9. Transversal and Mid-Point Theorem

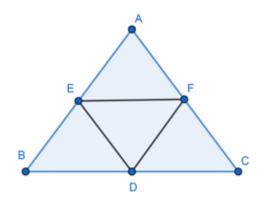
Let us Work Out 9

1. Question

In the triangle ABC, D is the midpoint of the side BC; From the point D, the parallel straight lines of CA and BA intersect the sides BA and CA at the

points E and F respectively. Let us prove that, $EF = \frac{1}{2}BC$.

Answer



In Δ ABC, since D is the mid-point of BC and as FD || AB,

Then by the theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side.

 \Rightarrow F is the mid-point of AC

By using the above theorem, we can also prove that E is the midpoint of AB as DE || AC.

Now as E and F have been proved to be the midpoint of AB and AC respectively, by applying the theorem:-

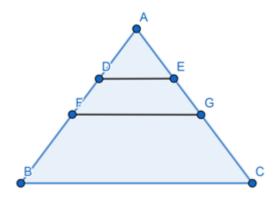
The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 EF = $\frac{1}{2}$ BC

2. Question

D and E lie on AB and AC respectively of the triangle ABC such that, $AD = \frac{1}{4} AB$ and $AE = \frac{1}{4} AC$. Let us prove that, DE || BC and $DE = \frac{1}{4} BC$.

Answer



In \triangle ABC, Let F and G be the midpoint of AB and AC respectively.

So, in $\triangle AFG$, $=\frac{1}{2}$ AF and AE $=\frac{1}{2}$ AG ,

 \Rightarrow D and E are the midpoint of AF and AG respectively.

By applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 DE = $\frac{1}{2}$ FG and DE || FG(1)

Also, by using above theorem in ΔABC , we get,

 \Rightarrow FG = $\frac{1}{2}$ BC and FG || BC(2)

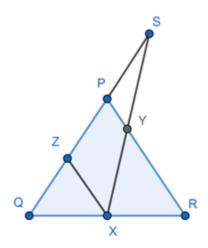
From equations (1) and (2), we get

 \Rightarrow DE = $\frac{1}{4}$ BC and DE || BC

3. Question

In the triangle PQR, the midpoints of the sides QR and QP are X and Z respectively. The side QP is extended upto the points S so that PS = ZP. SX

intersects the side PR at the point Y. Let us prove that, $PY = \frac{1}{4}PR$.



In Δ PQR, as X and Z are the midpoint of QR and PQ respectively.

So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow XZ = \frac{1}{2} PR \dots (1)$$

Also, in Δ SZX since ZX || PY and P is the midpoint of SZ,

By applying theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side.

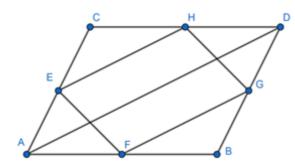
$$\Rightarrow PY = \frac{1}{2} ZX \dots (2)$$

From equations (1) and (2), we get

$$\Rightarrow$$
 PY $=\frac{1}{4}$ PR

4. Question

Let us prove that, the quadrilateral formed by joining midpoints of consecutive sides of a parallelogram is a parallelogram.



In \triangle ACD, as E and H are the midpoints of AC and CD respectively.

So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 EH = $\frac{1}{2}$ AD and EH || AD(1)

Also, by using above theorem in ΔABD , as F and G are midpoints of AB and BD respectively,

$$\Rightarrow$$
 FG = $\frac{1}{2}$ AD and FG || AD(2)

From equations (1) and (2) we see that, EH = FG and $EH \parallel AD$.

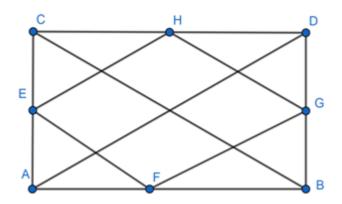
As both the above conditions are sufficient for a parallelogram,

 \Rightarrow EFGH is a parallelogram

5. Question

Let us prove that, the quadrilateral formed by joining midpoints of consecutive sides of a rectangular figure is not a square figure but a rhombus.

Answer



In \triangle ACD, as E and H are the midpoints of AC and CD respectively.

