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EXERCISE 1.1

1. Is zero a rational number? Can you write it in the form p
q , where p and q are integers

and q  0?
2. Find six rational numbers between 3 and 4.

3. Find five rational numbers between 
3
5  and 

4
5 .

4. State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number.

1.2 Irrational Numbers
We saw, in the previous section, that there may be numbers on the number line that
are not rationals. In this section, we are going to investigate these numbers. So far, all

the numbers you have come across, are of the form p
q , where p and q are integers

and q  0. So, you may ask: are there numbers which are not of this form? There are
indeed such numbers.

The Pythagoreans in Greece, followers of the famous
mathematician and philosopher Pythagoras, were the first
to discover the numbers which were not rationals, around
400 BC. These numbers are called irrational numbers
(irrationals), because they cannot be written in the form of
a ratio of integers. There are many myths surrounding the
discovery of irrational numbers by the Pythagorean,
Hippacus of Croton. In all the myths, Hippacus has an

unfortunate end, either for discovering that 2  is irrational

or for disclosing the secret about 2  to people outside the
secret Pythagorean sect!

 Let us formally define these numbers.
A number ‘s’ is called irrational, if it cannot be written in the form p

q , where p

and q are integers and q  0.

Pythagoras
(569 BCE – 479 BCE)

Fig. 1.3
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Although we have noticed this pattern using only the examples above, it is true for all

rationals of the form p
q  (q  0). On division of p by q, two main things happen – either

the remainder becomes zero or never becomes zero and we get a repeating string of
remainders. Let us look at each case separately.

Case (i) : The remainder becomes zero

In the example of 
7
8

, we found that the remainder becomes zero after some steps and

the decimal expansion of 
7
8

 = 0.875. Other examples are 
1
2

 = 0.5, 
639
250

 = 2.556. In all

these cases, the decimal expansion terminates or ends after a finite number of steps.
We call the decimal expansion of such numbers terminating.
Case (ii) : The remainder never becomes zero

In the examples of 
10
3  and 

1
7

, we notice that the remainders repeat after a certain

stage forcing the decimal expansion to go on for ever. In other words, we have a
repeating block of digits in the quotient. We say that this expansion is non-terminating

recurring. For example, 
10
3  = 3.3333... and 

1
7

 = 0.142857142857142857...

The usual way of showing that 3 repeats in the quotient of 
10
3  is to write it as 3.3 .

Similarly, since the block of digits 142857 repeats in the quotient of 
1
7

, we write 
1
7

 as

0.142857 , where the bar above the digits indicates the block of digits that repeats.

Also 3.57272... can be written as 3.572 . So, all these examples give us non-terminating
recurring (repeating) decimal expansions.
Thus, we see that the decimal expansion of rational numbers have only two choices:
either they are terminating or non-terminating recurring.
Now suppose, on the other hand, on your walk on the number line, you come across a
number like 3.142678 whose decimal expansion is terminating or a number like
1.272727... that is, 1.27 , whose decimal expansion is non-terminating recurring, can
you conclude that it is a rational number? The answer is yes!
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We will not prove it but illustrate this fact with a few examples. The terminating cases
are easy.

Example 6 : Show that 3.142678 is a rational number. In other words, express 3.142678

in the form p
q , where p and q are integers and q  0.

Solution : We have 3.142678 = 
3142678
1000000

, and hence is a rational number..

Now, let us consider the case when the decimal expansion is non-terminating recurring.

Example 7 : Show that 0.3333... = 0 3.  can be expressed in the form p
q , where p and

q are integers and q  0.

Solution : Since we do not know what 0 3.  is , let us call it ‘x’ and so
x = 0.3333...

Now here is where the trick comes in. Look at
10 x = 10 × (0.333...) = 3.333...

Now, 3.3333... = 3 + x, since x = 0.3333...
Therefore, 10 x = 3 + x
Solving for x, we get

9x = 3, i.e., x = 
1
3

Example 8 : Show that 1.272727... = 1 27.  can be expressed in the form p
q , where p

and q are integers and q  0.
Solution : Let x = 1.272727... Since two digits are repeating, we multiply x by 100 to
get

100 x = 127.2727...
So, 100 x = 126 + 1.272727... = 126 + x
Therefore, 100 x – x = 126, i.e., 99 x = 126
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i.e., x =
126 14
99 11



You can check the reverse that 
14
11

 = 1 27. .

Example 9 : Show that 0.2353535... = 0 235.  can be expressed in the form p
q ,

where p and q are integers and q  0.

