SAMPLE QUESTION PAPER

Class:-XII

Session 2023-24

Mathematics (Code-041)

Time: 3 hours Maximum marks: 80

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. **Section** C has 6 **Short Answer (SA)-type** questions of 3 marks each.
- 5. **Section D** has 4 **Long Answer (LA)-type** questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts.

Section –A

(Multiple Choice Questions)

Each question carries 1 mark

Q1. If
$$A = [a_{ij}]$$
 is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & \text{when } i \neq j \\ 0, & \text{when } i = j \end{cases}$, then A^2 is

(a)
$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Q2. If A and B are invertible square matrices of the same order, then which of the following is not correct?

(a)
$$adjA = |A| . A^{-1}$$

(b)
$$\det(A)^{-1} = \left[\det(A)\right]^{-1}$$

(c)
$$(AB)^{-1} = B^{-1}A^{-1}$$

(d)
$$(A + B)^{-1} = B^{-1} + A^{-1}$$

Q3. If the area of the triangle with vertices (-3,0), (3,0) and (0,k) is 9 squnits, then the value/s of k will be

(a) 9

- (b) ± 3
- (c) -9

(d) 6

Q4. If $f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \ge 0 \end{cases}$ is continuous at x = 0, then the value of k is

(c) 3

(d) any real number

- Q5. The lines $\vec{r} = \hat{i} + \hat{j} \hat{k} + \lambda (2\hat{i} + 3\hat{j} 6\hat{k})$ and $\vec{r} = 2\hat{i} \hat{j} \hat{k} + \mu (6\hat{i} + 9\hat{j} 18\hat{k})$; (where $\lambda \& \mu$ are scalars) are
 - (a) coincident
- (b) skew
- (c) intersecting
- (d) parallel
- **Q6.** The degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \frac{d^2y}{dx^2}$ is
 - (a) 4

- (b) $\frac{3}{3}$
- (c) 2

- (d) Not defined
- Q7. The corner points of the bounded feasible region determined by a system of linear constraints are (0,3),(1,1) and (3,0). Let Z = px + qy, where p, q > 0. The condition on p and q so that the minimum of Z occurs at (3,0) and (1,1) is
 - (a) p = 2q
- (b) $p = \frac{q}{2}$ (c) p = 3q

- (d) p = q
- **Q8.** \overrightarrow{ABCD} is a rhombus whose diagonals intersect at **E**. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$ equals to
 - (a) $\vec{0}$

- (b) \overrightarrow{AD}
- (c) $2\overrightarrow{BD}$

(d) $2\overrightarrow{AD}$

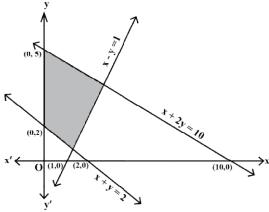
- Q9. For any integer n, the value of $\int_0^{\pi} e^{\sin^2 x} \cos^3(2n+1)x dx$ is
 - (a) -1

(b) 0

(c) 1

- (d) 2
- Q10. The value of |A|, if $A = \begin{bmatrix} 0 & 2x-1 & \sqrt{x} \\ 1-2x & 0 & 2\sqrt{x} \\ -\sqrt{x} & -2\sqrt{x} & 0 \end{bmatrix}$, where $x \in \mathbb{R}^+$, is
 - (a) $(2x+1)^2$
- (b) 0

- (c) $(2x+1)^3$
- (d) None of these
- Q11. The feasible region corresponding to the linear constraints of a Linear Programming Problem is given below.



Which of the following is not a constraint to the given Linear Programming Problem?

- (a) $x + y \ge 2$
- (b) $x + 2y \le 10$
- (c) $x-y \ge 1$
- (d) $x-y \leq 1$

(a) $\frac{18}{5} \left(3\hat{i} + 4\hat{k} \right)$	(b) $\frac{18}{25} \Big(3\hat{j} + 4\hat{k} \Big)$	(c) $\frac{18}{5} \left(3\hat{i} + 4\hat{k} \right)$	(d) $\frac{18}{25} \left(2\hat{i} + 4\hat{j} \right)$		
Q13. Given that A is a so	Q13. Given that A is a square matrix of order 3 and $ A = -2$, then $ adj(2A) $ is equal to				
(a) -2 ⁶	(b) 4	(c) -2^8	(d) 2 ⁸		
Q14. A problem in Mathe	ematics is given to three	students whose chances of solv	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$		
respectively. If the e		e problem are independent then	the probability that the		
(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$		
Q15. The general solution	of the differential equa	tion $ydx - xdy = 0$; (Given.	(x, y > 0), is of the form		
(a) $xy = c$	(b) $x = c y^2$	(c) $y = cx$	(d) $y = cx^2$;		
(Where 'c' is an arbi	trary positive constant o	f integration)			
		$\hat{j} + 2\hat{k}$ and $3\hat{i} + \lambda\hat{j} + \hat{k}$ are perp			
(a) 2 Q17. The set of all points	(b) 4 where the function $f(x)$	(c) 6 (x) = x + x is differentiable, is	(d) 8		
		(c) $(-\infty,0)\cup(0,\infty)$	(α, α)		
, ,					
Q18. If the direction cosin	nes of a line are $<\frac{-}{c},\frac{-}{c},\frac{-}{c}$	$\frac{1}{c}$ > , then			
(a) $0 < c < 1$	(b) $c > 2$	(c) $c = \pm \sqrt{2}$	(d) $c = \pm \sqrt{3}$		
	ASSERTION-REASO	ON BASED QUESTIONS			
	ions, a statement of Asso swer out of the following	ertion (A) is followed by a state g choices.	ment of Reason (R).		
(a) Both (A) and (R) a	are true and (R) is the co	orrect explanation of (A).			
	(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).				
(c) (A) is true but (R) is false.(d) (A) is false but (R) is true.					
Q19. Let $f(x)$ be a polynomial function of degree 6 such that $\frac{d}{dx}(f(x)) = (x-1)^3(x-3)^2$, then					
ASSERTION (A): $f(x)$ has a minimum at $x = 1$.					
'h' is	REASON (R): When $\frac{d}{dx}(f(x)) < 0$, $\forall x \in (a-h,a)$ and $\frac{d}{dx}(f(x)) > 0$, $\forall x \in (a,a+h)$; where 'h' is an infinitesimally small positive quantity, then $f(x)$ has a minimum at $x = a$, provided $f(x)$ is continuous at $x = a$.				

Q12. If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{j} + 4\hat{k}$, then the vector form of the component of \vec{a} along \vec{b} is

Q20. ASSERTION (A): The relation $f:\{1,2,3,4\} \rightarrow \{x,y,z,p\}$ defined by $f=\{(1,x),(2,y),(3,z)\}$ is a bijective function.

REASON (R): The function $f:\{1,2,3\} \rightarrow \{x,y,z,p\}$ such that $f=\{(1,x),(2,y),(3,z)\}$ is one-one.

Section -B

[This section comprises of very short answer type questions (VSA) of 2 marks each]

Q21. Find the value of $\sin^{-1} \left(\cos \left(\frac{33\pi}{5} \right) \right)$.

