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Figure 1 Dangling bonds from the (111) surface of a co~~alently honded diamnnd c ~ ~ h i c  structure. 
(Aftcr &I. Pruiton, Surfocephysics, Clarendon, 1975.) 



Reconstruction and Relaxation 

The surface of a crystalline solid in vacuum is generally defined as the 
few, approximately three, outermost atomic layers of the solid that differ sig- 
nificantly from the bulk. The surface may be entirely clean or it may have for- 
cign atoms deposited on it or incorporated in it. Thc bulk of the crystal is 
called the substrate. 

If the surface is clean the top layer may be either reconstructed or, 
sometimes, unreconstructed. In unrcconstn~cted surfaces the atomic arrange- 
ment is in registry with that of the hidk except for an interlayer spacing change 
(called multilayer rclaxation) at the top surface. 

The shrinking of the interlayer distance between the first and second layer 
of atoms with respect to subsequent layers in the bulk is a rather dominant 
phenomenon. The surface may be thought of as an intermediate between a di- 
atomic molecule and the bulk structure. Because the interatomic distances in 
diatomic molecules are much smaller than in the hulk, there is a rationale for 
the surface relaxation. This may be contrasted with reconstruction where the 
relaxation of atoms ylelds new surface primitive cells. In relaxation the atoms 
maintain their structure in the surface plane as it was (according to the projec- 
tion of the bulk cell on the surface); only their distance from the bulk changes. 

Sometimes in metals, but most often in nonmetals, the atoms in the 
snrface layer form superstructures in which the atoms in the layer are not in 
registry with the atorns in correspo~iding layers in the substrate. This is surface 
reconstruction; it car1 be a consequence of a rearrangement of broken covalent 
or ionic bonds at the surface. Under sllch conditions the atoms at the surface 
burich into rows with alternately larger and smaller spacings than in the bulk. 
That is, for some crystals held together by valence bonds, creation of a surface 
would leave unsaturated bonds dangling into space (Fig. 1). The energy may 
then he lowered if neighboring atoms approach each other and form bonds 
with their otherwise unused valence electrons. Atomic displacements can be 
as large as 0.5 A. 

Reconstruction does not necessarily require formation of a superstruc- 
ture. For example, on GaAs (110) surfaces a rotation of the Ga-As bond leaves 
the point group intact. The driving force is electron transfer from Ga to As, 
which fills the dangling bonds on As and depletes them on Ga. 

Surfaces of planes nominally of high indices may be built up of low index 
planes separated by steps one (or two) atoms in height. Such terrace-step 
arritngeme~~ts are iniportant in evaporation and desorption because the attach- 
ment energy of atoms is often low at the steps and at kinks in the steps. The 
chemical activity of such sites may be high. The presence of periodic arrays of 



steps may he detected by double and triple beams of diffraction in LEED (see 
below) experiments. 

SURFACE CRYSTALLOGRAPHY 

The surface structure is in general periodic only in two dimensions. The 
surfacc structure can be the structure of foreign rriaterial deposited on the 
substrate or it can bc the selvage of the pure substrate. I11 Chapter 1 we used 
the term Bravais lattice for the array of equivalent points in two or in three di- 
mensions, that is, for diperiodic or triperiodic striicturrs. In thc physics of sur- 
faces it is common to speak of a two-dimensional lattice. Flirther, the area 
unit niay be called a mesh. 

We showed in Fig. 1.7 four of the five nets possible for a diperiodic struc- 
ture; the fifth net is the general oblique net, with no special syrn~netry relation 
between thc mcsh basis vectors a,, a,. Thus the five distinct nets are the 
oblique, square, hexagonal, rectangular, and ccntcrcd rectangular. 

The substrate net parallel to the surface is ilsed as thc rcfcrcnce net for 
the description of the surface. For example, if the surface of a ciihic snhstratc 
crystal is the (111) surface, the substrate net is hexagonal (Fig. 1.7b), and the 
surface net is referred to these axes. 

Thc vectors cl,  c2 that define the mesh of the surface structure may be ex- 
pressed in terms of the reference net al ,  a2 by a matrix operation P: 

Provided that the included a~lgles of the two meshes are equal, the short- 
hand notation due to E. A. Wood may be used. In this notation, which is 
widcly used, the relation 01 the mesh cl,  c2 to the reference mesh a,, a2 is ex- 
pressed as 

in terms of the lengths of the mesh basis vectors and the angle a of relative ro- 
tation R of the two meshes. If a = 0, the angle is omitted. Examples of the 
Wood notation are given in Fig. 2. 

The reciprocal net vectors of the surface mcsh may be written as ci, c;, 
defined by 

Here the 27r (or 1) i~ldicates that two corlver~tior~s are in use. The definitions 
(3) used in Fig. 3 may be compared with the definitions in Chapter 2 of the 
reciprocal lattice vcctors of a triperiodic lattice. 



17 Surface a n d  Interface Physics 491 

fcc(ll l) ,  hcp(0001) 

(a! 

Figure 2 Surface nets of adsorhed atoms. The circles reprcsent atoms in the top layer of the sub- 
strate. In (a) the designation fcc(ll1) means the (111) face of an fcc stmcturc. This Lace deter- 
mines a r e f ~ r m c e  net. The liues rcprcsent ordered overlayers, with adatoms at the intersections of 
hvo lines. The intersection points represent diperiodic ncts (lattices in hvo dimensions). The des- 
igration p(l X 1) in (a) is a primitive mesh unit for which the basis is identical with the basis of 
the reference net. In (b) the c(2 X 2) mesh unit is a centered mesh with basis vectors twice as long 
as those of the reference net. Atomic adsorption on nwtals takes place most often into those sur- 
face sites (hollow sites) that maximize the number of nearest-neighhor aton~s on thc substrate. 
(After Van Hove.) 

