# SAMPLE OUESTION CAPER

# **BLUE PRINT**

# Time Allowed : 3 hours

# Maximum Marks: 80

| S. No. | Chapter                          | VSA/Case based<br>(1 mark) | SA-I<br>(2 marks) | SA-II<br>(3 marks) | LA<br>(5 marks) | Total  |
|--------|----------------------------------|----------------------------|-------------------|--------------------|-----------------|--------|
| 1.     | Relations and Functions          | 3(3)                       | _                 | 1(3)               | _               | 4(6)   |
| 2.     | Inverse Trigonometric Functions  | _                          | 1(2)              | _                  | _               | 1(2)   |
| 3.     | Matrices                         | 2(2)#                      | 1(2)*             | _                  | _               | 3(4)   |
| 4.     | Determinants                     | 1(1)                       | _                 | _                  | 1(5)*           | 2(6)   |
| 5.     | Continuity and Differentiability | 1(1)                       | 1(2)*             | 2(6)#              | _               | 4(9)   |
| 6.     | Application of Derivatives       | 1(1)*                      | 2(4)              | 1(3)*              | _               | 4(8)   |
| 7.     | Integrals                        | 2(2)#                      | 1(2)*             | 1(3)               | _               | 4(7)   |
| 8.     | Application of Integrals         | _                          | 1(2)              | 1(3)               | _               | 2(5)   |
| 9.     | Differential Equations           | 1(1)                       | 1(2)              | 1(3)               | _               | 3(6)   |
| 10.    | Vector Algebra                   | 3(3)#                      | _                 | _                  | _               | 3(3)   |
| 11.    | Three Dimensional Geometry       | 1(4)                       | 1(2)              | _                  | 1(5)*           | 3(11)  |
| 12.    | Linear Programming               | -                          | _                 | _                  | 1(5)*           | 1(5)   |
| 13.    | Probability                      | 2(2)# + 1(4)               | 1(2)              | _                  | -               | 4(8)   |
|        | Total                            | 18(24)                     | 10(20)            | 7(21)              | 3(15)           | 38(80) |

\*It is a choice based question.

<sup>#</sup>Out of the two or more questions, one/two question(s) is/are choice based.

# Subject Code : 041

# MATHEMATICS

# Time allowed : 3 hours

# **General Instructions :**

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

# Part - A :

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

# Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

# PART - A

# Section - I

1. Suppose *P* and *Q* are two different matrices of order  $3 \times n$  and  $n \times p$ , then find the order of the matrix  $P \times Q$ .

OR

Simplify: 
$$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

2. Write the general solution of differential equation  $\frac{dy}{dx} = e^{x+y}$ .

3. Prove that the function  $f(x) = \log(1+x) - \frac{2x}{2+x}$  is increasing on  $(-1, \infty)$ . OR

Find the equation of the tangent to the curve  $y^2 = 4ax$  at the point  $(at^2, 2at)$ .

4. Let A = {a, b, c} and R be the relation defined on A as follows:
R = {(a, a), (b, c), (a, b)}.

Write minimum number of ordered pairs to be added to R to make R reflexive and transitive.

5. Evaluate :  $\int \frac{x^3 - x^2 + x - 1}{x - 1} dx$ 

OR

Evaluate :  $\int (4x^3 + 3x^2 + 2x + 4)dx$ 6. If  $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ , then find the value of y.

7. If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the direction angles of a vector and  $\cos \alpha = \frac{14}{15}$ ,  $\cos \beta = \frac{1}{3}$ , then find  $\cos \gamma$ .

8. Find the area of the parallelogram whose adjacent sides are  $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$  and  $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ .

OR

If  $\vec{a}$  and  $\vec{b}$  are two vectors such that  $|\vec{a}| = 10$ ,  $|\vec{b}| = 15$  and  $\vec{a} \cdot \vec{b} = 75\sqrt{2}$ , then find the angle between  $\vec{a}$  and  $\vec{b}$ .

**9.** Two cards are drawn at random and one-by-one without replacement from a well-shuffled pack of 52 playing cards. Find the probability that one card is red and the other is black.

# OR

When will be two events A and B independent?