So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 EH = $\frac{1}{2}$ AD and EH || AD(1)

Also, by using above theorem in ΔABD , as F and G are midpoints of AB and BD respectively,

$$\Rightarrow$$
 FG = $\frac{1}{2}$ AD and FG || AD (2)

From equations (1) and (2) we see that, EH = FG and EH || AD.

Similarly for Δ BCD, we have G and H as midpoints of BD and CD respectively, by applying above theorem, we get,

$$\Rightarrow$$
 GH = $\frac{1}{2}$ Bc and GH || BC(3)

And also in $\triangle ABC$,

 \Rightarrow EF = $\frac{1}{2}$ BC and EF || BC(4)

From equations (3) and (4) we see that, GH = EF and $GH \parallel EF$.

As ABCD is a rectangle, the length of diagonals are equal

 $\Rightarrow AD = BC$

 \Rightarrow HG = GF = FE = EH

But, we also see that since ABCD is a rectangle not square BD is not equal to CD,

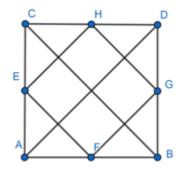
 $\therefore \angle$ DCB is not equal to \angle DBC.

Hence, the angle between the sides in EFGH cannot be 90° and as a result EFGH is not a square figure but a rhombus.

6. Question

Let us prove that, the quadrilateral formed by joining midpoints of consecutive sides of a square is a square.

Answer



In Δ ACD, as E and H are the midpoints of AC and CD respectively.

So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 EH = $\frac{1}{2}$ AD and EH || AD(1)

Also, by using above theorem in ΔABD , as F and G are midpoints of AB and BD respectively,

$$\Rightarrow$$
 FG = $\frac{1}{2}$ AD and FG || AD (2)

From equations (1) and (2) we see that, EH = FG and $EH \parallel AD$.

Similarly for Δ BCD, we have G and H as midpoints of BD and CD respectively, by applying above theorem, we get,

$$\Rightarrow$$
 GH = $\frac{1}{2}$ Bc and GH || BC(3)

And also in $\triangle ABC$,

$$\Rightarrow$$
 EF = $\frac{1}{2}$ BC and EF || BC(4)

From equations (3) and (4) we see that, GH = EF and GH || EF.

As ABCD is a square, the length of diagonals are equal

 \Rightarrow AD = BC

 \Rightarrow HG = GF = FE = EH

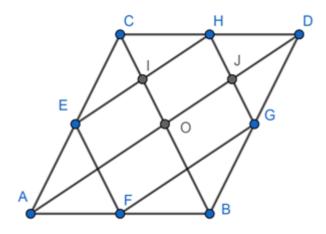
 \Rightarrow AE = AF, this means \angle AEF = \angle AFE = \angle ABC = \angle ACB = 45°

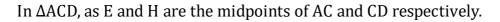
 \div We can easily prove that angle between the sides of the figure FGHE is equal to 90°

Hence, Quadrilateral FGHE is a square.

7. Question

Let us prove that, the quadrilateral formed by joining midpoints of a rhombus is a rectangle.





So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 EH = $\frac{1}{2}$ AD and EH || AD(1)

Also, by using above theorem in ΔABD , as F and G are midpoints of AB and BD respectively,

$$\Rightarrow$$
 FG = $\frac{1}{2}$ AD and FG || AD(2)

From equations (1) and (2) we see that, EH = FG and $EH \parallel AD$.

Similarly for Δ BCD, we have G and H as midpoints of BD and CD respectively, by applying above theorem, we get,

$$\Rightarrow$$
 GH = $\frac{1}{2}$ Bc and GH || BC(3)

And also in $\triangle ABC$,

 \Rightarrow EF = $\frac{1}{2}$ BC and EF || BC(4)

From equations (3) and (4) we see that, GH = EF and GH || EF.

So, EHGF is a parallelogram and as IH lie on EH and HJ lie on HG.

 \Rightarrow IHJO is also a parallelogram.

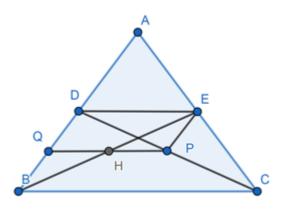
As we know that, the angle subtended by the diagonals in a triangle is equal to 90°, and also in a parallelogram, the opposite angles are equal.