The reciprocal net points of a diperiodic net may be thought of-when we 
are in three dimensions-as rods. The rods are infinite in extent and normal to 
the surface plane, where they pass through the reciprocal net points. It may be 
helpful to think of the rods as gcncrated by a triperiodic lattice which is ex- 
panded without limit along one of its axes. Then the reciprocal lattice points 
along this axis are moved closer together and in the limit form a rod. 

The ~isefulness of the rod concept comes out with the Ewald sphere 
construction explained in Fig. 2.8. Diffraction occurs everywhere the Ewald 
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Figure 4 Ewald sphere construction for diffraction of incident wave k by a square net, when k is 
parallel to one axis of the mesh. The back scattered beams in the plane of the paper are k;, kb, kb, 
k';. Diffracted beams out of the plane of the paper will also occur. The vertical lines are the rods of 
the reciprocal net. 

sphere intercepts a reciprocal net rod. Each diffracted beam is labelled with 
the indices hk of the reciprocal net vector 

g=hc ;  + kc; (4) 

forming the beam. 
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Figure 5 LEED patterns frolri a Pt(l l1i  crystal surface for incident electron energies of 51 and 
63.5 eV The diffraction angle is greater at the lower energy (After G. A. Somorjai, Chemistq in 
two dimensions: sulface.~, Cornell, 1981.) 

Reciprocal netrods 

Screen 

Nearly flat ~ w a l d  sphere 

(a) . - 
Crystal 

(b) 
Figure 6 The RHEED method. In (a) the high-energy incident electron beam at a glancing 
angle to the crystal surface is associated with an Ewald sphere of large radius, so large that the snr- 
face is nearly flat in relation to the separation between adjacent rods of the reciprocal net. The 
formation of diffraction lines on a plane screen is shown in (b). (After Prutton.) 

Low energy electron diffraction (LEED) is illustrated by Fig. 4. The 
electron energy is typically in the range 10-1000 eV. With this arrangement 
Davisson and Germer in 1927 discovered the wave nature of the electron. An 
experimental pattern is shown in Fig. 5. 

Reflection High-Energy Electron Diffraction. In the RHEED method a 
beam of high-energy electrons is directed upon a crystal surface at grazing 



incidence. By adjustment of the angle of incidence one can arrange the normal 
component of the incoming wavevector to be very small, which will minimize 
the penetration of the electron beam and enhance the role of the crystal 
surface. 

The radius k of the Ewald sphere for 100 keV electrons will be -lo3 k', 
which is much longer than thc shortest reciprocal lattice vector 2 d a  = 1 kl. 
It follows that the Ewald sphere will be nearly a flat surface in the central scat- 
tering region. The intercept of the rods of the reciprocal net with the nearly 
flat sphere will be nearly a line when the beam is directed at grazing inci- 
dence. The experimental arrangement is shown in Fig. 6. 

SURFACE ELECTRONIC STRUCTURE 

Work Function 

The work function W of the uniform surface of a metal is defined as the 
diffcrcncc in potential energy of an electron between the vacuum level and 
the Fermi level. The vacniim level is the energy of an clcctron at rest at a point 
sufficiently far outside the surface so that the electrostatic image force on the 
electron may be neglected-more than 100 A from the surface. The Fermi 
level is the electrochemical potential of the electrons in the metal. 

Typical values of electron work functions are given in Table 1. The orien- 
tation of the exposed crystal face affects the value of the work function 

Table 1 Electron work functionsa 

(Values obtained by photoemission, except tungsten obtained by field emission.) 
Element Surfacc ulane Work function, in eV 

"After H. D. IIagstrum. 
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because the strength of the electric double layer at the surface depends on 
the concentration of surface positivc ion cores. The double layer exists 
because the surface ions are in an asymmetrical environment, with vacuum 
(or an adsorbed foreign atom layer) on one side and the substrate on the 
other side. 

The work fnnction is equal to the threshold energy for photoelectric emis- 
sion at absolute zero. If liw is the energy o l  an incident photon, then the 
Einstein equation is fiw = W + T, where T is thc kinetic energy of the emitted 
electron and W is the work [unction. 

Themionic Emission 

The ratc of emission of thermionic electrons depends exponentially on the 
work fiinction. The derivation follows. 

We first find the electron concentration in vacuum in equilibrium 
with electrons in a metal at temperature ?(=k,T) and chemical potential p. 
We treat the electrons in the vacuum as an ideal gas, so that their chemical 
potential is 

by TP, Chapter 5. Here 

ny = 2 ( r n ~ / 2 d i ' ) ~ ~  , 

for particles of spin 1/2. 
Now fiat - p = \q by tlie definition of the work function W. Thus, 

from (5 ) ,  

n = ny exp( -W/T) . (7) 

The flux of electrons that leaves the metal surface when all electrons are 
drawn off is equal to the flux incident on the sinface from outside: 

by TP(14.95) and (14.121). Here E is the mean speed of the electrons in the 
vacuum. The electric charge flux is el,, or 

Je = (r2m/2n2fi3)exP(W/r) . (9) 

This is called the Richardson-Dushman equation for thermionic emission. 

Surface States 

At the free surface of a semiconductor there often exist surface-bound 
electronic states with energies in the forbidden gap between the valence and 
conduction bands of the bulk semiconductor. We can obtain a good impression 
of the nature of tlie surface states hy considering the wave functions in the 



weak binding or two-component approximation of Chapter 7, in one dimen- 
sion. (The wave functions in three dimensions will have extra factors 
exp[i(k,y + k,z ) ]  in the y, z plane of the surface.) 

