Chapter 21. Solids [Surface Area and Volume of 3-D Solids]

Exercise 21(A)

Solution 1:

Let the length, breadth and height of rectangular solid are 5x, 4x, 2x.

Total surface area = 1216 cm^2

$$2(5x \cdot 4x + 4x \cdot 2x + 2x \cdot 5x) = 1216$$
$$20x^{2} + 8x^{2} + 10x^{2} = 608$$
$$38x^{2} = 608$$
$$x^{2} = \frac{608}{38} = 16$$
$$x = 4$$

Therefore, the length, breadth and height of rectangular solid are $5 \times 4 = 20$ cm , $4 \times 4 = 16$ cm , $2 \times 4 = 8$ cm .

Solution 2:

Let a be the one edge of a cube.

Volume = a^3 $729 = a^3$ $9^3 = a^3$ 9 = aa = 9 cm

Total surface area= $6a^2 = 6 \times 9^2 = 486 \text{ cm}^2$

Solution 3:

Volume of cinema hall = $100 \times 60 \times 15 = 90000 \text{ m}^3$

150 m³requires= 1 person

 $90000 \text{ m}^{3} \text{ requires} = \frac{1}{150} \times 90000 = 600 \text{ persons}$

Therefore, 600 persons can sit in the hall.

Solution 4:

Let h be height of the room.

1 person requires 16 m³

75 person requires $75 \times 16 \text{ m}^3 = 1200 \text{ m}^3$

Volume of room is 1200 m³

 $1200 = 25 \times 9.6 \times h$ $h = \frac{1200}{25 \times 9.6}$ h = 5 m

Solution 5:

Volume of melted single cube = $3^3 + 4^3 + 5^3$ cm³ = 27 + 64 + 125 cm³ = 216 cm³ Let *a* be the edge of the new cube. Volume = 216 cm³ $a^3 = 216$ $a^3 = 6^3$ a = 6 cm Therefore, 6 cm is the edge of cube.

Solution 6:

Volume of melted single cube $x^3 + 8^3 + 10^3 \text{ cm}^3$

 $= x^{3} + 512 + 1000 \text{ cm}^{3}$ $= x^{3} + 1512 \text{ cm}^{3}$ Given that 12 cm is edge of the single cube.

$$12^{3} = x^{3} + 1512 \text{ cm}^{3}$$
$$x^{3} = 12^{3} - 1512$$
$$x^{3} = 1728 - 1512$$
$$x^{3} = 216$$
$$x^{3} = 6^{3}$$
$$x = 6 \text{ cm}$$

Solution 7:

Let the side of a cube be 'a' units.

Total surface area of one cube $= 6a^2$

Total surface area of 3 cubes $= 3 \times 6a^2 = 18a^2$

After joining 3 cubes in a row, length of Cuboid =3a

Breadth and height of cuboid = a

Total surface area of cuboid = $2(3a^2 + a^2 + 3a^2) = 14a^2$

Ratio of total surface area of cuboid to the total surface area of 3 cubes = $\frac{14a^2}{18a^2} = \frac{7}{9}$

Solution 8:

Let the length and breadth of the room is 5Xand3X respectively. Given that the four walls of a room at 75paise per square met Rs. 240. Thus,

 $240 = \operatorname{Area} \times 0.75$ $\operatorname{Area} = \frac{240}{0.75}$ $\operatorname{Area} = \frac{24000}{75}$ $\operatorname{Area} = 320m$ $\operatorname{Area} = 2 \times \operatorname{Height} (\operatorname{Length} + \operatorname{Breadth})$ $320 = 2 \times 5(5 \times + 3 \times)$ $320 = 10 \times 8 \times$ $32 = 8 \times$ x = 4 $\operatorname{Length} = 5 \times$ = 5(4)m = 20m $\operatorname{Breadth} = 3 \times$ = 3(4)m = 12m

Solution 9:

The area of the playground is 3650 m² and the gravels are 1.2 cm deep. Therefore the total volume to be covered will be: 3650 x $0.012 = 43.8 \text{ m}^3$. Since the cost of per cubic meter is Rs. 6.40, therefore the total cost will be: $43.8 \times Rs.6.40 = Rs.280.32$

Solution 10:

We know that $1 mm = \frac{1}{10} cm$ $8 mm = \frac{8}{10} cm$ Volume = Base area × Height $\Rightarrow 2880 cm^{3} = x \times x \times \frac{8}{10}$ $\Rightarrow 2880 \times \frac{10}{8} = x^{2}$ $\Rightarrow x^{2} = 3600$ $\Rightarrow x = 60 cm$

Solution 11:

External volume of the box= $27 \times 19 \times 11$ cm³ = 5643 cm³

Since, external dimensions are 27 cm, 19 cm, 11 cm; thickness of the wood is 1.5 cm.