 $\Rightarrow \angle EHG = \angle IOJ = 90^{\circ}$

Hence, quadrilateral HGFE is a rectangle

8. Question

In the triangle ABC, the midpoints of AB and AC are D and E respectively; the midpoints of CD and BD are P and Q respectively. Let us prove that, BE and PQ bisect each other.



In Δ BDC, as Q and P are the midpoints of BD and CD respectively.

So by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

$$\Rightarrow$$
 PQ = $\frac{1}{2}$ BC and PQ || BC(1)

Similarly, applying above theorem on ΔABC where D and E are midpoints of AB and AC respectively

$$\Rightarrow$$
 DE = $\frac{1}{2}$ BC and DE || BC (2)

From equations (1) and (2),

 \Rightarrow PQ = DE and PQ||DE,(3)

 \Rightarrow PQDE is a parallelogram.

Also in Δ BDE, Q is the midpoint to BD and QH||DE as PQDE is a parallelogram,

$$\Rightarrow QH = \frac{1}{2}DE \dots (4)$$

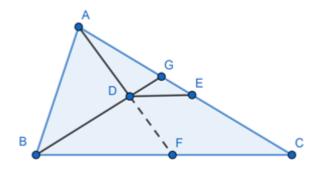
From equations (3) and (4), it proves that:

$$QH = \frac{1}{2}PQ$$

 \Rightarrow BE and PQ bisect each other

9. Question

In the triangle ABC, AD is perpendicular on the bisector of \angle ABC. From the point D, a straight line DE parallel to the side BC is drawn which intersects the side AC at the point E. Let us prove that AE = EC.



We extend the perpendicular till F such that it intersects the line BC at point F.

As BG is the angle bisector of $\angle ABC$,

 $\Rightarrow \angle ABD = \angle FBD = \theta$

Since AD is perpendicular to BG, so \angle BAD = 90 – θ

In ΔABF , as sum of all sides of triangle is equal to 180°

 $\Rightarrow \angle ABF + \angle BAF + \angle BFA = 180$

 $\Rightarrow 2\theta + (90 - \theta) + \angle BFA = 180$

 $\Rightarrow \angle BFA = 90 - \theta$

We know that sides opposite to equal angles in a triangle are equal and as $\angle BFA = \angle BAD$.

 \Rightarrow BA = BF

In \triangle BAD and \triangle BFD,

 $\angle ABD = \angle FBD$ (given)

 $\angle ADB = \angle FDB = 90^{\circ}$ (given)

BA = BF (proved above)

 $\Rightarrow \Delta BAD \cong \Delta BFD$ by RHS congruency.

 \Rightarrow AD = DF, that is, D is the midpoint of AF.

Now, In \triangle ACF, as D is midpoint of AF and DE || FC, then by applying theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side, we get,

 \Rightarrow E is the midpoint of AC

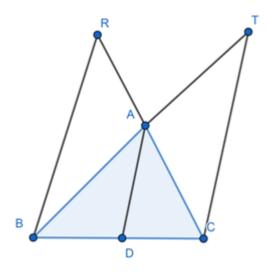
 \therefore AE = EC, hence proved.

10. Question

In the triangle ABC, AD is median. From the points B and C, two straight lines BR and CT, parallel to AD are drawn, which meet extended BA and CA at the

points T and R respectively. Let us prove that $\frac{1}{AD} = \frac{1}{RB} + \frac{1}{TC}$.

Answer



Since it is given that AD is the median to side BC,

 \Rightarrow D is midpoint to BC

Also, it is given that AD||CT||BR, so by applying theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side.

$$\Rightarrow AD = \frac{1}{2} CT = \frac{1}{2} RB$$

$$\Rightarrow TC = RB \dots (1)$$

As $AD = \frac{1}{2} TC$, it can also be written as, $\frac{1}{AD} = \frac{2}{TC}$

$$\Rightarrow \frac{1}{AD} = \frac{1}{TC} + \frac{1}{TC}$$

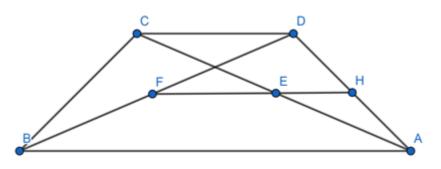
Using equation (1) in above equation,

$$\Rightarrow \frac{1}{AD} = \frac{1}{TC} + \frac{1}{RB}$$

11. Question

In the trapezium ABCD, AB || DC and AB > DC; the midpoints of two diagonals AC and BD are E and F respectively. Let us prove that, $EF = \frac{1}{2}(AB - DC)$.