If the vacuum lies in the region x > 0, the potential energy of an electron 
in this region can be set equal to zero: 

In the crystal the potential cnrrgy has the usual periodic form: 

In onc dimension G = n d a ,  where n is any integer, including zero. 
In the v a c ~ l ~ ~ r n  the wavc fi~nction of a bound surface state must fall off 

exponentially: 

By the wave equation thc cncrgy of the state referred to the vacuum level is 

Within the crystal the two-component wave function of a bound surface 
state will have the form, for x < 0, 

by analogy with (7.49), but with the addition of the factor exp(yx) wl~ic l~  senres 
to bind the electron to the surface. 

M7c now come to an important consideration that restricts the allowed val- 
ues of the wavevector k. If thc statc is bound, there can be no current flow in 
the x direction; normal to the snrface. This condition is assnred in q11ant11m 
mechanics if the wave function can be written as a real function of x, a condi- 
tion already satisfied by the exterior wave function (12). But (14) can be a real 
function or~ly if k = $G, so that 

This is real providcd c* (~G)  = c(-;G). Thus k, for a surlace state does not 
have a contin~l~~rn of values, hilt is limitcd to discrctc states associated with 
Brillouin zone boundaries. 

The state (15) is damped exponentially in the crystal. The constants s, q 
are related by the condition that $ and d$/dx are continuous at x = 0. The 
binding energy E is deternrined by solving the two-corrlponent secular equa- 
tion analogous to (7.46). The plot of Fig. 7.12 is helpful in this connection. 
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Tangential Surface Transport 

We have seen that there may exist surface-hound electronic states with en- 
ergies in the forbidden gap between the valence and conduction bands of the 
substrate clystal. Thcsc states may be occupied or vacant; their existencc mrist 
affect the statistical mechanics of the problem. This means that thc states mod- 
ify the local eqtiilihrium concentration of electrons and holes, as expressed as a 
shift of the chemical potential relative to the band edgcs. Recaiise the chemical 
potential is independent of position in an equilihriiim system, the energy bands 
must be displaced or bent, as in Fig. 7. 

The thickness and carricr concentration in the surface layer may be 
changed by applying an electric field normal to the surface. The effect of an 
external field is utilized in the metal-oxide-semico~iductor field-effect transis- 
tor (MOSFET). This has a metal electrode just outside the scrniconductor 
surface and insulated from it by a layer of oxide. A voltagc, the gate voltage Vg, 
is applied between the nietal and semiconductor that modulates the n,, the 
surface charge density per unit area: 

where C, is the capacitance pcr unit area between the metallic gate and the 
se~niconductor. This surface charge layer forms the corlducting pathway of the 
MOSFET. The conductance of a surface layer of length L and width W 
between two electrical contacts is: 

where p is the carrier mobility. The carrier density n,, and hence the conduc- 
tance, is controlled by the gate voltage. This three-terminal electronic valve is 

Figure 7 Baud bending near a semiconductor surface that can give a highly conducti~lg aurfacc 
region. (a) Inversion layer on an r~-t)ye semiconductor. For the bending as shonn, the hole con- 
ccntration at the surface is far larger than the electnm conce~~trat ion in the interior. (b) Accumula- 
tion layer on an 7'-typc sclniconductor, with an electron concentration at the aurhce that is Car 
higher than in the interior. 
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a principal component in microelectronic systems. The clcctronic states occu- 
pied by the carriers at the surface are quantized along the direction normal to 
the interface, as treated in Problem 2. 

MAGNETORESISTANCE IN A TWO-DIMENSIONAL CHANNEL 

The static magnetocondi~ctivity tcnsor in 3D was found in Problerr~ 6.9. 
Here we translate that result to a 2D surface conductance channel in the n-y 
plane, with the static magnetic field in the z direction, normal to thc MOS 
layer. Llie assurne the surface density of electrons is n,  = AIIL! The snrface 
conducta~lce is defined as the volurr~e conductivity times the layer thickness. 
The surface current density is defined as the current crossing a line of unit 
length in thc surface. 

Thus, with (6.43) and (6.65) thc surface tensor conducta~lce components 
become 

where u,, = n,e2r/m and a, = eB/mc in CGS and eB/m in SI. The following dis- 
cussion is written in CGS only, cxccpt where oh~ns  are used. 

These results apply specifically in the relaxation time approximation used 
in Cl~apter 6. When O,T S 1, as for strong magnetic ficld and low tempera- 
tures, the surface conductivity components approach the limits 

The limit for uly is a ger~eral property of free electrons in crossed electric 
E ,  and magnetic fields B;. We establish the result that such electrons drift in 
thc x direction with velocity c,  = cEy/B,. Consider the electrons from a 
Lorentz framc that movcs in the x direction with this velocity. By electrornag- 
netic theory- there is in this frame an clcctric ficld E ;  = -v,B,lc that will can- 
cel the applied field E,  for the above choice of r;,. k'iewcd in the laboraton. 
frame, all electrons drift in the x direction with velocity v, in addition to any 
velocity co~npor~erlts they had before Ey was applied. 

Thus j, = uryEy = r',eun = (n,ec/B)E,, so that 

as in (17). The cxpcriments measure the voltage V in the y directior~ and the 
current I in the x direction (Fig. 8). Here I, = j,LY = (ri,ec/B)(EyLy) = 

(n,cc/B)Vy. The IIall resistance is 

We see thatj, can flow with zero E,, so that the effective conductance j,/E, 
can be infinite. Yaradoxically, this limit occurs only when a,, and a,, are zero. 
Consider the tensor relations 
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In the Hall effect geometry j, = 0, so that E, = (ux,lu,,)E,, with uzy = -uyz. 
Thus 

and in the limit a,, = u,, = 0 the effective conductance is infinite. 