: Internal dimensions

$$= (27 - 2 \times 1.5) \text{ cm}, (19 - 2 \times 1.5) \text{ cm}, (11 - 2 \times 1.5) \text{ cm}$$
$$= 24 \text{ cm}, 16 \text{ cm}, 8 \text{ cm}$$

Hence, internal volume of box= $(24 \times 16 \times 8)$ cm³ = 3072 cm³

(i)

Volume of wood in the box= $5643 \text{ cm}^3 - 3072 \text{ cm}^3 = 2571 \text{ cm}^3$

(ii)

Cost of wood = Rs 1.20 × 2571 = Rs 3085.2

(iii)

Vol. of 4 cm cube= $4^3 = 64$ cm³

Number of 4 cm cubes that could be placed into the box

$$=\frac{3072}{64}=48$$

Solution 12:

Area of sheet= Surface area of the tank

⇒Length of the sheet× its width=Area of 4 walls of the tank +Area of its base

 \Rightarrow Length of the sheet $\times 2.5 \text{ m}=2(20+12) \times 8 \text{ m}^2 + 20 \times 12 \text{ m}^2$

⇒Length of the sheet= 300.8 m

Cost of the sheet = 300.8 × Rs 12.50 = Rs 3760

Solution 13:

Let exterior height is h cm. Then interior dimensions are 78-3=75, 19-3=16 and h-3 (subtract two thicknesses of wood). Interior volume = $75 \times 16 \times (h-3)$ which must = 15 cu dm

```
= 15000 cm^3
```

(1 dm = 10cm, 1 cu dm = 10^3 cm^3).

 $15000 \text{ cm}^3 = 75 \times 16 \times (h-3)$

 \Rightarrow h-3 = 15000/(75x16) = 12.5 cm \Rightarrow h = 15.5 cm.

Solution 14:

(i)

If the side of the cube= a cm

The length of its diagonal = $a\sqrt{3}$ cm

And,

$$(a\sqrt{3})^2 = 1875$$
$$a = 25 \, \text{cm}$$

(ii)

Total surface area of the cube= $6a^2$

$$=6(25)^2 = 3750 \,\mathrm{cm}^2$$

Solution 15:

Given that the volume of the iron in the tube 192 cm^3

Let the thickness of the tube = X CM

 \therefore Side of the external square= (5 + 2x) cm

: Ext. vol. of the tube - its internal vol.= volume of iron in the tube, we have,

$$(5+2x)(5+2x) \times 8 - 5 \times 5 \times 8 = 192$$
$$(25+4x^{2}+20x) \times 8 - 200 = 192$$
$$200+32x^{2}+160x - 200 = 192$$
$$32x^{2}+160x - 192 = 0$$
$$x^{2}+5x - 6 = 0$$
$$x^{2}+6x - x - 6 = 0$$
$$x(x+6) - (x+6) = 0$$
$$(x+6)(x-1) = 0$$
$$x - 1 = 0$$
$$x = 1$$

Therefore, thickness is 1 cm.

Solution 16:

Let / be the length of the edge of each cube.

The length of the resulting cuboid= $4 \times l = 4 l \text{ cm}$

Let width (b) = I cm and its height (h)= I cm

. The total surface area of the resulting cuboid

$$= 2(l \times b + b \times h + h \times l)$$

$$648 = 2(4l \times l + l \times l + l \times 4l)$$

$$4l^{2} + l^{2} + 4l^{2} = 324$$

$$9l^{2} = 324$$

$$l^{2} = 36$$

$$l = 6 \text{ cm}$$

Therefore, the length of each cube is 6 cm.

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{6l^2}$$

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{6(6)^2}$$

$$\frac{\text{Surface area of the resulting cuboid}}{\text{Surface area of cube}} = \frac{648}{216} = \frac{3}{1} = 3:1$$

Exercise 21(B)

Solution 1:

The given figure can be divided into two cuboids of dimensions 6 cm, 4 cm, 3 cm, and 9 cm respectively. Hence, volume of solid

$$= 9 \times 4 \times 3 + 6 \times 4 \times 3$$

= 108 + 72
= 180 cm³

Solution 2:

Area of cross section of the solid = $\frac{1}{2}(1.5+3) \times (40) \text{ cm}^2$

$$= \frac{1}{2} (4.5) \times (40) \text{ cm}^2$$

= 90 cm²

Volume of solid = Area of cross section × Length

Solution 3:

The cross section of a tunnel is of the trapezium shaped ABCD in which AB = 7m, CD =

5m and AM = BN. The height is 2.4 m and its length is 40m. (i)

AM = BN =
$$\frac{7-5}{2} = \frac{2}{2} = 1 \text{ m}$$

:. In $\triangle \text{ADM}$,
 $AD^2 = AM^2 + DM^2$ [Using pythagoras theorem]
 $= 1^2 + (2.4)^2$
 $= 1 + 5.76$
 $= 6.76$

Perimeter of the cross-section of the tunnel=(7 + 2.6 + 2.6 + 5)m = 17.2m

Length=40 m

 $=(2.6)^{2}$

 $AD = 2.6 \, \text{m}$

: Internal surface area of the tunnel(except floor)

$$= (17.2 \times 40 - 40 \times 7)m^{2}$$
$$= (688 - 280)m^{2}$$
$$= 408m^{2}$$

Rate of painting=Rs 5 perm²

Hence, total cost of painting=Rs 5×408=Rs 2040

(ii)

Area of floor of tunnel $l \times b = 40 \times 7 = 280 \text{ m}^2$

Rate of cost of paving= Rs 18 per m²

Total cost= $280 \times 18 = Rs5040$

Solution 4:

(i)

The rate of speed = 5
$$\frac{m}{s}$$
 = 500 $\frac{cm}{s}$

Volume of water flowing per sec = $3.2 \times 500 \text{ cm}^3 = 1600 \text{ cm}^3$

(ii)

Vol. of water flowing per min = $1600 \times 60 \text{ cm}^3 = 96000 \text{ cm}^3$

Since 1000 cm³ = 1 lt

Therefore, Vol. of water flowing per min= $=\frac{96000}{1000} = 96$ litres

Solution 5:

Vol. of water flowing in 1 sec= $=\frac{1500 \times 1000}{5 \times 60} = 5000 \text{ cm}^3$

Vol. of water flowing =area of cross section × speed of water

 $5000 \frac{cm^3}{s} = 2 cm^2 \times speed of water$ ⇒ speed of water = $\frac{5000}{2} \frac{cm}{s}$ ⇒ speed of water = $2500 \frac{cm}{s}$ ⇒ speed of water = $25 \frac{m}{s}$

Solution 6:

(i)

Area of total cross section= Area of rectangle abce+ area of Δdef

$$= (12 \times 10) + \frac{1}{2} (16 - 10) (12 - 7.5)$$
$$= 120 + \frac{1}{2} (6) (4.5) \text{ cm}^2$$
$$= 120 + 13.5 \text{ cm}^2$$
$$= 133.5 \text{ cm}^2$$

(ii)

The volume of the piece of metal in cubic centimeters= Area of total cross section×length

=133.5 cm² × 400 cm = 53400 cm³

1 cubic centimetre of the metal weighs 6.6 g

$$53400 \,\mathrm{cm^3}$$
 of the metal weighs $6.6 \times 53400 \,\mathrm{g} = \frac{6.6 \times 53400}{1000} \,\mathrm{kg}$

= 352.440kg

The weight of the piece of metal to the nearest Kg is 352 Kg.

Solution 7:

Vol. of rectangular tank = $80 \times 60 \times 60 \text{ cm}^3 = 288000 \text{ cm}^3$

One liter= 1000 cm³

Vol. of water flowing in per sec=

$$1.5 \text{ cm}^2 \times 3.2 \frac{\text{m}}{\text{s}} = 1.5 \text{ cm}^2 \times \frac{(3.2 \times 100) \text{ cm}}{\text{s}}$$
$$= 480 \frac{\text{cm}^3}{\text{s}}$$

Vol. of water flowing in 1 min= $480 \times 60 = 28800 \text{ cm}^3$

Hence,

 $28800 \,\text{cm}^3$ can be filled = 1 min

$$288000 \text{ cm}^3 \text{ can be filled} = \left(\frac{1}{28800} \times 288000\right) \text{min} = 10 \text{ min}$$

Solution 8:

Length of sheet=32 cm

Breadth of sheet=26 cm

Side of each square=3cm

∴ Inner length=32-2×3=32-6=26 cm

Inner breadth= $26 - 2 \times 3 = 26 - 6 = 20 \text{ cm}$

By folding the sheet, the length of the container=26 cm

Breadth of the container= 20 cm and height of the container= 3 cm

 \therefore Vol. of the container= $1 \times b \times h$

=26cm×20cm×3cm=1560 cm³

Length of pool= 18 m

Breadth of pool= 8 m

Height of one side= 2m

Height on second side=1.2 m

$$\therefore \text{ Volume of pool}=18 \times 8 \times \frac{(2+1.2)}{2} \text{ m}^3$$
$$= \frac{18 \times 8 \times 3.2}{2}$$

 $=\frac{2}{2}$ = 230.4m³

Thus, the dimensions of box 1 are: 60 cm, 40 cm and 30 cm.

