q.2 The depressions and undulations in the pavement, are caused due to
 - (a) improper compaction of subgrade
 - (b) impact of heavy wheel loads
 - (c) punching effect
 - (d) all the above.
- Q.3 Pick up the correct statement from the following:
 - (a) The speed of the aircraft relative to the ground, is called cruising speed
 - (b) The speed of the aircraft relative to wind, is called air speed
 - (c) When wind is blowing the direction of the flight, air speed is less than cruising speed
 - (d) All the above.
- Q.4 Airport elevation is the reduced level above M.S.L. of
 - (a) control tower
 - (b) highest point of the landing area
 - (c) lowest point of the landing area
 - (d) none of these.
- Q.5 According to I.C.A.O. the recommended length of airports is decided on
 - (a) sea level elevation
 - (b) standard sea level temperature (15°C)
 - (c) effective gradient percentage
 - (d) All the above
- Q.6 Pick up the correct statement from the following:
 - (a) The basic length of a runway is increased at a rate of 7% per 300 m of elevation of M.S.L.

- (b) The standard temperature at the site is obtained by reducing the standard sea level temperature of 15°C at the rate of 6.5°C per 1000 m rise in elevation
- (c) The aerodrome reference temperature is the monthly mean of the mean daily temperature for the holtest month of the year
- (d) All the above.
- Q/7 The meterological condition which influences the size and location of an airport is
 - (a) almosphere pressure
 - (b) air density
 - (c) reduced level
 - (d) wind direction
- Q.8 The thickness design of the pavement, is decided on the load carried by
 - (a) main gears
- (b) nose wheel
- (c) tail wheel
- (d) all the above
- Q.9 Beaufort scale is used to determine
- (a) strength of winds
 - (b) direction of winds
 - (c) height of aircrafts
 - (d) none of these
- Q.10 Wing loading of an aircraft is
 - (a) load of the wings
 - (b) gross total weight of the aircraft load of winos
 - (c) gross total weight of the aircraft wing area
 - gross total weight of the aircraft total available H.P. of engines
- Q.11 Pick up the correct statement from the following:
 - (a) The centre line of the approach area coincides with that of the runway

- Approach areas are measured in horizontal surfaces
- (c) The imaginary inclined plane which is directly above the approach area is called approach surface
- (d) All the above
- Q.12 The best direction of a runway is along the direction
 - (a) longest line on wind rose diagram
 - (b) shortest line on the wind rose diagram
 - (c) line clear of wind rose diagram
 - (d) None of these
- Q.13 For the taxiways, the following statement is true
 - (a) The maximum longitudinal grade is 3%
 - (b) The permissible rate of change of grade is 1%
 - (c) The permissible transverse grade is 1.5%
 - (d) All the above

- Q.14 According to I.C.A.O. all markings on the runways are painted white and on taxiways
 - (a) black
- (b) red
- (c) yellow (d) green
- Q.15 The runway length after correcting for elevation and temperature is 2845 m. If the effective gradient on runway is 0.5 percent then the revised runway length will be
 - (a) 2845 m
- (b) 2910 m.
- (c) 3030 m
- (d) 3130 m
- Q.16 The length of runway under standard conditions is 2000 m. The elevation of airport site is 300 m. Its reference temperature is 33.05°C. If the runway is to be constructed with an effective gradient of 0.25 percent, the corrected runway length will be
 - (a) 2500 m
- (b) 2600 m
- (c) 2700 m
- (d) 2800 m

9. (a) 10. (c)

Answers Airport

- (a) 2. (d) 3. (d) 4. (b) 5. (d) 6. (d)
- 11. (d) 12. (a) 13. (d) 14. (c) 15. (d) 16. (c)

Explanations Airport

15. (d)

Revised runway length

$$= 2845 + \frac{20}{100} \times 0.5 \times 2845$$
$$= 3129.5 \approx 3130 \text{ m}$$

16. (c)

Standard temperature

7. (d)

 $= 15^{\circ} - 0.0065 \times 300 = 13.05^{\circ}$

8. (a)

⇒ Difference in temperature

= AT = 33.05°C - 13.05°C = 20°C

The corrected runway length

 $= 2000 (1.07 \times 1.2 \times 1.05)$

= 2696.4 m \times 2700 m