Integral Quantized Hall Effect (IQHE) 

The results of the original measurements' under quantum conditions of 
temperature and magnetic field are shown in Fig. 9. The results are remarkable: 
at certain values of the gate voltage the voltage drop in the direction of current 
flow goes essentially to zero, as if the effective conductance were infinite. 
Further, there are plateaus of the Hall voltage near these same values of gate 
voltage, and the values of the Hall resistivity V& at these plateaus are accu- 
rately equal to (25,813linteger) ohms, where 25,813 is the value of hle2 
expressed in ohms. 

The IQHE voltage minima VPp may be explained on a model that is, how- 
ever, oversimplified. Later we give a general theory. Apply a strong magnetic field 
such that the separation fiw, %- k,T It is meaningful to speak of Landau levels 
that are completely filled or completely empty. Let the electron surface concen- 
tration (proportional to the gate voltage) be adjusted to any of the set of values 
that cause the Fermi level to fall at a Landau level: from (9 33) and (9.34), 

where s is any integer and n, is the electron surface concentration. 
When the above conditions are satisfied, the electron collision time is 

greatly enhanced. N o  elastic collisions are possible from one state to another 
state in the same Landau level because all possible final states of equal energy 
are occupied. The Pauli principle prohibits an elastic collision. Inelastic colli- 
sions to a vacant Landau level are possible with the absorption of the necessary 
energy from a phonon, but there are very few thermal phonons of energy 
greater than the interlevel spacing by virtue of the assumption hw, 8- k,T. 

'K. von Klitzing, 6. Dorda, and M. Pepper, Phys. Rev. Lett. 45,494 (1980). 
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Figure 9 In the original IQHE measurements a magnetic field of 180 kG (18 T) points out of the 
paper. The temperature is 1.5 K. A constant current of 1 pA is made to flow between the source 
and the drain. Voltages Vp, and V, are plotted versus the gate voltage V,, which is proportional to 
the Fermi level. (After K. von Klitzing, G. Dorda, and M. Pepper.) 

The quantization of the Hall resistance follows on combining (18a) and (21): 

pH = h/se2 = 2?r/sccu , (22) 

where a is the fine structure constant e2/?ic 1/137, and s is an integer 

IQHE in Real Systems 

The measurements (Fig. 9) suggest that the above theory of the IQHE 
is too good. The Hall resistivity is accurately quantized at 25,813/s ohms, 
whether or not the semiconductor is of very high purity and perfection. The 
sharp Landau levels (Fig. 10a) are broadened in the real crystal (Fig. lob), but 
this does not affect the Hall resistivity. The occurrence of plateaus in the Hall 
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Figure 11 Geometry for Laughlin's 
thought-experiment. The 2D electron sys- 
tem is wrapped around to form a cylinder. 
A strong magnetic field B pierces the 
cylinder everywhere normal to its surface. 
A current I circles the loop, giving rise to 
the Hall voltage VH and a small magnetic 
flux Q through the loop. 
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resistance, evident in the UH curve of Fig. 9, is not expected in ideal systems 
because partially filled Landau levels will exist for all gate voltages except 
those for which the Fermi level exactly coincides with a Landau level. Yet the 
experiments show that a range of Vg values gives the exact Hall resistance. 

Laughlin2 interpreted the results for real systems as the expression of the 
general principle of gauge invariance. The argument is subtle and somewhat 
reminiscent of the flux quantization in a superconductor in Chapter 10. 

In Laughlin's thought-experiment the 2D electron system is bent to form a 
cylinder (Fig. 11) whose surface is pierced everywhere by a strong magnetic 
field B normal to the surface. The current I (former I,) circles the loop. The 
magnetic field B acts on the charge carriers to produce a Hall voltage VH (for- 
mer V,,) perpendicular to the current and to B ;  that is, V, is developed be- 
tween one edge of the cylinder and the other. 

The circulating current I is accompanied by a small magnetic flux rp that 
threads the current loop. The aim of the thought-experiment is to find the 

Fermi 

A A A A Mobility level * 
+- 
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'R. B. Laughlin, Phys. Rev. B 23, 5632 (1981); see also his article in the McGraw-Hill 
year-book of science and technology, 1984, pp. 209-214. A review is given by H. L. Stormer and 
D. C. Tsui, Science 220,1241 (1983). 

3 ; ho, ; ho, ; fro, 3 h 4  
Localized states 

(a) (b) 

Figure 1 0  Density of states in a 2D electron gas in a strong magnetic field. (a) Ideal 2D crystal. 
(h) Real 2D crystal, with impurities and other imperfections. 



relation between I and V,. \lie start with the electromagnetic relation that re- 
lates I to the total energy U of a resistanceless system: 

The value of I can now be found froin the variation SU of the electronic energy 
that accompanies a small variation 6 p  of the flux. 

The carricr statcs divide into hvo classes: 

Localized states, which are not contin~lorls around thc loop. 
Extended states, continuous around the loop. 

Localized and extended states cannot coexist at the same energy, according to 
our present understanding of localization. 

The two classes of states respond differently to the application of the flux 
cp .  The localized states are unaffected to first order because they do 11ot en- 
close any significant part of cp .  To a localized state a change in cp looks like a 
gauge transformation, which cannot affect thc energy of the state. 

The extended states enclose 9, and their energy may be changed. How- 
ever, if the magnetic flux is varied by a flux quantum, 6 p  = hcle, all extended 
orbits are identical to those before the flux quantum was added. The argument 
here is identical to that for the flux quantization in the superconducting ring 
trcatcd in Chapter 10, but with the 2e of the Cooper pair replaced bye. 

If the Fcrmi level falls within the localized states of Fig. lob, all extended 
states (Landau levels) below the Fermi level will be filled with electrons both 
before and after the flux change Sp.  However, during the change an integral 
number of states, generally one per Landau level, enter the cylinder at onc 
edge and leave it at the opposite edge. 