OR

Find the domain of $\sin^{-1}(x^2-4)$.

- **Q22.** Find the interval/s in which the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = xe^x$, is increasing.
- Q23. If $f(x) = \frac{1}{4x^2 + 2x + 1}$; $x \in \mathbb{R}$, then find the maximum value of f(x).

OR

Find the maximum profit that a company can make, if the profit function is given by $P(x) = 72 + 42x - x^2$, where x is the number of units and P is the profit in rupees.

- Q24. Evaluate: $\int_{-1}^{1} \log_{e} \left(\frac{2-x}{2+x} \right) dx.$
- Q25. Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + x$, has any critical point/s or not? If yes, then find the point/s.

Section – C

[This section comprises of short answer type questions (SA) of 3 marks each]

- Q26. Evaluate: $\int \frac{2x^2 + 3}{x^2(x^2 + 9)} dx$; $x \neq 0$.
- **Q27.** The random variable X has a probability distribution P(X) of the following form, where 'k' is some real number:

$$P(X) = \begin{cases} k, & \text{if } x = 0\\ 2k, & \text{if } x = 1\\ 3k, & \text{if } x = 2\\ 0, & \text{otherwise} \end{cases}$$

- (i) Determine the value of k.
- (ii) Find P(X < 2).
- (iii) Find P(X>2).

Q28. Evaluate:
$$\int \sqrt{\frac{x}{1-x^3}} dx$$
; $x \in (0,1)$.

OR

Evaluate: $\int_0^{\frac{\pi}{4}} \log_e (1 + \tan x) dx.$

Q29. Solve the differential equation:
$$ye^{\frac{x}{y}}dx = \left(xe^{\frac{x}{y}} + y^2\right)dy$$
, $(y \neq 0)$.

OR

Solve the differential equation: $(\cos^2 x) \frac{dy}{dx} + y = \tan x$; $(0 \le x < \frac{\pi}{2})$.

Q30. Solve the following Linear Programming Problem graphically:

Minimize: z = x + 2y,

subject to the constraints: $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x, y \ge 0$.

OR

Solve the following Linear Programming Problem graphically:

Maximize: z = -x + 2y,

subject to the constraints: $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$.

Q31. If
$$(a+bx)e^{\frac{y}{x}} = x$$
 then prove that $x\frac{d^2y}{dx^2} = \left(\frac{a}{a+bx}\right)^2$.

Section –D

[This section comprises of long answer type questions (LA) of 5 marks each]

- Q32. Make a rough sketch of the region $\{(x,y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ and find the area of the region, using the method of integration.
- Q33. Let \mathbb{N} be the set of all natural numbers and \mathbb{R} be a relation on $\mathbb{N} \times \mathbb{N}$ defined by

 $(a,b)R(c,d) \Leftrightarrow ad = bc$ for all $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$. Show that R is an equivalence relation on

 $\mathbb{N} \times \mathbb{N}$. Also, find the equivalence class of (2,6), i.e., $\left[\left(2,6\right)\right]$.

OR

Show that the function $f: \mathbb{R} \to \{x \in \mathbb{R}: -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in \mathbb{R}$ is one-one and onto function.

Q34. Using the matrix method, solve the following system of linear equations:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \ \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \ \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2.$$

Q35. Find the coordinates of the image of the point (1, 6, 3) with respect to the line $\vec{r} = (\hat{j} + 2\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$; where ' λ ' is a scalar. Also, find the distance of the image from the y - axis.

OR

An aeroplane is flying along the line $\vec{r} = \lambda(\hat{i} - \hat{j} + \hat{k})$; where ' λ ' is a scalar and another aeroplane is flying along the line $\vec{r} = \hat{i} - \hat{j} + \mu(-2\hat{j} + \hat{k})$; where ' μ ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.

Section –E

[This section comprises of 3 case- study/passage based questions of 4 marks each with sub parts. The first two case study questions have three sub parts (i), (ii), (iii) of marks 1,1,2 respectively. The third case study question has two sub parts of 2 marks each.)

Q36. Read the following passage and answer the questions given below:

In an Office three employees James, Sophia and Oliver process incoming copies of a certain form. James processes 50% of the forms, Sophia processes 20% and Oliver the remaining 30% of the forms. James has an error rate of 0.06, Sophia has an error rate of 0.04 and Oliver has an error rate of 0.03.

Based on the above information, answer the following questions.

- (i) Find the probability that Sophia processed the form and committed an error.
- (ii) Find the total probability of committing an error in processing the form.
- (iii) The manager of the Company wants to do a quality check. During inspection, he selects a form at random from the days output of processed form. If the form selected at random has an error, find the probability that the form is **not** processed by James.

OR

(iii) Let E be the event of committing an error in processing the form and let E_1, E_2 and E_3 be the events that James, Sophia and Oliver processed the form. Find the value of $\sum_{i=1}^{3} P(E_i|E)$.

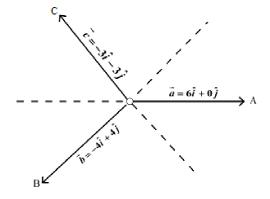
Q37. Read the following passage and answer the questions given below:

Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force $F_1 = 6\hat{i} + 0\hat{j} kN$,

Team **B** pulls with force $F_2 = -4\hat{i} + 4\hat{j} kN$,

Team C pulls with force $F_3 = -3\hat{i} - 3\hat{j} kN$,



- (i) What is the magnitude of the force of Team A?
- (ii) Which team will win the game?
- (iii) Find the magnitude of the resultant force exerted by the teams.

OR

(iii) In what direction is the ring getting pulled?

Q38. Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation $y = 4x - \frac{1}{2}x^2$, where 'x' is the number of days exposed to the sunlight, for $x \le 3$.

- (i) Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- (ii) Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

SAMPLE QUESTION PAPER

MARKING SCHEME

CLASS XII

MATHEMATICS (CODE-041)

SECTION: A (Solution of MCQs of 1 Mark each)

Q no.	ANS	HINTS/SOLUTION
1	(d)	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
2	(d)	$(A+B)^{-1} = B^{-1} + A^{-1}.$
3	(b)	Area = $\begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix}$, given that the area = 9 sq unit.
		$\Rightarrow \pm 9 = \frac{1}{2} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix}; \text{ expanding along } C_2, \text{ we get } \Rightarrow k = \pm 3.$
4	(a)	Since, f is continuous at $x = 0$,
		therefore, $L.H.L = R.H.L = f(0) = a$ finite quantity.
		$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$
		$\Rightarrow \lim_{x \to 0^{-}} \frac{-kx}{x} = \lim_{x \to 0^{+}} 3 = 3 \Rightarrow k = -3.$
5	(d)	Vectors $2\hat{i} + 3\hat{j} - 6\hat{k} & 6\hat{i} + 9\hat{j} - 18\hat{k}$ are parallel and the fixed point $\hat{i} + \hat{j} - \hat{k}$ on the
		line $\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda \left(2\hat{i} + 3\hat{j} - 6\hat{k} \right)$ does not satisfy the other line
		$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu \left(6\hat{i} + 9\hat{j} - 18\hat{k}\right);$ where $\lambda \& \mu$ are scalars.
6	(c)	Squaring the given differential equation, we get degree $= 2$.
7	(b)	Z = px + qy (i)
		At $(3,0)$, $Z = 3p(ii)$ and at $(1,1)$, $Z = p + q(iii)$
		From (ii) & (iii) , $3p = p + q \Rightarrow 2p = q$.
8	(a)	Given, $ABCD$ is a rhombus whose diagonals bisect each other. $ \overrightarrow{EA} = \overrightarrow{EC} $ and
		$ \overrightarrow{EB} = \overrightarrow{ED} $ but since they are opposite to each other so they are of opposite signs
		$\Rightarrow \overrightarrow{EA} = -\overrightarrow{EC}$ and $\overrightarrow{EB} = -\overrightarrow{ED}$.