Therefore, the volume of box1=60×40×30=72000 cm³ Surface area of box 1=2(ℓ b+b+ ℓ h) Since the box is open at the bottom and from the give figure, we have, Surface area of box 1=40×40+40×30+40×30+2(60×30) = 1600+1200+1200+3600 = 7600 cm²

Consider the box 2

Thus, the dimensions of box 2 are: 40 cm, 30 cm and 30 cm.

Therefore, the volume of box2=40×30×30=36000 cm³ Surface area of box 2=2(ℓ b + bh + ℓ h) Since the box is open at the bottom and from the give figure, we have, Surface area of box 2=40×30+40×30+2(30×30) = 1200+1200+1800 = 4200 cm²

Thus, the dimensions of box 2 are: 40 cm, 30 cm and 20 cm.

Therefore, the volume of $box3 = 40 \times 30 \times 20 = 24000 \text{ cm}^3$ Surface area of box $3 = 2(\ell b + bh + \ell h)$ Since the box is open at the bottom and from the given figure, we have Surface area of box $3=40 \times 30 + 40 \times 20 + 2(30 \times 20)$ = 1200 + 800 + 1200 $= 3200 \text{ cm}^2$ Total volume of the box=volume of box 1+volume of box 2 +volume of box 3 =72000+36000+24000 = 132000 cm³ Similarly, total surface area of the box =surface area of box 1 +surface area of box 2 +surface area of box 3 =7600+4200+3200 =15000 cm²

Exercise 21(C)

Solution 1:

The perimeter of a cube formula is, Perimeter = 4a where (a= length)

Given that perimeter of the face of the cube is 32 cm $\Rightarrow 4a = 32$ cm $\Rightarrow a = \frac{32}{4}$ $\Rightarrow a = 8$ cm We know that surface area of a cube with side 'a' = 6a² Thus, Surface area = 6 × 8² = 6 × 64 = 384 cm² We know that the volume of a cube with side 'a' = a³ Thus, volume = 8³ = 512 cm³

Solution 2:

Given dimensions of the auditorium are: $40 \text{ m} \times 30 \text{ m} \times 12 \text{ m}$ The area of the floor = 40×30 Also given that each student requires 1.2 m^2 of the floor area. Thus, Maximum number of students = $\frac{40 \times 30}{1.2} = 1000$ Volume of the auditorium = $40 \times 30 \times 12 \text{ m}^3$ = Volume of air available for 1000 students Therefore, Air available for each student = $\frac{40 \times 30 \times 12}{1000} \text{ m}^3 = 14.4 \text{ m}^3$

Solution 3:

Length of longest rod=Length of the diagonal of the box

$$17 = \sqrt{12^2 + x^2 + 9^2}$$

$$17^2 = 12^2 + x^2 + 9^2$$

$$x^2 = 17^2 - 12^2 - 9^2$$

$$x^2 = 289 - 144 - 81$$

$$x^2 = 64$$

$$x = 8 \text{ cm}$$

Solution 4:

(i)

No. of cube which can be placed along length = $\frac{30}{3}$ = 10.

No. of cube along the breadth = $\frac{24}{3} = 8$

No. of cubes along the height = $\frac{15}{3} = 5$.

(ii)

Cubes along length = $\frac{30}{4}$ = 7.5 = 7

Cubes along width = $\frac{24}{4}$ = 6 and cubes along height = $\frac{15}{4}$ = 3.75 = 3

∴ The total no. of cubes placed = 7 × 6 × 3 = 126

(iii)

Cubes along length = $\frac{30}{5}$ = 6

Cubes along width = $\frac{24}{5}$ = 4.5 = 4 and cubes along height = $\frac{15}{5}$ = 3

:. The total no. of cubes placed = 6 × 4 × 3 = 72

Solution 5:

Vol. of the tank= vol. of earth spread

$$4 \times 6^{3} \text{ m}^{3} = (112 \times 62 - 4 \times 6^{2}) \text{ m}^{2} \times \text{Rise in level}$$

Rise in level =
$$\frac{4 \times 6^{3}}{112 \times 62 - 4 \times 6^{2}}$$
$$= \frac{864}{6800}$$
$$= 0.127 \text{ m}$$
$$= 12.7 \text{ cm}$$

Solution 6:

Let a be the side of the cube. Side of the new cube=a+3 Volume of the new cube=a³ +2457 That is, $(a+3)^3 = a^3 +2457$ $\Rightarrow a^3 + 3 \times a \times 3(a+3) + 3^3 = a^3 + 2457$ $\Rightarrow 9a^2 + 27a + 27 = 2457$ $\Rightarrow 9a^2 + 27a - 2430 = 0$ $\Rightarrow a^2 + 3a - 270 = 0$ $\Rightarrow a^2 + 18a - 15a - 270 = 0$ $\Rightarrow a(a+18) - 15(a+18) = 0$ $\Rightarrow a(a+18) - 15(a+18) = 0$ $\Rightarrow a - 15 = 0 \text{ or } a + 18 = 0$ $\Rightarrow a = 15 \text{ or } a = -18$ $\Rightarrow a = 15 \text{ cm} [since side cannot be negative]$

Volume of the cube whose side is $15 \text{ cm} = 15^3 = 3375 \text{ cm}^3$ Suppose the length of the given cube is reduced by 20%.

Thus new side
$$a_{new} = a - \frac{20}{100} \times a$$

= $a \left(1 - \frac{1}{5} \right)$
= $\frac{4}{5} \times 15$
= 12 cm

Volume of the new cube whose side is 12 cm=12 $^{\rm 3}$ =1728 cm $^{\rm 3}$ Decrease in volume=3375 – 1728 =1647 cm $^{\rm 3}$

Solution 7:

The dimensions of rectangular tank:30 cm× 20 cm× 12 cm Side of the $\alpha be=10$ cm

Volume of the cube $=10^3 = 1000 \text{ cm}^3$

The height of the water in the tank is 6 cm.

Volume of the cube till 6cm = $10 \times 10 \times 6 = 600$ cm³

Hence when the cube is placed in the tank,

then the volume of the water increases by 600 cm³.

The surface area of the water level is 30 cm × 20 cm = 600 cm² Out of this area, let us subtract the surface area of the cube. Thus, the surface area of the shaded part in the above figure is 500 cm² The displaced water is spreaded out in 500 cm² to a height of 'h' cm. And hence the volume of the water displaced is equal to the volume of the part of the cube in water. Thus, we have, 500×h=600 cm³ $\Rightarrow h = \frac{600}{500}$ cm ⇒h=1.2 cm Thus, now the level of the water in the tank is =6+1.2=7.2 cm Remaining height of the water level, so that the metal cube is just submerged in the water =10-7.2=2.8 cm Thus the volume of the water that must be poured in the tank so that the metal cube is just submerged in the water=2.8×500=1400 cm³ We know that 1000 cc=1 litre

Thus, the required volume of water= $\frac{1400}{1000}$ = 1.4 litres.

Solution 8:

The dimensions of a solid cuboid are:72 cm, 30 cm, 75 cm Volume of the cuboid=72 cm× 30 cm× 75 cm=162000 cm³ Side of a cube=6 cm Volume of a cube=6³ = 216 cm³ The number of cubes= $\frac{162000}{216}$ = 750 The surface area of a cube=6a² = 6× 6² = 216 cm² Total surface area of 750 cubes=750×216=162000 cm² Total surface area in square metres= $\frac{162000}{10000}$ =16.2 square metres Rate of polishing the surface per square metre=Rs.150 Total cost of polishing the surfaces=150×16.2=Rs.2430

Solution 9:

The dimensions of a car petrol tank are:50 cm \times 32 cm \times 24 cm Volume of the tank=38400 cm³ We know that 1000 cm³ = 1 litre Thus volume of the tank= $\frac{38400}{1000}$ = 38.4 litres The average consumption of the car=15 Km/litre Thus, the total distance that can be covered by the car=38.4 \times 15=576 Km

Solution 10:

Given dimensions of a rectangular box are in the ratio 4:2:3 Therefore, the total surface area of the box= $2[4x \times 2x + 2x \times 3x + 4x \times 3x]$ $= 2(8x^2 + 6x^2 + 12x^2) m^2$ Difference between cost of covering the box with paper at Rs.12 per m² and with paper at Rs.13.50 per m² = Rs.1,248 ⇒52x²[13.5-12]=1248 \Rightarrow 52××²×1.5 = 1248 $\Rightarrow 78 \times x^2 = 1248$ $\Rightarrow x^2 = \frac{1248}{78}$ $\Rightarrow x^2 = 16$ $\Rightarrow x = 4$ [Length, width and height cannot be negative] Thus, the dimensions of the rectangular box are: 4×4 m, 2×4 m, 3×4 m Thus, the dimensions are 16 m, 8 m and 12 m.