The number must be integral because the system is  physically identical 
before and after the flux change. If the transferred state is transferred while 
occupied by one electron, it contributes an euergy change eV,; if N occupied 
states are transfcrrcd, the energy change is NeVH. 

This electron transfcr is the only way the degenerate 2D electron system 
can change its energy. \tle can l~nderstand thc effect by looking at a model sys- 
tem without disorder in the Landau gauge for the vector potential: 

A = -By% . (24) 

-40 it~crease SA that corresponds to the flux increase S q  is equivalent to a dis- 
placement of an extended state by SAIB in the y direction. By the Stokes theo- 
rem and the definition of the vector potential we have S p  = L,SA. Thus 6 9  
causes a motion of the entire electron gas in the y direction. 

By SU = NeV, and 6 9  = hde ,  we havc 
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so that the Hall resistance is 

Fractional Quantized Hall Effect (FQHE). A quantized Hall effect has 
been reported for similar systems at fractional values of the index s, by 
working at lowcr temperatures and higher magnetic fields. In the extreme 
quantum limit the lowest Landau level is only partially occlipied, and the inte- 
gral QHE treated above should not occur. It has heen ~ b s e r v e d , ~  however, that 
the IIall resistance PH is quantized in units of 3h/e2 when the occupation of the 
lowest Landau level is 113 and 213, and p,, vanishes for these occupations. Sim- 
ilar breaks have been reported for occupations of 2/5, 315, 4/(5, 
and 217. 

p-n JUNCTIONS 

A p-n junction is made from a single crystal ~r~odified in two scparate re- 
gions. Acceptor impurity atoms are incorporated into one part to produce the 
p region in which the majority carriers are holes. Donor impurity atoms in the 
other part produce the n mgon in which the majority carriers are electrons. 
The interface region may be less than cm thick. Away from the junction 
region on the p side there are ( - )  ionized acceptor impurity atoms arid an 
equal concentration of lree holcs. On the n side there are (+) ionized donor 
atorris and an equal concentration of free electrons. Thus the majority carricrs 
are holes on thc p side and electrons on the rr, side, Fig. 12. 

Holes concentrated on the p side would like to diffusc to fill the crystal 
uniformly. Electrons would like to diffuse from the n side. But diffusion will 
upset the local electrical neutrality of the system. 

A small charge transfer by diffusion leaves behind on the p side an excess 
of ( - )  ionized acceptors and on the n side an excess of (+)  ionized donors. 
This charge double laycr creates an electric field directed from n t o p  that in- 
hibits diffusion and therehy maintains the separation of the two carrier types. 
Because of this double layer the electrostatic potential in the crystal takes a 
jump in passing through the region of the junction. 

In thermal equilibrium the chemical potential of each carrier type is 
everywhere constarit in the crystal, even across the junction. For holes 

k,T hi p ( r )  + eq(r) = constant (27a) 

3 ~ .  C .  TSII~, H. L. Sturrner, and A. C. Gossard, Phys. Hev Lett. 48. 1.562 (1982); .4. 41. Clrallg 
et al., Phys. Rev. Lett. 53, 997 (1984). For a &scussion of the theory see R. Laughlin in 6. Rar~rr 
et d., eds., Tco-dinrensional systems, heterostructures, and wpsrluitices, Springer, 1984. 
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Figure 12 (a) Variation of the hole and elec- 
tron concentrations across an unbiased (zero (a) 
applied voltage) junction. The carriers are in 
thermal equilibrium with the acceptor and 
donor impurity atoms, so that the product pn of 
the hole and electron concentrations is constant 3 
throughout the crystal in conformity with the B 
law of mass action. (b) Electrostatic potential $ 
from acceptor (-) and donor (+) ions near the 2 
junction. The potential gradient inhibits diffu- 
sion of holes from the p side to then side, and it 5 
inhibits diffusion of electrons from the n side to 
the p side. The electric field in the junction re- 
gion is called the built-in electric field. (b) 

across the crystal, where p is the hole concentration and cp the electrostatic 
potential. Thus p is low where cp is high. For electrons 

kBT In n(r) - ecp(r) = constant , (27b) 

and n will be low where cp is low. 
The total chemical potential is constant across the crystal. The effect of 

the concentration gradient exactly cancels the electrostatic potential, and the 
net particle flow of each carrier type is zero. However, even in thermal equi- 
librium there is a small flow of electrons from n to p where the electrons end 
their lives by combination with holes. The recombination current J,,, is bal- 
anced by a current of electrons which are generated thermally in the p re- 
gion and which are pushed by the built-in field to the n region. Thus in zero 
external applied electric field 

for otherwise electrons would accumulate indefinitely on one side of the barrier. 

A p-n junction can act as a rectifier. A large current will flow if we apply a 
voltage across the junction in one direction, but if the voltage is in the opposite 
direction only a very small current will flow. If an alternating voltage is applied 
across the junction the current will flow chiefly in one direction-the junction 
has rectified the current (Fig. 13). 
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Figure 13 Rectiticdtiul~ charactcris- 
tic of a p-71 junction in germanium, 
after Shockley. 

For back voltage bias a negative voltage is applied to the p region and a 
positive voltage to the r2 region, thereby incrcasing the potential difference be- 
tween the two regions. Now practically no electrons can climb the poteritial 
energy hill from the low sidc of the barrier to the high side. The rrcombina- 
tion current is rcduccd hy the Boltzmann factor: 

I,,,(\' back) = J,,(O) exp (-P[v~/~,T) . (29) 

Thr Roltzmann factor controls the nulnber of electrons with cnongh energy to 
get over the barrier. 

The thermal generation current ol" electrons is not particularly affected by 
the back voltage because the gencration electrons flow downhill (fro111 p to n )  
anjway: 

J,,,(V back) = J,,,(O) . (30) 

W7e saw in (28) that J,,(O) = -J,,(O); thus the ger~eratioli current dominates 
the rccomhination current for a back bias. 