Solution : Let x = 0 235. . Over here, note that 2 does not repeat, but the block 35
repeats. Since two digits are repeating, we multiply x by 100 to get

100 x = 23.53535...
So, 100 x = 23.3 + 0.23535... = 23.3 + x
Therefore, 99 x = 23.3

i.e., 99 x =
233
10

, which gives x = 
233
990

You can also check the reverse that 
233
990

 = 0 235. .

So, every number with a non-terminating recurring decimal expansion can be expressed

in the form p
q  (q  0), where p and q are integers. Let us summarise our results in the

following form :
The decimal expansion of a rational number is either terminating or non-
terminating recurring. Moreover, a number whose decimal expansion is
terminating or non-terminating recurring is rational.
So, now we know what the decimal expansion of a rational number can be. What
about the decimal expansion of irrational numbers? Because of the property above,
we can conclude that their decimal expansions are non-terminating non-recurring.
So, the property for irrational numbers, similar to the property stated above for rational
numbers, is
The decimal expansion of an irrational number is non-terminating non-recurring.
Moreover, a number whose decimal expansion is non-terminating non-recurring
is irrational.
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Recall s = 0.10110111011110... from the previous section. Notice that it is non-
terminating and non-recurring. Therefore, from the property above, it is irrational.
Moreover, notice that you can generate infinitely many irrationals similar to s.

What about the famous irrationals 2  and ? Here are their decimal expansions up
to a certain stage.

2  = 1.4142135623730950488016887242096...

  = 3.14159265358979323846264338327950...

(Note that, we often take 
22
7

 as an approximate value for , but   
22
7

.)

Over the years, mathematicians have developed various techniques to produce more
and more digits in the decimal expansions of irrational numbers. For example, you
might have learnt to find digits in the decimal expansion of 2  by the division method.
Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic
period (800 BC - 500 BC), you find an approximation of 2  as follows:

2  = 
1 1 1 1 1 11 1 4142156
3 4 3 34 4 3

.            
   

Notice that it is the same as the one given above for the first five decimal places. The
history of the hunt for digits in the decimal expansion of  is very interesting.

The Greek genius Archimedes was the first to compute
digits in the decimal expansion of . He showed 3.140845
<  < 3.142857. Aryabhatta (476 – 550 C.E.), the great
Indian mathematician and astronomer, found the value
of  correct to four decimal places (3.1416). Using high
speed computers and advanced algorithms,  has been
computed to over 1.24 trillion decimal places!

Now, let us see how to obtain irrational numbers.

Example 10 : Find an irrational number between 
1
7

 and 
2
7

.

Solution : We saw that 
1
7

 = 0142857. . So, you can easily calculate 2 0 285714
7

. .

To find an irrational number between 
1
7

 and 
2
7

, we find a number which is

Archimedes (287 BCE – 212 BCE)
Fig. 1.10
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non-terminating non-recurring lying between them. Of course, you can find infinitely
many such numbers.
An example of such a number is 0.150150015000150000...

EXERCISE 1.3
1. Write the following in decimal form and say what kind of decimal expansion each

has :

(i)
36

100 (ii)
1

11
(iii)

14
8

(iv)
3

13 (v)
2

11
(vi)

329
400

2. You know that 
1
7  = 0142857. . Can you predict what the decimal expansions of 

2
7 , 

3
7 ,

4
7 , 

5
7 , 

6
7  are, without actually doing the long division? If so, how?

[Hint : Study the remainders while finding the value of 
1
7  carefully.]

3. Express the following in the form p
q , where p and q are integers and q  0.

(i) 0 6. (ii) 0 47. (iii) 0 001.

4. Express 0.99999 .... in the form p
q . Are you surprised by your answer? With your

teacher and classmates discuss why the answer makes sense.
5. What can the maximum number of digits be in the repeating block of digits in the

decimal expansion of 
1

17 ? Perform the division to check your answer..

6. Look at several examples of rational numbers in the form p
q  (q  0), where p and q are

integers with no common factors other than 1 and having terminating decimal
representations (expansions). Can you guess what property q must satisfy?

7. Write three numbers whose decimal expansions are non-terminating non-recurring.

8. Find three different irrational numbers between the rational numbers 
5
7  and 

9
11

.

9. Classify the following numbers as rational or irrational :

(i) 23 (ii) 225 (iii) 0.3796

(iv) 7.478478... (v) 1.101001000100001...
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Then 7 5  = 15.652..., 
7
5  = 

7 5 7 5
55 5

  = 3.1304...

2  + 21 = 22.4142...,  – 2 = 1.1415...
All these are non-terminating non-recurring decimals. So, all these are irrational numbers.
Now, let us see what generally happens if we add, subtract, multiply, divide, take
square roots and even nth roots of these irrational numbers, where n is any natural
number. Let us look at some examples.