Answer



As E and F are the midpoints of sides AC and BD respectively, therefore by the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get,

 \Rightarrow EF || CD

Now, we have extended EF to H, so in \triangle ACD, since E is midpoint of AC and EH||CD, so by applying theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side.

$$\Rightarrow$$
 EH = $\frac{1}{2}$ CD

Similarly, applying above theorem in ΔADB as F is midpoint of BD and FH||AB,

$$\Rightarrow$$
 FH = $\frac{1}{2}$ AB

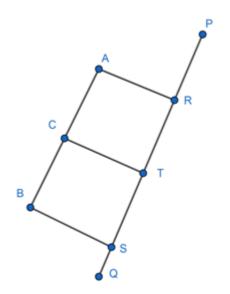
As FE = FH - EH,

So by substituting above values, we get,

$$\Rightarrow$$
 EF = $\frac{1}{2}$ (AB - CD)

12. Question

C is the midpoint of the line segment AB and PQ is any straight line. The minimum distances of the line PQ from the points A, B and C are AR, BS and CT respectively; let us prove that, AR + BS = 2CT.



As AR, BS, CT are the minimum distances of the line PQ from the points A, B and C, this can be only achieved when AB||PQ and AR, CT and BS are perpendicular to it.

This makes ARTC and CTSB as a parallelogram.

 \Rightarrow CT = AR from ARTC parallelogram,

And CT = BS from CTSB parallelogram.

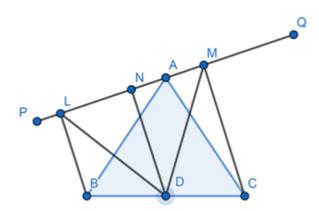
On adding the above two equations, we get

 \Rightarrow AR + BS = 2CT

13. Question

In a triangle ABC, D is the midpoint of the side BC; through the point A, PQ is any straight line. The perpendiculars from the points B, C and D on PQ are BL, CM and DN respectively; let us prove that, DL = DM.

Answer



Since BL||DN||CM and D is midpoint of BC, by using the theorem:-

If three or more parallel straight lines make equal intercepts from a traversal, then they will make equal intercepts from another traversal.

 \Rightarrow LN = MN

In Δ DLN and Δ DMN,

DN = DN (common)

 $\angle DNL = \angle DNM = 90^{\circ}$ (given)

LN = MN (proved above)

 $\therefore \Delta DLN \cong \Delta DMN$ by SAS congruency.

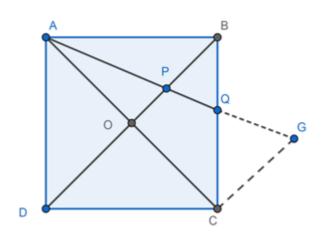
As a result of it, DL = DM

14. Question

ABCD is a squared figure. The two diagonals AC and BD intersect each other at the point O. The bisector of \angle BAC intersects BO at the point P and BC at

the point Q. Let us prove that,
$$OP = \frac{1}{2}CQ$$
.

Answer



We have extended PQ till G such that OP||CG,

As O is intersection of Diagonals of a square, therefore O is mid point of AC.

Using the theorem,

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

$$\Rightarrow OP = \frac{1}{2}CG \dots (1)$$

As AP is angle bisector of \angle BAO,

$$\Rightarrow \angle BAP = \angle OAP = \theta$$

$$\Rightarrow$$
 in $\triangle ABQ$, $\angle AQB = 90 - \theta$

 \angle GQC = \angle AQB = 90 – θ (Opposite angles)

Similarly in $\triangle ACG$, as $\angle ACG = 90^{\circ}$,

 $\Rightarrow \angle AGC = 90 - \theta$

As in \triangle GQC, \angle AGC = \angle GQC = 90 – θ and as sides opposite to equal angles in a triangle are equal

 \Rightarrow CQ = CG(2)