When a forward voltage is applied, the reco~nbination current increases 
because the potential energy barrier is lowcrcd, thereby enabling more elec- 
trons to flow fro111 the n side to the p sidc: 

Again thc grneration current is unchanged: 



The hole current flowing across the junction behaves similarly to the elec- 
tron current. The applied voltage which lowers the height of the barrier for 
electrons also lowers it for holes, so that large numbers of electrons flow from 
the n region under the same voltage conditions that produce large hole cur- 
rents in the opposite direction. 

The electric currents of holes and electrons are additive, so that the total 
forward electric current is 

where I, is the sum of the two generation currents. This equation is well satis- 
fied for p-n junctions in germanium (Fig. 13), but not quite as well in other 
semiconductors. 

Solar Cells and Photovoltaic Detectors 

Let us shine light on a p-n junction, one without an external bias voltage. 
Each absorbed photon creates an electron and a hole. When these carriers dif- 
fuse to the junction, the built-in electric field of the junction separates them at 
the energy barrier. The separation of the carriers produces a forward voltage 
across the barrier: forward, because the electric field of the photoexcited carri- 
ers is opposite to the built-in field of the junction. 

The appearance of a forward voltage across an illuminated junction is 
called the photovoltaic effect. An illuminated junction can deliver power to 
an external circuit. Large area p-n junctions of silicon are used as solar panels 
to convert solar photons to electrical energy 

Schottky Barrier 

When a semiconductor is brought into contact with a metal, there is formed 
in the semiconductor a barrier layer from which charge carriers are severely de- 
pleted. The barrier layer is also called a depletion layer or exhaustion layer. 

In Fig. 14 an n-type semiconductor is brought into contact with a metal. 
The Fermi levels are coincident after the transfer of electrons to the conduc- 
tion band of the metal. Positively charged donor ions are left behind in this re- 
gion that is practically stripped of electrons. Here the Poisson equation is 

(CGS) div D = 4 m e  
'< %,.>. , < + -  
(SI) div D = ne/~, ,  , (34) 

where n is the donor concentration. The electrostatic potential is determined by 

(CGS) d2cp/dx2 = -4melc 

which has a solution of the form 

(CGS) cp = -(2me/e)x2 
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Figure 14 Rectifying barrier between a metal and an n-type semiconductor. The Fermi level is 
shown as a broken line. 

The origin of x has been taken for convenience at the right-hand edge of 
the barrier. The contact is at -xb, and here the potential energy relative to the 
right-hand side is -ecpo, whence the thickness of the barrier is 

With E = 16; ecpo = 0.5 eV; n = 1016 ~ m - ~ ,  we find xb = 0.3 pm. This is a some- 
what simplified view of the metal-semiconductor contact. 

HETEROSTRUCTURES 

Semiconductor heterostructures are layers of two or more different semi- 
conductors grown coherently with one common crystal structure. Heterostruc- 
tures offer extra degrees of freedom in the design of semiconductor junction 
devices, because both the impurity doping and the conduction and valence 
band offsets at the junction can be controlled. Because of this freedom many 
devices that utilize compound semiconductors incorporate heterostructures. 
Examples include semiconductor lasers in CD players and high-speed devices 
for cell-phone systems. 

A heterostructure may be viewed as a single crystal in which the occu- 
pancy of the atomic sites changes at the interface. As an example, one side of 
the interface can be Ge and the other side GaAs: both lattice constants are 
5.65 A. One side has the diamond structure and the other side the cubic zinc 
sulfide structure. Both structures are built up from tetrahedral covalent bonds 
and fit together coherently as if they were a single crystal. There are a few 
edge dislocations (Chapter 21) to relieve the strain energy near the interface. 

The band gaps, however, are different, and this difference is the source of 
the real interest in the heterostructure, apart from the technical virtuosity in 



Normal Staggered Broken gap 

Figure 15 Three types of band edge offsets at hetero-interfaces. The forbidden gaps are shown 
shaded. The offset called normal occurs, for example, in GaAsI(A1,Ga)As. The "broken-gap" offset 
occurs in the GaSbIInAs heterojunction. 

forming the structure. The band gaps are 0.67 eV for Ge and 1.43 eV for GaAs, 
at 300 K. The relative alignment of the conduction and valence band edges of- 
fers several possibilities, as shown in Fig. 15. Calculations suggest that the top 
of the valence band E,  in Ge should lie about 0.42 eV higher than in GaAs. The 
bottom of the conduction band E, in Ge should lie about 0.35 eV lower than in 
GaAs, so that the offsets are classified as normal in the scheme of Fig. 15. 

Band edge offsets act as potential barriers in opposite senses on electrons 
and holes. Recall that electrons lower their energy by "sinking" on an energy 
band diagram, whereas holes lower their energy by "floating" on the same dia- 
gram. For the normal alignment both electrons and holes are pushed by the 
barrier from the wide-gap to the narrow-gap side of the heterostructure. 

Other important semiconductor pairs used in heterostructure are 
AlAs/GaAs, InAs/GaSb, GaP/Si, and ZnSe/GaAs. Good lattice matching in the 
range 0.1-1.0 percent is often accomplished by use of alloys of different ele- 
ments, which may also adjust energy gaps to meet specific device needs. 

n-N Heterojunction 

As a practical example, consider two n-type semiconductors with a large 
offset of the two conduction bands, as sketched in Fig. 16a for a semiconduc- 
tor pair with a normal band line-up. The n-type material with the higher con- 
duction band edge is labeled with a capital letter as N-type, and the junction 
shown is called an n-N junction. The electron transport properties across the - - 
junction are similar to those across a Schottky barrier. Far from the interface 
the two semiconductors must be electrically neutral in composition. However, 
the two Fermi levels, each determined by the doping, must coincide if there is 
to be zero net electron transport in the absence of an external bias voltage. 