Example 13 : Add 2 2 5 3  and 2 3 3– .

Solution :    2 2 5 3 2 3 3–   =    2 2 2 5 3 3 3– 

                 = (2 + 1) 2 (5 3) 3 3 2 2 3   

Example 14 : Multiply 6 5  by 2 5 .

Solution : 6 5  × 2 5  = 6 × 2 × 5  × 5  = 12 × 5 = 60

Example 15 : Divide 8 15  by 2 3 .

Solution : 8 3 58 15 2 3 4 5
2 3


  

These examples may lead you to expect the following facts, which are true:
(i) The sum or difference of a rational number and an irrational number is irrational.
(ii) The product or quotient of a non-zero rational number with an irrational number is

irrational.
(iii) If we add, subtract, multiply or divide two irrationals, the result may be rational or

irrational.
We now turn our attention to the operation of taking square roots of real numbers.

Recall that, if a is a natural number, then a b  means b2 = a and b > 0. The same
definition can be extended for positive real numbers.

Let a > 0 be a real number. Then a  = b means b2 = a and b > 0.

In Section 1.2, we saw how to represent n  for any positive integer n on the number
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line. We now show how to find x  for any given positive real number x geometrically..

For example, let us find it for x = 3.5, i.e., we find 3 5.  geometrically..

Fig. 1.15

Mark the distance 3.5 units from a fixed point A on a given line to obtain a point B such
that AB = 3.5 units (see Fig. 1.15). From B, mark a distance of 1 unit and mark the
new point as C. Find the mid-point of AC and mark that point as O. Draw a semicircle
with centre O and radius OC. Draw a line perpendicular to AC passing through B and
intersecting the semicircle at D. Then, BD = 3.5 .

More generally, to find x , for any positive real
number x, we mark B so that AB = x units, and, as in
Fig. 1.16, mark C so that BC = 1 unit. Then, as we

have done for the case x = 3.5, we find BD = x
(see Fig. 1.16). We can prove this result using the
Pythagoras Theorem.
Notice that, in Fig. 1.16,  OBD is a right-angled triangle. Also, the radius of the circle

is 
1

2
x 

 units.

Therefore, OC = OD = OA = 
1

2
x 

 units.

Now, OB = 
1 1

2 2
x xx      

 

So, by the Pythagoras Theorem, we have

BD2 = OD2 – OB2 = 
2 21 1 4

2 2 4
x x x x         

   
.

This shows that BD = x .

Fig. 1.16
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1
2  by 

2
2

 will give us an equivalent expression, since 
2
2

 = 1. So, we put these two

facts together to get

1 1 2 2
22 2 2

   

In this form, it is easy to locate 
1
2  on the number line. It is half way between 0

and 2 .

Example 18 : Rationalise the denominator of 
1

2 3




Solution : We use the Identity (iv) given earlier. Multiply and divide 
1

2 3  by

2 3  to get 
1 2 3 2 3 2 3

4 32 3 2 3
 

   
  .

Example 19 : Rationalise the denominator of 
5

3 5




Solution : Here we use the Identity (iii) given earlier.

So,
5

3 5  = 
   

5 3 55 3 5 5 3 5
3 5 23 5 3 5

         

Example 20 : Rationalise the denominator of 
1

7 3 2




Solution : 1 1 7 3 2 7 3 2 7 3 2
49 18 317 3 2 7 3 2 7 3 2

   
         

So, when the denominator of an expression contains a term with a square root (or
a number under a radical sign), the process of converting it to an equivalent expression
whose denominator is a rational number is called rationalising the denominator.
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EXERCISE 1.5
1. Classify the following numbers as rational or irrational:

(i) 2 5 (ii)  3 23 23  (iii)
2 7
7 7

(iv)
1
2 (v) 2

2. Simplify each of the following expressions:

(i)    3 3 2 2  (ii)    3 3 3 3 

(iii)  2
5 2 (iv)    5 2 5 2 

3. Recall,  is defined as the ratio of the circumference (say c) of a circle to its diameter

(say d). That is,  = 
c
d
  This seems to contradict the fact that  is irrational. How will

you resolve this contradiction?

4. Represent 9 3.  on the number line.

5. Rationalise the denominators of the following:

(i)
1
7 (ii)

1
7 6

(iii)
1

5 2 (iv)
1

7 2

1.6 Laws of Exponents for Real Numbers
Do you remember how to simplify the following?

(i) 172 . 175 = (ii) (52)7 =

(iii) 
10

7

23
23

 = (iv) 73 . 93 =

Did you get these answers? They are as follows:
(i) 172 . 175 = 177 (ii) (52)7 = 514

(iii)
10

3
7

23 23
23

 (iv) 73 . 93 = 633
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To get these answers, you would have used the following laws of exponents,
which you have learnt in your earlier classes. (Here a, n and m are natural numbers.
Remember, a is called the base and m and n are the exponents.)