- 10. Find the derivative of  $(4x^3 5x^2 + 1)^4$  w.r.t. to *x*.
- **11.** Show that the relation *R* on the set  $\{1, 2, 3\}$  given by  $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$  is reflexive but neither transitive nor symmetric.
- **12.** Find the value of  $\int_0^{2\pi} |\sin x| dx$ .
- 13. Using determinants, find the area of triangle with vertices (2, -7), (1, 3), (10, 8).
- 14. If  $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$  and  $|\vec{a}| = 5$ , then write the value of  $|\vec{b}|$ .
- **15.** Four cards are drawn successively without replacement from a deck of 52 cards. Find the probability that all the four cards are king.
- **16.** If f(x) = [|x|], where  $[\cdot]$  is the greatest integer function, then find f(-5/4).

# Section - II

# Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. Suppose you visit to a hotel with your family and you observe that floor of a hotel is made up of mirror polished Kota stone. Also, there is a large crystal chandelier attached at the ceiling of the hotel. Consider the floor of the hotel as a plane having equation 3x - y + 4z = 2 and crystal chandelier as the point (3, -2, 1).



Based on the above information, answer the following questions:

- (i) The d.r.'s of the perpendicular from the point (3, -2, 1) to the plane 3x y + 4z = 2, is (a) <3, 1, 4 > (b) <3, -1, 4 > (c) <4, 1, 3 > (d) <4, -1, 3 >
- (ii) The length of the perpendicular from the point (3, -2, 1) to the plane 3x y + 4z = 2, is

(a) 
$$\sqrt{13}$$
 units (b)  $\frac{1}{2}\sqrt{13}$  units (c)  $\sqrt{\frac{13}{2}}$  units (d)  $\frac{13}{\sqrt{2}}$  units

(iii) The equation of the perpendicular from the point (3, -2, 1) to the plane 3x - y + 4z = 2, is

(a) 
$$\frac{x-3}{3} = \frac{y-2}{-1} = \frac{z-1}{4}$$
 (b)  $\frac{x-3}{3} = \frac{y+2}{-1} = \frac{z-1}{4}$  (c)  $\frac{x+3}{3} = \frac{y+2}{-1} = \frac{z-1}{4}$  (d) None of these (iv) The foot of the perpendicular drawn from the point (3, -2, 1) to the plane  $3x - y + 4z = 2$ , is

(a) 
$$\left(\frac{3}{2}, \frac{-3}{2}, -1\right)$$
 (b)  $\left(\frac{-3}{2}, \frac{3}{2}, -1\right)$  (c)  $\left(\frac{3}{2}, \frac{3}{2}, -1\right)$  (d)  $\left(\frac{1}{2}, \frac{3}{2}, -1\right)$ 

(v) The image of the point (3, -2, 1) in the given plane is
(a) (0, 1, 3)
(b) (0, -1, 3)
(c) (0, 1, -3)
(d) (0, -1, -3)

**18.** A factory has three machines *A*, *B* and *C* to manufacture bulbs. Machine *A* manufacture 25%, machine *B* manufacture 35% and machine *C* manufacture 40% of the bulbs respectively. Out of their respective outputs 5%, 4% and 2% are defective. A bulb is drawn at random from total production and it is found to be defective.



Based on the above information, answer the following questions :

(i) Probability that defective bulb drawn is manufactured by machine *A*, is

(a) 
$$\frac{41}{69}$$
 (b)  $\frac{25}{69}$  (c)  $\frac{16}{69}$  (d)  $\frac{69}{2000}$ 

(ii) Probability that defective bulb drawn is manufactured by machine *B*, is

(iii) Probability that defective bulb drawn is manufactured by machine *C*, is

(a) 
$$\frac{16}{69}$$
 (b)  $\frac{17}{69}$  (c)  $\frac{25}{69}$  (d)  $\frac{42}{49}$ 

(iv) Probability that defective bulb is not manufactured by machine *B*, is

(a) 
$$\frac{2}{69}$$
 (b)  $\frac{61}{69}$  (c)  $\frac{41}{69}$  (d)  $\frac{1}{7}$ 

(v) If a bulb is drawn at random, then what is the probability that bulb drawn is defective ?
(a) 0.03
(b) 0.09
(c) 0.3
(d) 0.9

# PART - B

# Section - III

**19.** If 
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$$
, then find the value of  $x^2 + y^2 + z^2 + 2xyz$ .

20. The equation of the line in vector form passing through the point (-1, 3, 5) and parallel to line  $\frac{x-3}{2} = \frac{y-4}{3}, z = 2$ .