These two considerations fix the "far-off" conduction band edge energes 
relative to the Fermi level, as in Fig. 16b. The combination of a specified band 
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Figure 16 (a) Two semiconductors not in contact; the absolute band edge energies are labeled E, 
for the conduction band edge and E,  for the valence band edge. An "absolute energy" means re- 
ferred to infinite distance. The Fermi levels in the two materials are determined by the donor con- 
centrations, as well as by the band structure. (b) The same semiconductors as a heterojunction, so 
that the two parts are in diffusive equilibrium. This requires that the Fermi level (F.L.) be inde- 
pendent of position, which is accomplished by transfer of electrons from the N-side to the n-side 
of the interface. A depletion layer of positively ionized donors is left behind on the N-side. 

offset (determined by the host material composition) at the interface and the 
distant band energes (determined by the Fermi level) can be reconciled only 
if the bands bend near the interface, as in the figure. The necessary band 
bending is created by space charges consequent to the transfer of electrons 
from the N-side to the lower n-side. This transfer leaves behind on the N-side 
a positive donor space charge layer, which through the Poisson equation of 
electrostatics is the source of the positive second derivative (upward curva- 
ture) in the conduction band edge energy on that side. 

On the n-side there is now a negative space charge because of the excess 
of electrons on that side. The layer of negative space charge gves a negative 
second derivative (downward curvature) in the conduction band edge energy. 
On the n-side the band as a whole bends down toward the junction. This dif- 
fers from the usual p-n junction. The downward bending and the potential 
step form a potential well for electrons. The well is the basis for the new physi- 
cal phenomena characteristic of heterostructure physics. 

If the doping on the n-side (low E,) is reduced to a negligible value, there 
will be very few ionized donors on that side in the electron-rich layer. The mo- 
bility of these electrons is largely limited only by lattice scattering, which falls 
off sharply as the temperature is lowered. Low-temperature mobilities as high 
as lo7 cm2 v-ls-' have been observed in GaAs/(Al, Ga)As. 

If now the thickness of the N-side semiconductor is reduced below the de- 
pletion layer thickness on that side, the N material will be entirely depleted of 
its low-mobility electrons. All of the electrical conduction parallel to the inter- 
face will be carried by the high-mobility electrons on the n-side, equal in num- 
ber to the number of ionized N-side donors, but spatially separated from them 
by the potential step. Such high-mobility structures play a large role in solid 



state studies of 2D electrorl gases and also in new classes of high-speed ficld 
effect transistors for computer applications at low temperatures. 

SEMICONDUCTOR LASERS 

Stimulated enlission of radiation can occur in direct-gap semiconductors 
from the radiation emitted when electrons recombine with holes. The electron 
and hole concentrations created by illumi~lation are larger than their equilib- 
rium concentrations. The recombination times for the excess carriers are 
I I I U ~ I  longer than the times for the condrlction electrons to reach thermal 
equilibriurr~ with each other in the conduction hand, and for the holes to reach 
ther~nal equilibrium with each other in the valence hand. This steady-state 
condition for the electror~ and hole populations is described hy separate Fcnni 
levels pc and p, for the two bands, called quasi-Fermi levels. 

With p, and po rrfcrred to their band edges, the condition for population 
inversion is that 

P ~ > c L , + ~ ~  . (38) 

For laser action the quasi-Fermi levels must he separated by Inore than the 
hand gap. 

Population inversion and laser action can be achieved by forward bias of 
an ordinary GaAs or InP junction, but almost all practical injection lasers em- 
ploy the donblc hcterostructure proposed by H. Kroemer (Fig. 17). IIere the 
lasing semicondiictor is cmbcdded between two wider-gap semiconductor re- 
gions of opposite doping, creating a quantum well that confiries bot11 electrons 
and I~oles. An example is GaAs embedded in (A1,Ga)iis. In such a structure 
there is a potential barrier that prevents the oottlow of electrons to the p-type 
region, and an opposite potential barrier that prevents thc outflow of holes to 
the n-type region. 

Thc value of pc in the optically active layer lines up with g, in the n con- 
tact; similarly, pU lincs up with pP in the p contact. Iri\~ersion can be achieved if 
we apply a bias voltage largcr than the voltage equi\.alent of the active layer 
energy gap. The diode wafer providcs its own electromagnetic cavity, for the 
reflectivity at the crystal-air interface is high. Crystals are usually polished to 
provide two flat parallel surfaces; the radiation is emitted in the plane of the 
heterojunctions. 

Crystals with direct band gaps are required normally for junction lasers. 
Indirect gaps involve phonons as well as photons; carriers recombine less effi- 
ciently heca~~sc. of competing processes, and no laser action has been observed 
in indirect gap semicondi~ctors. 

Gallium arsenide has been widely stildied as thc optically active layer. It 
emits in the near infrared at 8383 or 1.48 eV; the exact wavclcngth dcpends 
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Figure 17 Double heterostmcture injection laser Electrons flow from the right into the optically- 
active layer, where they form a degenerate electron gas. The potential harrier provided by the 
wide energy gap on the p side prevents the electrons from escaping to the left. Holes flow from 
the left into the active layer, hut cannot escape to the right. 

on temperature. The gap is direct (Chapter 8). In a heterojunction the system 
is very efficient: the ratio of light energy output to dc electrical energy input is 
near 50 percent, and the differential efficiency for small changes is up to 90 
percent. 

The wavelength can be adjusted over a wide range in the alloy system 
GaJnl-,PyAsl_y, so that we can match the laser wavelength to the absorption 
minimum of optical fibers used as a transmission medium. The combination of 
double heterostructure lasers with glass fibers forms the basis of the new light- 
wave communication technology that is rapidly replacing transmission of sig- 
nals over copper lines. 