		$ \begin{array}{c} \overrightarrow{A} \\ \overrightarrow{E} \\ \overrightarrow{E} \\ \overrightarrow{A} + \overrightarrow{EC} = \overrightarrow{O}(i) \text{ and } \overrightarrow{EB} + \overrightarrow{ED} = \overrightarrow{O}(ii) $ Adding (i) and (ii), we get $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{O}$.	
9	(b)	$f(x) = e^{\sin^2 x} \cos^3 (2n+1)x$	
		$f(\pi - x) = e^{\sin^2(\pi - x)}\cos^3(2n + 1)(\pi - x) = -e^{\sin^2 x}\cos^3(2n + 1)x = -f(x)$	
		$\therefore \int_0^{\pi} e^{\sin^2 x} \cos^3 (2n+1) x dx = 0, \text{ as if } f \text{ is integrable in } [0,2a] \text{ and}$	
		$f(2a-x)=-f(x) \text{ then } \int_0^{2a} f(x)dx=0.$	
10	(b)	Matrix A is a skew symmetric matrix of odd order. $ A = 0$.	
11	(c)	We observe, $(0,0)$ does not satisfy the inequality $x-y \ge 1$	
		So, the half plane represented by the above inequality will not contain origin	
		therefore, it will not contain the shaded feasible region.	
12	(b)	Vector component of \vec{a} along $\vec{b} = \left(\frac{\vec{a}.\vec{b}}{\left \vec{b}\right ^2}\right)\vec{b} = \frac{18}{25}\left(3\hat{j} + 4\hat{k}\right)$.	
13	(d)	$ adj(2A) = (2A) ^2 = (2^3 A)^2 = 2^6 A ^2 = 2^6 \times (-2)^2 = 2^8.$	
14	(d)	Method 1:	
		Let A, B, C be the respective events of solving the problem. Then, $P(A) = \frac{1}{2}, P(B) = \frac{1}{3}$	
		and $P(C) = \frac{1}{4}$. Here, A, B, C are independent events.	
		Problem is solved if at least one of them solves the problem.	
		Required probability is = $P(A \cup B \cup C) = 1 - P(\overline{A})P(\overline{B})P(\overline{C})$	
		$=1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=1-\frac{1}{4}=\frac{3}{4}.$	
		Method 2:	
		The problem will be solved if one or more of them can solve the problem. The probability is $P(\sqrt{PG}) = P(\sqrt{PG}) = P(P$	
		$P(A\overline{B}\overline{C}) + P(\overline{A}B\overline{C}) + P(\overline{A}BC) + P(AB\overline{C}) + P(ABC) + P(\overline{A}BC) + P(ABC)$	
		$= \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{3}{3} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} = \frac{3}{4}.$	

		Mathad 2.		
		Method 3: Let us think quantitively. Let us assume that there are 100 questions given to A. A		
		solves $\frac{1}{2} \times 100 = 50$ questions then remaining 50 questions is given to B and B solves		
		$50 \times \frac{1}{3} = 16.67$ questions. Remaining $50 \times \frac{2}{3}$ questions is given to C and C solves		
		$50 \times \frac{2}{3} \times \frac{1}{4} = 8.33 \text{ questions.}$		
		Therefore, number of questions solved is $50 + 16.67 + 8.33 = 75$.		
		So, required probability is $\frac{75}{100} = \frac{3}{4}$.		
15	(c)	Method 1:		
		$ydx - xdy = 0 \Rightarrow \frac{ydx - xdy}{y^2} = 0 \Rightarrow d\left(\frac{x}{y}\right) = 0 \Rightarrow x = \frac{1}{c}y \Rightarrow y = cx.$		
		Method 2:		
		$ydx - xdy = 0 \Rightarrow ydx = xdy \Rightarrow \frac{dy}{y} = \frac{dx}{x}$; on integrating $\int \frac{dy}{y} = \int \frac{dx}{x}$		
		$\log_e y = \log_e x + \log_e c $		
		since $x, y, c > 0$, we write $\log_e y = \log_e x + \log_e c \implies y = cx$.		
16	(d)	Dot product of two mutually perpendicular vectors is zero.		
		$\Rightarrow 2 \times 3 + (-1)\lambda + 2 \times 1 = 0 \Rightarrow \lambda = 8.$		
17	(c)	Method 1: $f(x) = x + x = \begin{cases} 2x, x \ge 0 \\ 0, x < 0 \end{cases}$ $Y = 2x, x \ge 0$ $X' = \begin{cases} y = 0, x < 0 \\ 0 \end{cases}$		
		There is a sharp corner at $x = 0$, so $f(x)$ is not differentiable at $x = 0$.		
		Method 2:		
		Lf'(0) = 0 & Rf'(0) = 2; so, the function is not differentiable at $x = 0$		
		For $x \ge 0$, $f(x) = 2x$ (linear function) & when $x < 0$, $f(x) = 0$ (constant function)		
		Hence $f(x)$ is differentiable when $x \in (-\infty,0) \cup (0,\infty)$.		
18	(d)	We know, $l^2 + m^2 + n^2 = 1 \Rightarrow \left(\frac{1}{c}\right)^2 + \left(\frac{1}{c}\right)^2 + \left(\frac{1}{c}\right)^2 = 1 \Rightarrow 3\left(\frac{1}{c}\right)^2 = 1 \Rightarrow c = \pm\sqrt{3}$.		

19	(a)	$\frac{d}{dx}(f(x)) = (x-1)^3(x-3)^2$
		Assertion: $f(x)$ has a minimum at $x = 1$ is true as
		$\frac{d}{dx}(f(x)) < 0, \forall x \in (1-h,1) \text{ and } \frac{d}{dx}(f(x)) > 0, \forall x \in (1,1+h); \text{ where,}$
		'h' is an infinitesimally small positive quantity, which is in accordance with
		the Reason statement.
20	(d)	Assertion is false. As element 4 has no image under f , so relation f is not a function.
		Reason is true. The given function $f:\{1,2,3\} \rightarrow \{x,y,z,p\}$ is one – one, as for each
		$a \in \{1,2,3\}$, there is different image in $\{x,y,z,p\}$ under f .