**21.** Discuss the continuity of the function f(x) at  $x = \frac{1}{2}$ , when f(x) is defined as follows:

$$f(x) = \begin{cases} \frac{1}{2} + x, & 0 \le x < \frac{1}{2} \\ 1, & x = \frac{1}{2} \\ \frac{3}{2} + x, & \frac{1}{2} < x \le 1 \end{cases}$$

OR

If 
$$y = ae^{2x} + be^{-x}$$
, then show that  $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$ .

**22.** Solve the differential equation  $xe^{-y} dx + y dy = 0$ .

**23.** Evaluate :  $\int (1-x)(2+3x)(5-4x) dx$ 

OR

Evaluate : 
$$\int \frac{1}{x^2 + 2x + 10} dx$$

- **24.** Find the maximum value of slope of the curve  $y = -x^3 + 3x^2 + 12x 5$ .
- **25.** Find the points on the curve  $y = x^3 3x^2 4x$  at which the tangent lines are parallel to the line 4x + y 3 = 0.
- **26.** Find the area enclosed between the curve  $y = \sqrt{x-1}$ , the *x*-axis and the line x = 5.
- 27. Urn 1 contains 5 white balls and 7 black balls. Urn 2 contains 3 white and 12 black balls. A fair coin is flipped, if it is head, a ball is drawn from Urn 1, and if it is tail, a ball is drawn from Urn 2. Suppose that this experiment is done and a white ball was selected. What is the probability that this ball was in fact taken from Urn 2?

OR

**28.** If  $\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = 0$ , then find *x*.

Show that 
$$AB \neq BA$$
, where  $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ 

Section - IV

**29.** Solve the differential equation :  $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ ; y(0) = 1**30.** Evaluate :  $\int_0^{\pi/2} \frac{x}{\sin x + \cos x} dx$ 

**31.** For what choices of *a* and *b*, the function  $f(x) = \begin{cases} x^2, & x \le c \\ ax+b, & x > c \end{cases}$  is differentiable at x = c? OR

Differentiate ( $e^x \cos^3 x \sin^2 x$ ) w.r.t. *x*.

**32.** Let  $f: R \to R$  be defined by f(x) = x + |x|. Show that *f* is neither one-one nor onto.

#### Mathematics

**33.** Find the area enclosed between the circle  $x^2 + y^2 = 1$  and the line x + y = 1 lying in the first quadrant.

**34.** Find the equation of the normal to the curve  $y = 2 \sin^2 3x$  at  $x = \frac{\pi}{6}$ .

OR

Find the values of *x* for which the function  $f(x) = x^3 + 12x^2 + 36x + 6$  is decreasing.

35. If 
$$f(x) = \begin{cases} mx+1, & \text{if } x \le \frac{\pi}{2} \\ \sin x + n, & \text{if } x > \frac{\pi}{2} \end{cases}$$
 is continuous at  $x = \frac{\pi}{2}$ , then find the relation between *m* and *n*.

### Section - V

**36.** Use product  $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$  to solve the system of equations x + 3z = 9, -x + 2y - 2z = 4, 2x - 3y + 4z = -3.

OR

If 
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, then find  $A^2 - 5A + 4I$  and hence find a matrix X such that  $X = 5A - 4I - A^2$ .

37. Solve the following problem graphically.

r

Minimize  $Z = \frac{1}{1000} (1800000 + 30x - 30y)$ subject to constraints:  $0 \le x \le 15000$  $0 \le y \le 20000$  $15000 \le x + y \le 30000$ 

OR

Solve the following problem graphically. Maximize Z = x + ysubject to constraints:  $2x + 5y \le 100$   $\frac{x}{25} + \frac{y}{40} \le 1$  $x, y \ge 100$ 

**38.** Find the vector equation of the plane passing through the intersection of the planes  $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$  and  $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$  and the point (1, 1, 1).

#### OR

Find the vector and cartesian forms of the equation of the plane passing through the point (1, 2, -4) and parallel to the lines  $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$  and  $\vec{r} = \hat{i} - 3\hat{j} + 5\hat{k} + \mu(\hat{i} + \hat{j} - \hat{k})$ .