From equations (1) and (2), $OP = \frac{1}{2}CQ$

15 A. Question

In the triangle PQR, \angle PQR = 90° and PR = 10 cm. If S is the midpoint of PR, then the length of QS is

A. 4 cm

B. 5 cm

C. 6 cm

D. 3 cm

Answer

From the given question, we can see that,

$$QS = \frac{1}{2} PR$$

Since, S is the midpoint of PR,

 \Rightarrow QS = SR = 5 cm

15 B. Question

In the trapezium ABCD, AB || DC and AB = 7 cm and DC = 5 cm. The midpoints of AD and BC are E and F respectively, the length of EF is

A. 5 cm

B. 7 cm

C. 6 cm

D. 12 cm

Answer

Since AB||DC and E and F are midpoints of AD and BC,

By using the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 \Rightarrow AB||CD||EF

Also,

$$EF = \frac{1}{2} (AB + CD)$$
$$\Rightarrow EF = \frac{1}{2}(5 + 7) = 6 cm$$

15 C. Question

In the triangle ABC, E is the midpoint of the median AD; the extended BE intersects AC at the point F. If AC=10.5 cm, then the length of AF is

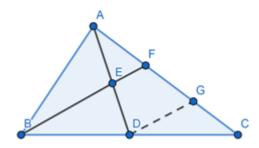
A. 3 cm

B. 5 cm

C. 2.5 cm

D. 3.5 cm

Answer



In \triangle ADG, AE = ED and EF||DG, therefore F is mid point of AG.

Similarly, In Δ BFC, BD = DC and BF||DG, therefore G is mid point of FC.

$$\Rightarrow AF = \frac{1}{3}AC$$

 \Rightarrow AF = 3.5 cm

15 D. Question

In the triangle ABC, the midpoints of BC, CA and AB are D, E and F respectively; BE and DF intersect at the point X and CF and DE intersect at the point Y, the length of XY is equal to

A.
$$\frac{1}{2}$$
BC

B.
$$\frac{1}{4}$$
BC
C. $\frac{1}{3}$ BC
D. $\frac{1}{8}$ BC

Answer

By using the theorem,

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 \Rightarrow X and Y are them id points of DF and DE respectively.

In \triangle ABC, by using above theorem,

$$\Rightarrow EF = \frac{1}{2}BC$$

Similarly applying it in ΔDFE ,

$$\Rightarrow$$
 XY = $\frac{1}{2}$ EF

From above two equations, we get $XY = \frac{1}{4}BC$

15 E. Question

In the parallelogram ABCD, E is the midpoint of the side BC; DE and extended AB meet at the point F. The length of AF is equal to

A.
$$\frac{3}{2}$$
 AB
B. 2AB
C. 3AB
D. $\frac{5}{4}$ AB

Answer

AF = AB + BF,

We can see that $\triangle BEF \cong \triangle CED$ by AAA congruency

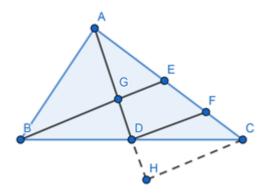
 \Rightarrow BF = CD and CD = AB as ABCD is a parallelogram.

 $\Rightarrow AF = 2AB$

16 A. Question

In the triangle ABC, AD and BE are two medians and DF parallel to BE, meets AC at the point F. If the length of the side AC is 8 cm., then let us write the length of the side CF.

Answer



We extend the median AD till H such that GE||CH

In Δ BEC, BD = DC and BF||DG, therefore D is midpoint of BC,

By applying theorem:-

Through the mid-point of any side, if a line segment is drawn parallel to second side, then it will bisect the third side and the line segment intercepted by the two sides of the triangle is equal to half of the second side.

$$\Rightarrow$$
 EF = FC

$$\Rightarrow$$
 FC = $\frac{-}{2}$ EC

Also, as E is midpoint of AC,

$$\Rightarrow \text{EC} = \frac{1}{2}\text{AC}$$

From above two equations, we get

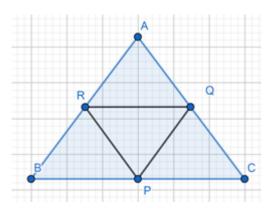
$$\Rightarrow FC = \frac{1}{4}AC = \frac{1}{4} \times 8 = 2 cm$$

 \therefore length of FC is 2 cm

16 B. Question

In the triangle ABC, the midpoints of BC, CA and AB are P, Q and R respectively; if AC = 21 cm, BC = 29 cm. and AB = 30 cm, then let us write the

perimeter of the quadrilateral ARPQ.