Section -B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

21	$\sin^{-1}\left(\cos\left(\frac{33\pi}{5}\right)\right) = \sin^{-1}\cos\left(6\pi + \frac{3\pi}{5}\right) = \sin^{-1}\cos\left(\frac{3\pi}{5}\right) = \frac{\pi}{2} - \cos^{-1}\cos\left(\frac{3\pi}{5}\right)$	1
	$=\frac{\pi}{2}-\frac{3\pi}{5}=-\frac{\pi}{10}.$	1
21 OR	$-1 \le (x^2 - 4) \le 1 \Rightarrow 3 \le x^2 \le 5 \Rightarrow \sqrt{3} \le x \le \sqrt{5}$	1
	$\Rightarrow x \in \left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right]. \text{ So, required domain is } \left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right].$	1
22	$f(x) = xe^x \Rightarrow f'(x) = e^x(x+1)$	1
	When $x \in [-1,\infty), (x+1) \ge 0$ & $e^x > 0 \Rightarrow f'(x) \ge 0$: $f(x)$ increases in this interval.	1
	or, we can write $f(x) = xe^x \Rightarrow f'(x) = e^x(x+1)$	$\frac{1}{2}$
	For $f(x)$ to be increasing, we have $f'(x) = e^x(x+1) \ge 0 \Rightarrow x \ge -1$ as $e^x > 0, \forall x \in \mathbb{R}$	1
	Hence, the required interval where $f(x)$ increases is $[-1,\infty)$.	$\frac{1}{2}$
23	Method 1: $f(x) = \frac{1}{4x^2 + 2x + 1}$,	
	Let $g(x) = 4x^2 + 2x + 1 = 4\left(x^2 + 2x\frac{1}{4} + \frac{1}{16}\right) + \frac{3}{4} = 4\left(x + \frac{1}{4}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$	$1\frac{1}{2}$
	$\therefore \text{ maximum value of } f(x) = \frac{4}{3}.$	$\frac{1}{2}$
	Method 2: $f(x) = \frac{1}{4x^2 + 2x + 1}$, let $g(x) = 4x^2 + 2x + 1$	

$\Rightarrow \frac{d}{dx}(g(x)) = g'(x) = 8x + 2$ and	$g'(x) = 0$ at $x = -\frac{1}{4}$ also $\frac{d^2}{dx^2}(g(x)) = g''(x) = 8 > 0$	1
$\Rightarrow g(x)$ is minimum when $x = -\frac{1}{4}$	so, $f(x)$ is maximum at $x = -\frac{1}{4}$	$\frac{1}{2}$
$\therefore \text{ maximum value of } f(x) = f\left(-\frac{1}{2}\right)$	$\left(\frac{1}{4}\right) = \frac{1}{4\left(-\frac{1}{4}\right)^2 + 2\left(-\frac{1}{4}\right) + 1} = \frac{4}{3}.$	1 2
Method 3: $f(x) = \frac{1}{4x^2 + 2x + 1}$		
On differentiating w.r.t x , we get	$f'(x) = \frac{-(8x+2)}{(4x^2+2x+1)^2}$ (i)	$\frac{1}{2}$
For maxima or minima, we put f'	$(x) = 0 \Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}.$	$\frac{1}{2}$
Again, differentiating equation (i) w	\mathbf{x} .r.t. \mathbf{x} ,we get	
$f''(x) = -\left\{ \frac{\left(4x^2 + 2x + 1\right)^2(8) - \left(8x^2 + 2x + 1\right)^2(8)}{\left(4x^2 + 2x + 1\right)^2(8)} \right\}$	$\left. \frac{(x+2)2 \times (4x^2 + 2x + 1)(8x + 2)}{(x+2)x+1)^4} \right\}$	1 2
At $x = -\frac{1}{4}$, $f''\left(-\frac{1}{4}\right) < 0$		
$f(x)$ is maximum at $x = -\frac{1}{4}$.		1
\therefore maximum value of $f(x)$ is $f(-$	$\left(\frac{1}{4}\right) = \frac{1}{4\left(-\frac{1}{4}\right)^2 + 2\left(-\frac{1}{4}\right) + 1} = \frac{4}{3}.$	$\frac{1}{2}$
Method 4: $f(x) = \frac{1}{4x^2 + 2x + 1}$		
On differentiating w.r.t x , we get	$f'(x) = \frac{-(8x+2)}{(4x^2+2x+1)^2}$ (i)	$\frac{1}{2}$
For maxima or minima, we put f'	$(x) = 0 \Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}$	$\frac{1}{2}$
When $x \in \left(-h - \frac{1}{4}, -\frac{1}{4}\right)$, where 'h'	is infinitesimally small positive quantity.	
$4x < -1 \Rightarrow 8x < -2 \Rightarrow 8x + 2 < 0 \Rightarrow -2 \Rightarrow $	$-(8x+2) > 0$ and $(4x^2 + 2x + 1)^2 > 0 \Rightarrow f'(x) > 0$	
and when $x \in \left(-\frac{1}{4}, -\frac{1}{4} + h\right), 4x > -\frac{1}{4}$	$1 \Rightarrow 8x > -2 \Rightarrow 8x + 2 > 0 \Rightarrow -(8x + 2) < 0$	
	1. This shows that $x = -\frac{1}{4}$ is the point of local maxima.	$\frac{1}{2}$
\therefore maximum value of $f(x)$ is $f(-$	$\left(\frac{1}{4}\right) = \frac{1}{4\left(-\frac{1}{4}\right)^2 + 2\left(-\frac{1}{4}\right) + 1} = \frac{4}{3}.$	1 2
I		

23 OR	For maxima and minima, $P'(x) = 0 \Rightarrow 42 - 2x = 0$	1_
	$\Rightarrow x = 21$ and $P''(x) = -2 < 0$	$\overline{2}$
	So, $P(x)$ is maximum at $x = 21$.	$\frac{1}{2}$
	The maximum value of $P(x) = 72 + (42 \times 21) - (21)^2 = 513$ i.e., the maximum profit is ₹ 513.	1
24	Let $f(x) = \log_e\left(\frac{2-x}{2+x}\right)$	
	We have, $f(-x) = \log_e\left(\frac{2+x}{2-x}\right) = -\log_e\left(\frac{2-x}{2+x}\right) = -f(x)$	1
	So, $f(x)$ is an odd function. $\therefore \int_{-1}^{1} \log_{e} \left(\frac{2-x}{2+x} \right) dx = 0$.	1
25	$f(x) = x^3 + x$, for all $x \in \mathbb{R}$.	
	$\frac{d}{dx}(f(x)) = f'(x) = 3x^2 + 1; \text{ for all } x \in \mathbb{R}, \ x^2 \ge 0 \Rightarrow f'(x) > 0$	$1\frac{1}{2}$
	Hence, no critical point exists.	$\frac{1}{2}$
	Section –C	
	[This section comprises of solution short answer type questions (SA) of 3 marks each]	
26	We have, $\frac{2x^2 + 3}{x^2(x^2 + 9)}$. Now, let $x^2 = t$	$\frac{1}{2}$
	So, $\frac{2t+3}{t(t+9)} = \frac{A}{t} + \frac{B}{t+9}$, we get $A = \frac{1}{3} & B = \frac{5}{3}$	1
	$\int \frac{2x^2 + 3}{x^2 \left(x^2 + 9\right)} dx = \frac{1}{3} \int \frac{dx}{x^2} + \frac{5}{3} \int \frac{dx}{x^2 + 9}$	$\frac{1}{2}$
	$= -\frac{1}{3x} + \frac{5}{9} \tan^{-1} \left(\frac{x}{3} \right) + c, \text{ where 'c' is an arbitrary constant of integration.}$	1
27	We have, (i) $\sum P(X_i) = 1 \Rightarrow k + 2k + 3k = 1 \Rightarrow k = \frac{1}{6}$.	1
	(ii) $P(X < 2) = P(X = 0) + P(X = 1) = k + 2k = 3k = 3 \times \frac{1}{6} = \frac{1}{2}$.	1
	(iii) $P(X>2)=0$.	1
28	Let $x^{\frac{3}{2}} = t \Rightarrow dt = \frac{3}{2}x^{\frac{1}{2}}dx$	$\frac{1}{2}$
	$\int \sqrt{\frac{x}{1-x^3}} dx = \frac{2}{3} \int \frac{dt}{\sqrt{1-t^2}}$	$\left \frac{1}{2} \right $
	, 5 VI-1	

