MATHEMATICS

DATLY PRACTICE PROBLEMS

DPP No. 56

Total Marks : 33

Max. Time : 37 min.

Торіс	: V	ector
-------	-----	-------

Type of Questions

Single choice Objective (no negative marking) Q.1.2.3 Subjective Questions (no negative marking) Q.4,5,6,7 Match the Following (no negative marking) Q.8

	M.M., Mi
(3 marks, 3 min.)	[9, 9]
(4 marks, 5 min.)	[16, 20]
(8 marks, 8 min.)	[8, 8]

Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} + 2\hat{j} - \hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a} then $\vec{c} = \hat{c}$ 1.

(A)
$$\pm \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$$
 (B) $\frac{1}{\sqrt{3}}(-\hat{i} - \hat{j} - \hat{k})$ (C) $\frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j})$ (D) $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$

2.
$$\vec{a} \times (\vec{b} \times \vec{c})$$
, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are :
(A) linearly dependent (B) equal vectors (C) parallel vectors (D) none of these

If \vec{a} is perpendicular to \vec{b} and \vec{r} is a non-zero vector such that $p \vec{r} + (\vec{r} \cdot \vec{a})\vec{b} = \vec{c}$, then $\vec{r} =$ 3.

(A) $\frac{\vec{c}}{p} - \frac{(\vec{a} \cdot \vec{c})\vec{b}}{p^2}$ (B) $\frac{\vec{a}}{p} - \frac{(\vec{c} \cdot \vec{b})\vec{a}}{p^2}$ (C) $\frac{\vec{a}}{p} - \frac{(\vec{a} \cdot \vec{b})\vec{c}}{p^2}$ (D) $\frac{\vec{c}}{p^2} - \frac{(\vec{a} \cdot \vec{c})\vec{b}}{p}$

- Find the direction cosines ℓ , m, n of a line which are connected by the relations ℓ + m + n = 0, 4. $2mn + 2m\ell - n\ell = 0.$
- 5. Find the equation of a straight line which passes through a point with position vector a, meets the line $\vec{r} = b + \lambda \vec{c}$ and is parallel to the plane $\vec{r} \cdot \vec{n} = 1$.
- If the three planes $\vec{r}.\vec{n}_1 = p_1$, $\vec{r}.\vec{n}_2 = p_2$ and $\vec{r}.\vec{n}_3 = p_3$ have a common line of intersection, then show 6. that $p_1(\vec{n}_2 \times \vec{n}_3) + p_2(\vec{n}_3 \times \vec{n}_1) + p_3(\vec{n}_1 \times \vec{n}_2) = \vec{0}$.
- Find the equation of the plane through (3, 4, 1) which is parallel to the plane $\vec{r} \cdot (2\vec{i} 3\vec{j} + 5\vec{k}) + 7 = 0$. 7.

8. Match the column Column – I

Column – II

- If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$, then $\left| [\vec{a} \ \vec{b} \ \vec{c}] \right|$ is equal to (A) 32 (p) If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$, then $\sqrt{|\vec{a} \times \vec{b} \cdot \vec{b} \times \vec{c} \cdot \vec{c} \times \vec{a}|}$ (B) 4√2 (q) is equal to
- If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$ and \vec{p}, \vec{q} and \vec{r} is reciprocal (C) (r) $5\sqrt{3}$ system of \vec{a} , \vec{b} and \vec{c} , then 32 [\vec{p} \vec{q} \vec{r}] is equal to
- The area of a quadrilateral whose diagonals are $3\hat{i} + \hat{j} 2\hat{k}$ (D) 1 (s) and $\hat{i} - 3\hat{j} + 4\hat{k}$ is

n.

Answers Key

1. (A) 2. (A) 3. (A)
4.
$$\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}$$
 or $\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}$
5. $\vec{a} + m\left(\vec{b} + \frac{(\vec{a} - \vec{b}).\vec{n}}{\vec{c}.\vec{n}}\vec{c} - \vec{a}\right)$
7. $\vec{r} \cdot \left(2\vec{i} - 3\vec{j} + 5\vec{k}\right) + 1 = 0$
8. (A) \rightarrow (q), (B) \rightarrow (q), (C) \rightarrow (q), (D) \rightarrow (r)