LIGHT-EMITTING DIODES 

The efficiency of light-emitting diodes is now at the point of exceeding in- 
candescent lamps. Consider a p-n junction with a voltage source V splitting 
the two chemical potentials pn and pCLp by eV, as in Figure 18. Electrons from 
the n side are injected into the p side, and holes from the p side are injected 
into the n side. These injected carriers annlhilate each other across the junc- 
tion, thus generating photons if the quantum efficiency is unity. 



Distance 

6) 
Figure 18 Electron-hole recombination into photons, across a p-n junction 

The generation or recombination process will be much stronger in a 
direct-gap semiconductor (Fig. 8.5a) than in an indirect gap semiconductor 
(Fig. 8.5b). In a direct-gap semiconductor such as GaAs, the band-to-band 
photons are absorbed in-;distance -1 pm, which is strong absorption. The 
direct-gap ternary semiconductor GaAsl-, P, gives light tuned to shorter 
wavelengths as the composition variable x is increased. This composition was 
made by Holonyak into one of the first p-n diode lasers and into the first visi- 
ble-spectrum (red) LED. Blue-emitting heterostructures have now been 
made, such as In,Gal-,N - Al,Gal-,N. 

The performance of LEDs has increased markedly over the years, from 
about 0.1 lumens/watt in 1962 to about 40 lumens/&tt in 2004; compared 
with 15 lumens/watt for a standard white unfiltered incandescent lamp. To 
quote Craford and Holonyak, "We are entering an entirely new era in lighting 
(illumination) with an ultimate form of lamp-a direct-gap 111-V alloy p-n 
heterostructure." 
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(a) (h) 
Figure 19 The diffraction pattern from a single line of lattice constant a in a monochromatic 
x-ray beam perpendicular to the line. (a) The condition for constructive interference is a cos 0 = nA, 
where n is an integer. (h) For given n the diffracted rays of constant A lie on the surface of a cone. 

Problems 

1.  Diffraction from a linear array and a square array. The diffraction pattern of a 
linear structure of lattice constant a is explaineda in Fig. 19. Somewhat similar 
structures are important in molecular biology: DNA and many proteins are linear 
helices. (a) A cylindrical film is exposed to the diffraction pattern of Fig. 19b; the 
axis of the cylinder is coincident with the axis of the linear structure or fiber. De- 
scribe the appearance of the diffraction pattern on the film. (b) A flat photographic 
plate is placed behind the fiber and normal to the incident beam. Sketch roughly 
the appearance of the diffraction pattern on the plate. (c) A single plane of atoms 
forms a square lattice of lattice constant a. The plane is normal to the incident x-ray 
beam. Sketch roughly the appearance of the diffraction pattern on the photographic 
plate. Hint: The diffraction from a plane of atoms can be inferred from the patterns 
for two perpendicular lines of atoms. (d) Figure 20 shows the electron diffraction 
pattern in the backward direction from the nickel atoms on the (110) surface of a 
nickel crystal. Explain the orientation of the diffraction pattern in relation to the 
atomic positions of the surface atoms shown in the model. Assume that only the sur- 
face atoms are effective in the reflection of low-energy electrons 

'Another viewpoint is useful: for a linear lattice the diffraction pattern is described by the 
single Laue equation a . Ak = 2mq, where q is an integer. The lattice sums which led to the other 
Laue equations do not occur for a linear lattice. Now a . Ak = constant is the equation of a plane; 
thus the reciprocal lattice becomes a set of parallel planes normal to the line of atoms. 



(4 ibl 
Figure 20 (a) Backward scattering pattern of 76 eV electrons incident normally on the (110) face 
of a nickel crystal; a model of the surface is shown in (b). (Courtesy of A. U. MacRae.) 

2. Surface subbands in electric quantum limit. Consider the contact plane be- 
tween an insulator and a semiconductor, as in a metal-oxide-semiconductor transis- 
tor or MOSFET. With a strong electric field applied across the Si0,-Si interface, 
the potential energy of a conduction electron may be approximated by V(x) = eEx 
for x positive and by V(x) = m for x negative, where the origin of x is at the inter- 
face. The wavefunction is 0 for x negative and may be separated as +(x,y,z) = u(x) 
exp[i(k,,y + k,z)], where u(x) satisfies the differential equation 

With the model potential for V(x) the exact eigenfunctions are Airy functions, but 
we can find a fairly good ground state energy from the variational trial function x 
exp(-ax). (a) Show that ( E )  = (h2/2m)a2 + 3eEIZa. (b) Show that the energy is a 
minimum when a = (3eEm/2h2)1'3. (c) Show that = 1.89(fi2/2m)113 (3eE12)213. 
In the exact solution for the ground state energy the factor 1.89 is 
replaced by 1.78. As E is increased the extent of the wavefunction in the x direction 
is decreased. The function u(x) defines a surface conduction channel on the semi- 
conductor side of the interface. The various eigenvalues of u(x) define what are 
called electric subbands. Because the eigenfunctions are real functions of x the 
states do not carry current in the x direction, but they do carry a surface channel 
current in the yz plane. The dependence of the channel on the electric field E in the 
x direction makes the device a field effect transistor. 

3. Properties of the two-dimensional electron gas. Consider a two-dimensional elec- 
tron gas (2DEG) with twofold spin degeneracy but no valley degeneracy. (a) Show 
that the number of orbitals per unit energy is given by: D(E) = m l ~ h ~ .  (b) Show that 
the sheet density is related to the Fermi wavevector by: n, = kgI27r. (c) Show that, in 
the Drude model, the sheet resistance, i.e., the resistance of a square segment of the 
ZDEG, can be written as: R, = (h/e?/(k,e) where t? = vp7 is the mean free path. 