	$=\frac{2}{3}\sin^{-1}(t)+c$	1
	$= \frac{2}{3}\sin^{-1}\left(x^{\frac{3}{2}}\right) + c$, where 'c' is an arbitrary constant of integration.	1
28 OR	Let $I = \int_0^{\frac{\pi}{4}} \log_e \left(1 + \tan x\right) dx$ (i)	
	$\Rightarrow I = \int_0^{\frac{\pi}{4}} \log_e \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) dx, \text{Using}, \int_0^a f(x) dx = \int_0^a f(a - x) dx$	1
	$\Rightarrow I = \int_0^{\frac{\pi}{4}} \log_e \left(1 + \frac{1 - \tan x}{1 + \tan x} \right) dx = \int_0^{\frac{\pi}{4}} \log_e \left(\frac{2}{1 + \tan x} \right) dx = \int_0^{\frac{\pi}{4}} \log_e 2 dx - I (\text{Using(i)})$	1
	$\Rightarrow 2I = \frac{\pi}{4}\log_e 2 \Rightarrow I = \frac{\pi}{8}\log_e 2.$	1
29	Method 1: $ye^{\frac{x}{y}}dx = \left(xe^{\frac{x}{y}} + y^2\right)dy \Rightarrow e^{\frac{x}{y}}(ydx - xdy) = y^2dy \Rightarrow e^{\frac{x}{y}}\left(\frac{ydx - xdy}{y^2}\right) = dy$	1
	$\Rightarrow e^{\frac{x}{y}} d\left(\frac{x}{y}\right) = dy$	1
	$\Rightarrow \int e^{\frac{x}{y}} d\left(\frac{x}{y}\right) = \int dy \Rightarrow e^{\frac{x}{y}} = y + c, \text{ where 'c' is an arbitrary constant of integration.}$	1
	Method 2: We have, $\frac{dx}{dy} = \frac{xe^{\frac{x}{y}} + y^2}{\frac{x}{y \cdot e^{\frac{x}{y}}}}$	
	$\Rightarrow \frac{dx}{dy} = \frac{x}{y} + \frac{y}{e^{\frac{x}{y}}} \dots \dots \dots \dots \dots (i)$	$\frac{1}{2}$
	Let $x = vy \Rightarrow \frac{dx}{dy} = v + y \cdot \frac{dv}{dy}$;	1 2
	So equation (i) becomes $v + y \frac{dv}{dy} = v + \frac{y}{e^v}$	$\frac{1}{2}$
	$\Rightarrow y \frac{dv}{dy} = \frac{y}{e^v}$	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \end{array}$
	$\Rightarrow e^{v} dv = dy$	
	On integrating we get, $\int e^{v} dv = \int dy \Rightarrow e^{v} = y + c \Rightarrow e^{x/y} = y + c$	$\frac{1}{2}$
	where 'c' is an arbitrary constant of integration.	<i>L</i>

20 OP	TI : D:00 (:1 (: :	
29 OR	The given Differential equation is	
	$\left(\cos^2 x\right)\frac{dy}{dx} + y = \tan x$	
	Dividing both the sides by $\cos^2 x$, we get	
	$\frac{dy}{dx} + \frac{y}{\cos^2 x} = \frac{\tan x}{\cos^2 x}$	
	$\frac{dy}{dx} + y(\sec^2 x) = \tan x(\sec^2 x)(i)$	$\frac{1}{2}$
	Comparing with $\frac{dy}{dx} + Py = Q$	
	$P = \sec^2 x , Q = \tan x . \sec^2 x$	
	The Integrating factor is, $IF = e^{\int P dx} = e^{\int \sec^2 x dx} = e^{\tan x}$	$\frac{1}{2}$
	On multiplying the equation (i) by $e^{\tan x}$, we get	
	$\frac{d}{dx}(y.e^{\tan x}) = e^{\tan x} \tan x \left(\sec^2 x\right) \Rightarrow d\left(y.e^{\tan x}\right) = e^{\tan x} \tan x \left(\sec^2 x\right) dx$	1
	On integrating we get, $y \cdot e^{\tan x} = \int t \cdot e^t dt + c_1$; where, $t = \tan x$ so that $dt = \sec^2 x dx$	
	$= te^t - e^t + c = (\tan x)e^{\tan x} - e^{\tan x} + c$	
	$\therefore y = \tan x - 1 + c.(e^{-\tan x}), \text{ where '}c_1'\&'c' \text{ are arbitrary constants of integration.}$	1
30	The feasible region determined by the	
	constraints, $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x, y \ge 0$, is given below.	
	$\mathbf{x} = 0$ D (0,200)	
	A (0,50) $A = \begin{bmatrix} 2x & 100 \\ 0 & 2x \\ 0 $	$1\frac{1}{2}$
	y = 0	
	A (0, 50), B (20, 40), C (50, 100) and D (0, 200) are the corner points of the feasible	

region.

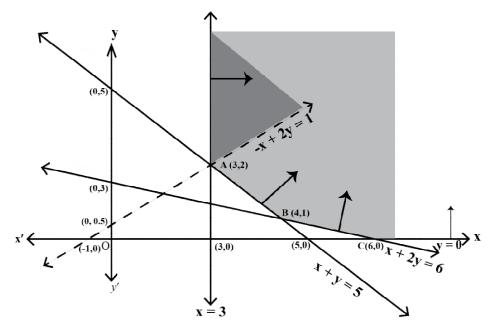
The values of Z at these corner points are given below.

Corner point	Corresponding value of	
	Z = x + 2y	
A (0, 50)	100	Minimum
B (20, 40)	100	Minimum
C (50, 100)	250	
D (0, 200)	400	

The minimum value of Z is 100 at all the points on the line segment joining the points (0,50)and (20,40).