(i) am . an = am + n (ii) (am)n = amn

(iii)
m

m n
n

a a , m n
a

  (iv) ambm = (ab)m

What is (a)0? Yes, it is 1! So you have learnt that (a)0 = 1. So, using (iii), we can

get 
1 .n

n a
a

  We can now extend the laws to negative exponents too.

So, for example :

(i) 2 –5 –3
3

117 17 17
17

   (ii) 2 –7 –14(5 ) 5

(iii)
–10

–17
7

23 23
23

 (iv) –3 –3 –3(7) (9) (63) 

Suppose we want to do the following computations:

(i)
2 1
3 32 2 (ii)

41
53

 
 
 

(iii)

1
5

1
3

7

7
(iv)

1 1
5 513 17

How would we go about it? It turns out that we can extend the laws of exponents
that we have studied earlier, even when the base is a positive real number and the
exponents are rational numbers. (Later you will study that it can further to be extended
when the exponents are real numbers.) But before we state these laws, and to even

make sense of these laws, we need to first understand what, for example 
3
24  is. So,

we have some work to do!

In Section 1.4, we defined n a  for a real number a > 0 as follows:

Let a > 0 be a real number and n a positive integer. Then n a  = b, if bn = a and
b > 0.

In the language of exponents, we define n a  = 
1
na . So, in particular, , 

1
3 32 2 .

There are now two ways to look at 
3
24 .
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3
24  =

31
324 2 8

 
  

 

3
24  =    

1 1
3 2 24 64 8 

Therefore, we have the following definition:
Let a > 0 be a real number. Let m and n be integers such that m and n have no

common factors other than 1, and n > 0. Then,
m
na  =  m n mn a a

We now have the following extended laws of exponents:
Let a > 0 be a real number and p and q be rational numbers. Then, we have

(i) ap . aq = ap+q (ii) (ap)q = apq

(iii)
p

p q
q

a a
a

 (iv) apbp = (ab)p

You can now use these laws to answer the questions asked earlier.

Example 21 : Simplify (i)
2 1
3 32 2 (ii)

41
53

 
 
 

             (iii)

1
5

1
3

7

7
(iv)

1 1
5 513 17

Solution :

(i)
2 12 1 3

13 33 3 32 2 2 2 2 2
  
      (ii)

41 4
5 53 3

 
 

 

(iii)

1
1 1 3 5 25
5 3 15 15

1
3

7 7 7 7
7

    
    (iv)

1 1 1 1
5 5 5 513 17 (13 17) 221   

EXERCISE 1.6

1. Find : (i)
1
264 (ii)

1
532 (iii)

1
3125

2. Find : (i)
3
29 (ii)

2
532 (iii)

3
416 (iv)

1
3125


3. Simplify : (i)
2 1
3 52 2 (ii)

7

3

1
3

 
 
 

(iii)

1
2

1
4

11

11
(iv)

1 1
2 27 8



NUMBER SYSTEMS 27

1.7 Summary
In this chapter, you have studied the following points:

1. A number r is called a rational number, if it can be written in the form p
q , where p and q are

integers and q  0.

2. A number s is called a irrational number, if it cannot be written in the form p
q , where p and

q are integers and q  0.
3. The decimal expansion of a rational number is either terminating or non-terminating recurring.

Moreover, a number whose decimal expansion is terminating or non-terminating recurring
is rational.

4. The decimal expansion of an irrational number is non-terminating non-recurring. Moreover,
a number whose decimal expansion is non-terminating non-recurring is irrational.

5. All the rational and irrational numbers make up the collection of real numbers.
6. There is a unique real number corresponding to every point on the number line. Also,

corresponding to each real number, there is a unique point on the number line.

7. If r is rational and s is irrational, then r + s and r – s are irrational numbers, and rs and 
r
s  are

irrational numbers, r  0.
8. For positive real numbers a and b, the following identities hold:

(i) ab a b (ii) a a
b b


(iii)    a b a b a b    (iv)     2a b a b a b   

(v)  2
2a b a ab b   

9. To rationalise the denominator of 
1 ,

a b
 we multiply this by ,a b

a b



 where a and b are

integers.
10. Let a > 0 be a real number and p and q be rational numbers. Then

(i) ap . aq = ap + q (ii) (ap)q = apq

(iii)
p

p q
q

a a
a

 (iv) apbp = (ab)p


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27