If R, Q and P are the midpoints of AB, AC and BC, and by applying the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 \Rightarrow PQ = $\frac{1}{2}$ AB = AR and PQ||AR

Also, $RP = \frac{1}{2} AC = AQ$ and $PR \parallel AQ$

Since the above conditions are sufficient for a parallelogram, therefore ARPQ is a parallelogram.

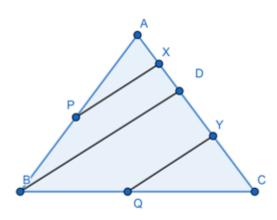
Perimeter of parallelogram $ARPQ = (2 \times AR) + (2 \times AQ)$

 \Rightarrow Perimeter = AB + AC = 30 + 21 = 51 cm

16 C. Question

In the triangle ABC, D is any point on the side AC. The midpoints of AB, BC, AD and DC are P, Q, X, Y respectively. If PX = 5 cm, then let us write the length of the side QY.

Answer



In \triangle ABD, as X is midpoint of AD and P is midpoint of AB, we apply the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 \Rightarrow PX = $\frac{1}{2}$ BD and PX parallel to BD

 \Rightarrow BD = 2 × PX = 10 cm

Similarly, In Δ BDC, as Y is midpoint of DC and Q is midpoint of BC, we apply the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

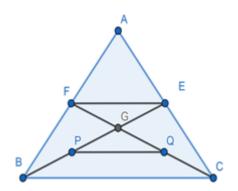
$$\Rightarrow$$
 QY = $\frac{1}{2}$ BD = $\frac{1}{2}$ × 10 and QY is parallel to BD

 \Rightarrow QY = 5 cm

16 D. Question

In the triangle ACB, the medians BE and CF intersects at the point G. The midpoints of BG and CG are P and Q respectively. If PQ = 3 cm, then let us write the length of BC.

Answer



In \triangle ABC, as F is midpoint of AB and E is midpoint of AC, we apply the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 \Rightarrow EF = $\frac{1}{2}$ BC and EF||BC

Similarly, In ΔOBC , as P is midpoint of BG and Q is midpoint of GC, we apply the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

 $\Rightarrow PQ = \frac{1}{2} BC \text{ and } PQ ||BC$ $\Rightarrow BC = 2 \times PQ$

 \Rightarrow BC = 2 × 3

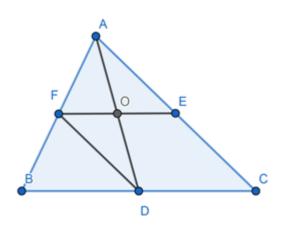
 \Rightarrow BC = 6 cm

 \therefore The length of BC is 6 cm.

16 E. Question

In the triangle ABC, the midpoint of BC, CA and AB are D, E and F respectively; FE intersects AD at the point O. If AD = 6 cm, let us write the length of AO.

Answer



In \triangle ABC, as F is midpoint of AB and D is midpoint of BC, we apply the theorem:-

The line segment joining the midpoints of two side of a triangle is parallel to the third side and equal to half of it, we get

$$\Rightarrow$$
 FD = $\frac{1}{2}$ AC and FD|| AC

Also, it is given that E is the midpoint of AC

$$\Rightarrow AE = \frac{1}{2}AC$$

From above two equations, we get, AE = FD

In ΔFOD and ΔEOA ,

 \angle FOD = \angle EOA (Opposite angles)

 \angle FDO = \angle EAO (Alternate Interior angles as FD || AE)

Also, $\angle OFD = \angle OEA$ (Alternate Interior angles as FD || AE)

$$\Rightarrow \Delta FOD \cong \Delta EOA$$

 $\therefore AO = OD$

$$\Rightarrow AO = \frac{1}{2} AD$$
$$\Rightarrow AO = \frac{1}{2} \times 6 = 3 cm$$

 \therefore The length of AO is 3 cm.