30 OR

The feasible region determined by the constraints, $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$. is given below.



Here, it can be seen that the feasible region is unbounded.

The values of Z at corner points A(3, 2), B(4, 1) and C(6, 0) are given below.

Corner point	Corresponding value of $Z = -x + 2y$
A (3, 2)	1 (may or may not be the maximum value)
B (4, 1)	-2
C(6,0)	-6

Since the feasible region is unbounded, Z = 1 may or may not be the maximum value.

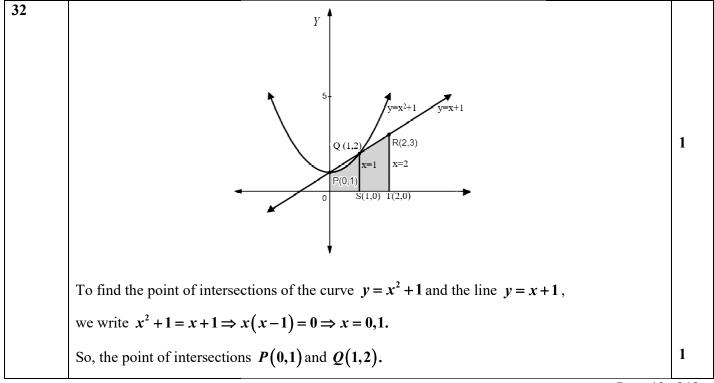
Page 9 of 18

1

1 $\overline{2}$

	Now, we draw the graph of the inequality, $-x + 2y > 1$, and we check whether the resulting	
	open half-plane has any point/s, in common with the feasible region or not.	
	Here, the resulting open half plane has points in common with the feasible region.	1
	Hence, $Z = 1$ is not the maximum value. We conclude, Z has no maximum value.	$\frac{1}{2}$
31	$\frac{y}{x} = \log_e \left(\frac{x}{a + bx} \right) = \log_e x - \log_e \left(a + bx \right)$	1 2
	On differentiating with respect to x , we get	
	$\Rightarrow \frac{x\frac{dy}{dx} - y}{x^2} = \frac{1}{x} - \frac{1}{a + bx} \frac{d}{dx} (a + bx) = \frac{1}{x} - \frac{b}{a + bx}$	1
	$\Rightarrow x \frac{dy}{dx} - y = x^2 \left(\frac{1}{x} - \frac{b}{a + bx} \right) = \frac{ax}{a + bx}$	$\frac{1}{2}$
	On differentiating again with respect to x , we get	
	$\Rightarrow x \frac{d^2 y}{dx^2} + \frac{dy}{dx} - \frac{dy}{dx} = \frac{(a + bx)a - ax(b)}{(a + bx)^2}$	$\frac{1}{2}$
	$\Rightarrow x \frac{d^2 y}{dx^2} = \left(\frac{a}{a + bx}\right)^2.$	$\frac{1}{2}$

<u>Section –D</u>
[This section comprises of solution of long answer type questions (LA) of 5 marks each]



	Area of the shaded region <i>OPQRTSO</i> = (Area of the region <i>OSQPO</i> + Area of the region	
	STRQS)	
	$= \int_0^1 (x^2 + 1) dx + \int_1^2 (x + 1) dx$	1
	$= \left[\frac{x^3}{3} + x\right]_0^1 + \left[\frac{x^2}{2} + x\right]_1^2$	$\frac{1}{2}$
	$= \left[\left(\frac{1}{3} + 1 \right) - 0 \right] + \left[\left(2 + 2 \right) - \left(\frac{1}{2} + 1 \right) \right]$	$\frac{1}{2}$
	$= \frac{23}{6}$ Hence the required area is $\frac{23}{6}$ sq units.	1
33	Let (a,b) be an arbitrary element of $\mathbb{N} \times \mathbb{N}$. Then, $(a,b) \in \mathbb{N} \times \mathbb{N}$ and $a,b \in \mathbb{N}$	
	We have, $ab = ba$; (As $a,b \in \mathbb{N}$ and multiplication is commutative on \mathbb{N})	
	\Rightarrow $(a,b)R(a,b)$, according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$	
	Thus $(a,b)R(a,b)$, $\forall (a,b) \in \mathbb{N} \times \mathbb{N}$.	
	So, \mathbf{R} is reflexive relation on $\mathbb{N} \times \mathbb{N}$.	1
	Let $(a,b),(c,d)$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that $(a,b)R(c,d)$.	
	Then, $(a,b)R(c,d) \Rightarrow ad = bc \Rightarrow bc = ad;$ (changing LHS and RHS)	
	$\Rightarrow cb = da;$ (As $a,b,c,d \in \mathbb{N}$ and multiplication is commutative on \mathbb{N})	
	\Rightarrow $(c,d)R(a,b)$; according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$	
	Thus $(a,b)R(c,d) \Rightarrow (c,d)R(a,b)$	1
	So, \mathbf{R} is symmetric relation on $\mathbb{N} \times \mathbb{N}$.	1
	Let $(a,b),(c,d),(e,f)$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that	
	(a,b)R(c,d) and $(c,d)R(e,f)$.	
	Then ${(a,b)R(c,d) \Rightarrow ad = bc \choose (c,d)R(e,f) \Rightarrow cf = de}$ \Rightarrow $(ad)(cf) = (bc)(de) \Rightarrow af = be$	
	\Rightarrow $(a,b)R(e,f)$; (according to the definition of the relation R on $\mathbb{N} \times \mathbb{N}$)	
	Thus $(a,b)R(c,d)$ and $(c,d)R(e,f) \Rightarrow (a,b)R(e,f)$	
	So, R is transitive relation on $\mathbb{N} \times \mathbb{N}$.	1
	As the relation R is reflexive, symmetric and transitive so, it is equivalence relation on $\mathbb{N} \times \mathbb{N}$.	$\frac{1}{2}$
	$[(2,6)] = \{(x,y) \in \mathbb{N} \times \mathbb{N} : (x,y)R(2,6)\}$	$\begin{array}{ c c }\hline 1\\\hline 2\\\hline 1\\\hline 2\end{array}$
	$= \{(x,y) \in \mathbb{N} \times \mathbb{N} : 3x = y\}$	
	$= \{(x,3x): x \in \mathbb{N}\} = \{(1,3),(2,6),(3,9),\dots\}$	1

33 OR

We have,
$$f(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x \ge 0 \\ \frac{x}{1-x}, & \text{if } x < 0 \end{cases}$$

Now, we consider the following cases

Case 1: when $x \ge 0$, we have $f(x) = \frac{x}{1+x}$

Injectivity: let $x, y \in \mathbb{R}^+ \cup \{0\}$ such that f(x) = f(y), then

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y} \Rightarrow x + xy = y + xy \Rightarrow x = y$$

So, f is injective function.

Surjectivity: when $x \ge 0$, we have $f(x) = \frac{x}{1+x} \ge 0$ and $f(x) = 1 - \frac{1}{1+x} < 1$, as $x \ge 0$

Let $y \in [0,1)$, thus for each $y \in [0,1)$ there exists $x = \frac{y}{1-y} \ge 0$ such that $f(x) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = y$.

