Short Answer Type Questions – II

[3 marks]

Q. 1. Write the cations and anions present (if any) in the following compounds:

(a) CH₃COONa (b) NaCl (C) H₂

(d) NH₄NO₃

Ans. Anions Cations

(a) CH₃COO Na⁺

(b) Cl Na⁺

(c) H₂ - It is a covalent compound

NH⁺ (d) NO₃

Q. 2. Calculate the mass percentage of oxygen present in the following compounds and state the law of chemical combination associated. Given, H = 1, O = 16.

(i) Water (H_2O) and (ii) Hydrogen peroxide (H_2O_2)

Ans. According to Law of multiple proportions

(i) H₂O, % of O = $x \frac{16}{18} 100 = 88.89\%$

(ii) H₂0₂, % of O = $\frac{32}{34}$ x 100 = **94.12%**

Q.3. Classify each of the following on the basis of their atomicity.

(a) F2	(b) NO ₂	(c) CO ₂ –	(d) C ₂ H ₆
(e) CO	(f) H ₂ O ₂	(g)	P4O10 (h) O3
(i) HCI	(j) CH4	(k) He	(I) Ag
Ans. (a) 2	(b) 3	(c) 4	(d) 8
(e) 2	(f) 4	(g) 14	(h) 3
(i) 2	(j) 5		

(k) 1 (Noble gases do not combine and exist as monoatomic gases)

(I) **Polyatomic:** It is difficult to talk about the atomicity of metals as any measurable quantity will contain millions of atoms bound by metallic bond.

Q.4. Calculate the molecular mass of the following: (a) H_2CO_3 (b) C₂H₅OH (c) MgSO₄

Ans. (a) Molecular mass of $H_2CO_3 = 2 \times 1 + 1 \times 12 + 3 \times 16$

= 2 + 12 + 48= 62 u (b) Molecular mass of $C_2H_5OH = 2 \times 12 + 5 \times 1 + 1 \times 16 + 1$ = 24 + 5 + 16 + 1= 46 u (c) Molecular mass of MgSO4 = $1 \times 24 + 1 \times 32 + 4 \times 16$ = 24 + 32 + 64= 120 u

Q.5. What are ionic and molecular compounds? Give examples.

Ans. Atoms of different elements join together in definite proportions to form molecules of compounds. For example, water, ammonia, carbon dioxide. Compounds composed of metals and non-metals contain charged species. The charged species are known as ions. An ion is a charged particle and can be negatively or positively charged. A negatively charged ion is called an anion and the positively charged ion is called cation. For example, sodium chloride, calcium oxide.

Q.6. Give three significance of mole.

Ans. (a) One mole represents 6.022×10^{23} entities of a substance.

(b) One mole of an element contains 6.022x 10²³ atoms of the element.

(c) One mole of a substance represents one gram formula mass of the substance.

Q.7. How many (a) molecules (b) hydrogen atoms (c) oxygen atoms are there in 0.5 mol of water?

Ans. (a) 1 mol of water contains 6.022×10^{23} molecules

• 0.5 mol of water contains
$$\frac{6.022 \times 10^{23}}{2}$$
 molecules

= 3.011 x 10²³ molecules

(b) 1 molecule of water contains 2 atoms of hydrogen

1 mol of water contains $2 \times 6.022 \times 10^{23}$ atoms of hydrogen

$$\therefore \quad 0.5 \text{ mol of water contains } \frac{2 \times 6.022 \times 10^{23}}{2} \text{ atoms of hydrogen}$$

= 6.022×10^{23} atoms of hydrogen

(c) 1 molecule of water contains 1 atom of oxygen

1 mol of water contains 6.022 x 10²³ atoms of oxygen

of water contains
$$\frac{6.022 \times 10^{23}}{1000}$$
 atoms

of oxygen 0.5 mol 1 contains <u>-----</u> ato

Q.8. Calculate the number of moles present in:

(i) 3.011 x 10²³ number of oxygen atoms.

(ii) 60 g of calcium [Given that atomic mass of Ca = 40 u, Avogadro No. = 6.022×10^{23}]

Ans. (i) 1 mole of oxygen contains 6.022×10^{23} atoms $\therefore \quad 6.022 \times 10^{23}$ atoms of oxygen = 1 mol 1 atom of oxygen = $\frac{1}{6.022 \times 10^{23}}$ mol $\therefore \quad 3.01 \ 1 \times 10^{23}$ atoms of oxygen = $\frac{1 \times 3.011 \times 10^{23}}{6.022 \times 10^{23}}$ mol

= 0.5 mol

(ii) Atomic mass of Ca = 40 u 40g of calcium = 1 mol 60g of calcium = $\frac{60}{40}$ mol = **1.5 mol**

Q.9. Calculate the mass per cent of each element of sodium chloride in one mole of it.

Ans. Molecular mass of NaCl = $(1 \times 23 + 1 \times 35.5)$ u = 58.5 u Atomic mass of sodium = 23 u Mass per cent of Na = $\frac{\text{Atomic mass of Na}}{\text{Molecular mass of NaCl}} \times 100$

$$=\frac{23}{58.5} \times 100 = 39.32\%$$

Mass % of Na = 39.32 % Atomic mass of chlorine = 35.5 u

Mass % of Cl = $\frac{\text{Atomic mass of Cl}}{\text{Molecular mass of NaCl}} \times 100$ $= \frac{35.5}{58.5} \times 100 = 60.68 \%$

Q. 10. Calculate the number of particles in each of the following:
(a) 46 g of Na atom
(b) 8 g of O₂ molecules
(c) 0.1 moles of carbon atom

Ans. (a) No. of moles of sodium = $\frac{46}{23}$ = 2 moles We know that one mole of sodium contains 6.022 x 10²³ atoms. $\therefore 2 \text{ moles of sodium contain} = 2 \times 6.022 \times 10^{23} \text{ atoms}$ $= 1.204 \times 10^{24} \text{ atoms}$

(b) 1 mole of oxygen = 32 g

32 g of O2 contains 6.022 x 1023 molecules

 $\therefore \quad 8 \text{ g of } O_2 \text{ contains} = \frac{6.022 \times 10^{23}}{32} \text{ x 8 molecules}$

= 1.51 x 10²³ molecules

(c) 1 mole of carbon atoms contains 6.022 × 1023 atoms

 \therefore 0.1 mole of carbon atoms contains = 6.022 x 1023 x 0.1 atoms

= 6.022 x 10²² atoms

Q. 11. Raunak took 5 moles of carbon atoms in a container and Krish also took 5 moles of sodium atoms in another container of same weight.

(a) Whose container is heavier?

(b) Whose container has more number of atoms?

Ans. (a) Mass of sodium atoms carried by Krish = (5×23) g = 115 g

Mass of carbon atoms carried by Raunak = (5×12) g = 60 g

Thus, Krish's container is heavier.

(b) Both the bags have same number of atoms as they have same number of moles of atoms.