So, f is onto function on $[0,\infty)$ to [0,1).

Case 2: when x < 0, we have $f(x) = \frac{x}{1-x}$

Injectivity: Let $x, y \in \mathbb{R}^-$ i.e., x, y < 0, such that f(x) = f(y), then

$$\Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - xy \Rightarrow x = y$$

So, f is injective function.

Surjectivity: x < 0, we have $f(x) = \frac{x}{1-x} < 0$ also, $f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x} > -1$ -1 < f(x) < 0.

Let $y \in (-1,0)$ be an arbitrary real number and there exists $x = \frac{y}{1+y} < 0$ such that,

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = y.$$

So, for $y \in (-1,0)$, there exists $x = \frac{y}{1+y} < 0$ such that f(x) = y.

Hence, f is onto function on $(-\infty, 0)$ to (-1, 0).

Case 3:

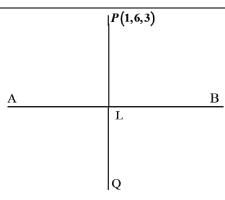
(Injectivity): Let x > 0 & y < 0 such that $f(x) = f(y) \Rightarrow \frac{x}{1+x} = \frac{y}{1-y}$

1

1

1

	$\Rightarrow x - xy = y + xy \Rightarrow x - y = 2xy$, here <i>LHS</i> > 0 but <i>RHS</i> < 0, which is inadmissible.	
	Hence, $f(x) \neq f(y)$ when $x \neq y$.	
	Hence f is one-one and onto function.	1
34	The given system of equations can be written in the form $AX = B$,	
	Where, $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} 1/x \\ 1/y \\ 1/z \end{bmatrix} $ and $B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$	
	Now, $ A = \begin{vmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{vmatrix} = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36)$	$\frac{1}{2}$
	$= 2(75) - 3(-110) + 10(72) = 150 + 330 + 720 = 1200 \neq 0 \therefore A^{-1} \text{ exists.}$	$\frac{1}{2}$
	$\therefore adj A = \begin{bmatrix} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{bmatrix}^{T} = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$	$1\frac{1}{2}$
	Hence, $A^{-1} = \frac{1}{ A } (adjA) = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$	1 2
	As, $AX = B \Rightarrow X = A^{-1}B \Rightarrow \begin{bmatrix} \frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z} \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$	1/2
	$= \frac{1}{1200} \begin{bmatrix} 300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 + 0 - 48 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z} \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$	$\frac{1}{2}$
	Thus, $\frac{1}{x} = \frac{1}{2}, \frac{1}{y} = \frac{1}{3}, \frac{1}{z} = \frac{1}{5}$ Hence, $x = 2, y = 3, z = 5$.	1
35	Let $P(1,6,3)$ be the given point, and let 'L' be the foot of the perpendicular from 'P' to the given line AB (as shown in the figure below). The coordinates of a general point on the given line are given by	



$$\frac{x-0}{1} = \frac{y-1}{2} = \frac{z-2}{3} = \lambda; \lambda \text{ is a scalar, i.e., } x = \lambda, y = 2\lambda + 1 \text{ and } z = 3\lambda + 2$$

Let the coordinates of L be $(\lambda, 2\lambda + 1, 3\lambda + 2)$.

So, direction ratios of **PL** are $\lambda - 1, 2\lambda + 1 - 6$ and $3\lambda + 2 - 3$, *i.e.* $\lambda - 1, 2\lambda - 5$ and $3\lambda - 1$.

Direction ratios of the given line are 1,2 and 3, which is perpendicular to PL.

Therefore,
$$(\lambda - 1)1 + (2\lambda - 5)2 + (3\lambda - 1)3 = 0 \Rightarrow 14\lambda - 14 = 0 \Rightarrow \lambda = 1$$

So, coordinates of L are (1,3,5).

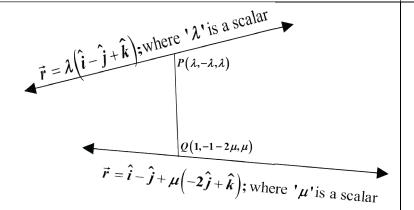
Let $Q(x_1, y_1, z_1)$ be the image of P(1,6,3) in the given line. Then, L is the mid-point of PQ.

Therefore, $\frac{(x_1+1)}{2} = 1$, $\frac{(y_1+6)}{2} = 3$ and $\frac{(z_1+3)}{2} = 5 \Rightarrow x_1 = 1$, $y_1 = 0$ and $z_1 = 7$

Hence, the image of P(1,6,3) in the given line is (1,0,7).

Now, the distance of the point (1,0,7) from the y – axis is $\sqrt{1^2+7^2} = \sqrt{50}$ units.

35 OR | Method 1:



Given that equation of lines are

$$\vec{r} = \lambda (\hat{i} - \hat{j} + \hat{k})$$
.....(i) and $\vec{r} = \hat{i} - \hat{j} + \mu (-2\hat{j} + \hat{k})$(ii)

The given lines are non-parallel lines as vectors $\hat{i} - \hat{j} + \hat{k}$ and $-2\hat{j} + \hat{k}$ are not parallel. There is a unique line segment PQ(P) lying on line (i) and Q on the other line (ii), which is at right angles to both the lines. PQ is the shortest distance between the lines. Hence, the shortest possible

 $\overline{2}$

1

1

1

1

Let the position vector of the point P lying on the line $\vec{r} = \lambda (\hat{i} - \hat{j} + \hat{k})$ where ' λ ' is a scalar, is

 $\lambda(\hat{i}-\hat{j}+\hat{k})$, for some λ and the position vector of the point Q lying on the line

$$\vec{r} = \hat{i} - \hat{j} + \mu \left(-2\hat{j} + \hat{k}\right)$$
; where ' μ ' is a scalar, is $\hat{i} + \left(-1 - 2\mu\right)\hat{j} + \left(\mu\right)\hat{k}$, for some μ .

Now, the vector $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (1 - \lambda)\hat{i} + (-1 - 2\mu + \lambda)\hat{j} + (\mu - \lambda)\hat{k}$; (where 'O' is the

origin), is perpendicular to both the lines, so the vector \overrightarrow{PQ} is perpendicular to both the vectors $\hat{i} - \hat{i} + \hat{k}$ and $-2\hat{i} + \hat{k}$.

$$\Rightarrow (1-\lambda).1 + (-1-2\mu+\lambda).(-1) + (\mu-\lambda).1 = 0 \&$$

$$\Rightarrow (1-\lambda).0 + (-1-2\mu+\lambda).(-2) + (\mu-\lambda).1 = 0$$

$$\Rightarrow$$
 2+3 μ -3 λ = 0 & 2+5 μ -3 λ = 0

On solving the above equations, we get $\lambda = \frac{2}{3}$ and $\mu = 0$

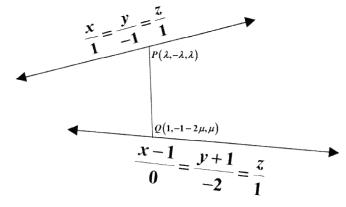
So, the position vector of the points, at which they should be so that the distance between them is

the shortest, are
$$\frac{2}{3}(\hat{i}-\hat{j}+\hat{k})$$
 and $\hat{i}-\hat{j}$.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \frac{1}{3}\hat{i} - \frac{1}{3}\hat{j} - \frac{2}{3}\hat{k} \text{ and } \left| \overrightarrow{PQ} \right| = \sqrt{\left(\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2} = \sqrt{\frac{2}{3}}$$

The shortest distance = $\sqrt{\frac{2}{3}}$ units.

Method 2:



The equation of two given straight lines in the Cartesian form are $\frac{x}{1} = \frac{y}{-1} = \frac{z}{1}$(i) and

$$\frac{x-1}{0} = \frac{y+1}{-2} = \frac{z}{1}$$
.....(ii)

The lines are not parallel as direction ratios are not proportional. Let P be a point on straight line

(i) and Q be a point on straight line (ii) such that line PQ is perpendicular to both of the lines.

Let the coordinates of P be $(\lambda, -\lambda, \lambda)$ and that of Q be $(1, -2\mu - 1, \mu)$; where ' λ ' and ' μ ' are

Page 15 of 18

2

1

1

scalars.	
Then the direction ratios of the line PQ are $(\lambda-1,-\lambda+2\mu+1,\lambda-\mu)$	
Since PQ is perpendicular to straight line (i) , we have,	
$(\lambda - 1).1 + (-\lambda + 2\mu + 1).(-1) + (\lambda - \mu).1 = 0$	
$\Rightarrow 3\lambda - 3\mu = 2(iii)$	
Since, PQ is perpendicular to straight line (\ddot{u}) , we have	
$0.(\lambda - 1) + (-\lambda + 2\mu + 1).(-2) + (\lambda - \mu).1 = 0 \Rightarrow 3\lambda - 5\mu = 2(i\nu)$	
Solving (iii) and (iv), we get $\mu = 0, \lambda = \frac{2}{3}$	
Therfore , the Coordinates of P are $\left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}\right)$ and that of Q are $\left(1, -1, 0\right)$	
So, the required shortest distance is $\sqrt{\left(1-\frac{2}{3}\right)^2+\left(-1+\frac{2}{3}\right)^2+\left(0-\frac{2}{3}\right)^2}=\sqrt{\frac{2}{3}}$ units.	

Section -E

This section comprises solution of 3 case-study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

Let E_1, E_2, E_3 be the events that James, Sophia and Oliver processed the form, which are clearly 36 pairwise mutually exclusive and exhaustive set of events.

Then
$$P(E_1) = \frac{50}{100} = \frac{5}{10}$$
, $P(E_2) = \frac{20}{100} = \frac{1}{5}$ and $P(E_3) = \frac{30}{100} = \frac{3}{10}$.

Also, let E be the event of committing an error.

We have,
$$P(E \mid E_1) = 0.06$$
, $P(E \mid E_2) = 0.04$, $P(E \mid E_3) = 0.03$.

(i) The probability that Sophia processed the form and committed an error is given by

$$P(E \cap E_2) = P(E_2).P(E \mid E_2) = \frac{1}{5} \times 0.04 = 0.008.$$

(ii) The total probability of committing an error in processing the form is given by

$$P(E) = P(E_1).P(E \mid E_1) + P(E_2).P(E \mid E_2) + P(E_3).P(E \mid E_3)$$

$$P(E) = \frac{50}{100} \times 0.06 + \frac{20}{100} \times 0.04 + \frac{30}{100} \times 0.03 = 0.047.$$

Page 16 of 18

1

$$P(E_1 | E) = \frac{P(E | E_1) \times P(E_1)}{P(E | E_1) \cdot P(E_1) + P(E | E_2) \cdot P(E_2) + P(E | E_3) \cdot P(E_3)}$$

$$=\frac{0.06\times\frac{50}{100}}{0.06\times\frac{50}{100}+0.04\times\frac{20}{100}+0.03\times\frac{30}{100}}=\frac{30}{47}$$

Therefore, the required probability that the form is **not** processed by James given that form has an

error =
$$P(\overline{E_1} | E) = 1 - P(E_1 | E) = 1 - \frac{30}{47} = \frac{17}{47}$$
.

(iii) **OR**
$$\sum_{i=1}^{3} P(E_{i} | E) = P(E_{1} | E) + P(E_{2} | E) + P(E_{3} | E) = 1$$

Since, sum of the posterior probabilities is 1.

(We have,
$$\sum_{i=1}^{3} P(E_{i}|E) = P(E_{1}|E) + P(E_{2}|E) + P(E_{3}|E)$$

$$= \frac{P(E \cap E_{1}) + P(E \cap E_{2}) + P(E \cap E_{3})}{P(E)}$$

$$= \frac{P((E \cap E_{1}) \cup (E \cap E_{2}) \cup (E \cap E_{3}))}{P(E)} \text{ as } E_{i} \& E_{j}; i \neq j, \text{ are mutually exclusive events}$$

$$= \frac{P(E \cap (E_{1} \cup E_{2} \cup E_{3}))}{P(E)} = \frac{P(E \cap S)}{P(E)} = \frac{P(E)}{P(E)} = 1; 'S' \text{ being the sample space}$$

We have,

$$\left| \overrightarrow{F_1} \right| = \sqrt{6^2 + 0^2} = 6 kN, \left| \overrightarrow{F_2} \right| = \sqrt{\left(-4 \right)^2 + 4^2} = \sqrt{32} = 4\sqrt{2} kN, \left| \overrightarrow{F_3} \right| = \sqrt{\left(-3 \right)^2 + \left(-3 \right)^2} = \sqrt{18} = 3\sqrt{2} kN.$$

- (i) Magnitude of force of Team A = 6kN.
- (ii) Since, 6kN is largest so, team A will win the game.

(iii)
$$\vec{F} = \vec{F_1} + \vec{F_2} + \vec{F_3} = 6\hat{i} + 0\hat{j} - 4\hat{i} + 4\hat{j} - 3\hat{i} - 3\hat{j} = -\hat{i} + \hat{j}$$

OR

$$\vec{F} = -\hat{i} + \hat{j}$$

 $\therefore \theta = \pi - \tan^{-1} \left(\frac{1}{1} \right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}; \text{ where '}\theta' \text{ is the angle made by the resultant force with the}$

+ve direction of the x-axis.

1

1

1

1

1

1

1

1

1

$$y = 4x - \frac{1}{2}x^2$$

(i) The rate of growth of the plant with respect to the number of days exposed to sunlight

is given by
$$\frac{dy}{dx} = 4 - x$$
.

2

(ii) Let rate of growth be represented by the function $g(x) = \frac{dy}{dx}$.

Now,
$$g'(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = -1 < 0$$

$$\Rightarrow g(x)$$
 decreases.

So the rate of growth of the plant decreases for the first three days.

Height of the plant after 2 days is $y = 4 \times 2 - \frac{1}{2}(2)^2 = 6 cm$.

1