Sample Question Paper - 7 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.

Section A

1. Two taps running together can fill a tank in $3\frac{1}{13}$ hours. If one tap takes 3 hours more than the [2] other to fill the tank, then how much time will each tap take to fill the tank?

OR

Find the roots of the quadratic equation : $2x^2 + x + 4 = 0$ by applying the quadratic formula:

- 2. A boiler is in the form of a cylinder 2 m long with hemispherical ends each of 2 metre diameter. Find the volume of the boiler.
- 3. Given below is the frequency distribution of the heights of players in a school

Height(in cm)	160 - 162	163 - 165	166 - 168	169 - 171	172 - 174
Number of students	15	118	142	127	18

Find the modal height and interpret it.

- Find the common difference. Given a = first term = -18, n = 10, a_n = the nth term = 0, d = common difference =?
- 5. Find the value of p, if the mean of the following distribution is 7.5.

X	3	5	7	9	11	13
f	6	8	15	р	8	4

6. In the given figure, PA is a tangent from an external point P to a circle with centre O. If $\angle POB = 115^\circ$, find $\angle APO$.

Maximum Marks: 40

[2]

[2]

[2]

[2]

[2]

In the adjoining figure, BC is a common tangent to the given circles which touch externally at P. Tangent at P meets BC at A. If BA = 2.8 cm, then what is the length of BC?

Section B

- 7. If the sum of the first 14 terms of an A.P. is 1050 and its first term is 10, then find the 21st term [3] of the A.P.
- 8. A tower is 50m high. Its shadow is x metres shorter when the sun's altitude is 45° than when it [3] is 30° . Find the value of x. [Given $\sqrt{3}$ = 1.732.]

OR

The angle of elevation of the top of a tower from a point A on the ground is 30°. On moving a distance of 20 metre towards the foot of the tower to a point B the angle of elevation increases to

 60° . Find the height of the tower and the distance of the tower from the point A.

9. In a given figure, PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and [3]Q intersect at a point T. Find the length TP.

10. Solve:
$$rac{1}{(a+b+x)}=rac{1}{a}+rac{1}{b}+rac{1}{x}[x
eq 0,x
eq -(a+b)]$$

Section C

11. Draw a circle of radius 6 cm. Draw a tangent to this circle making an angle of 30° with a line [4] passing through the centre.

OR

Divide a line segment of length 10 cm internally in the ratio 3: 2.

12. The median of the following data is 16. Find the missing frequencies a and b if the total of [4] frequencies is 70.

Class	0 - 5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
Frequency	12	а	12	15	b	6	6	4

13. Let O be the center of the earth. Let A be a point on the equator, and let B represent an object [4] (e.g. a star) in space, as shown in the figure. If the earth is positioned in such a way that the angle $\angle OAB = 90^{\circ}$, then we say that the angle $\alpha = \angle OBA$ is the equatorial parallax of the object.

[3]

The equatorial parallax of the sun has been observed to be approximately $\alpha = 0.00244^{\circ}$. The radius of the earth is 3958.8 miles. Given: $\sin \alpha = 4.26 \times 10^{-5}$ and $\tan \alpha = 4.25 \times 10^{-5}$

i. Estimate the distance from the center of the earth to the sun.

- ii. Can we say in this problem points O and A are approximately the same points? If yes, how?
- 14. An 'ice-cream seller used to sell different kinds and different shapes of ice-cream like [4] rectangular shaped with one end hemispherical, cone-shaped and rectangular brick, etc. One day a child came to his shop and purchased an ice-cream which has the following shape: icecream cone as the union of a right circular cone and a hemisphere that has the same (circular) base as the cone. The height of the cone is 9 cm and the radius of its base is 2.5 cm.

By reading the above-given information, find the following:

- i. The volume of the ice-cream without hemispherical end.
- ii. The volume of the ice-cream with a hemispherical end.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

Section A

1. Two tap running together fill the tank in $3\frac{1}{13}$ hr.

 $= \frac{40}{13} \text{ hours}$ If first tap alone fills the tank in x hrs. Then second tap alone fills it in (x + 3) hr Now $\frac{1}{x} + \frac{1}{x+3} = \frac{13}{40}$ $\frac{x+3+x}{x(x+3)} = \frac{13}{40}$ $\frac{2x+3}{x^2+3x} = \frac{13}{40}$ $80x + 120 = 13x^2 + 39x$ or, $13x^2 - 41x - 120 = 0$ $13x^2 - (65 - 24)x + 120 = 0$ (x - 5)(13x + 24) = 0 $x = 5, x = -\frac{24}{13}$ time can't be negative Hence, 1st tap takes 5 hours and Ilnd tap takes = 5 + 3 = 8 hours

OR

We have given that $2x^2 + x + 4 = 0$ Comparing it with standard form of quadratic equation, $ax^2 + bx + c$ we get, a = 2, b = 1, c = 4 The roots are given as $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{[-1 \pm \sqrt{1 - 4(2)(4)}]}{2 \times 2} = \frac{-1 \pm \sqrt{1 - 32}}{4} = \frac{-1 \pm \sqrt{-31}}{4}$ This is not possible, Hence the roots do not exists.

According to the question,we are given that, Diameter of common base = 2 m

Then, radius of common base = $\frac{2}{2}$ = 1 m

Height of the cylinder = 2 m

Volume of boiler = Volume of cylinder + 2(Volume of hemisphere)

$$= \pi r^2 h + 2 \times \frac{2}{3} \pi r^3$$

= $\frac{22}{7} \times 1 \times 1 \times 2 + 2 \times \frac{2}{3} \times \frac{22}{7} \times 1 \times 1 \times 1$
= $\frac{44}{7} + \frac{88}{21}$
= $\frac{132 + 88}{21}$
= $\frac{220}{21} \text{m}^3$

3. The given data is an inclusive series. So, we convert it into an exclusive form, as given below.

Class	159.5 - 162.5	162.5 - 165.5	165.5 - 168.5	168.5 - 171.5	171.5 - 174.5
Frequency	15	118	142	127	18

Clearly, the modal class is 165.5 - 168.5 as it has the maximum frequency.

$$\therefore x_{k} = 165.5, h = 3, f_{k} = 142, f_{k-1} = 118, f_{k+1} = 127$$
Mode, $M_{0} = x_{k} + \left\{ h \times \frac{(f_{k} - f_{k-1})}{(2f_{k} - f_{k-1} - f_{k+1})} \right\}$

$$= 165.5 + \left\{ 3 \times \frac{(142 - 118)}{(2 \times 142 - 118 - 127)} \right\}$$

$$= 165.5 + \left\{ \frac{3 \times 24}{39} \right\}$$

$$= 165.5 + \frac{24}{13}$$

$$= 165.5 + 1.85$$

$$= 167.35 \text{ cm}$$

This means that height of maximum number of players in the school is 167.35 cm(approx.).

4. a = a + (n - 1)d

$$\Rightarrow 0 = -18 + (10 - 1)d$$

$$\Rightarrow 18 = 9d$$

$$\Rightarrow d = \frac{18}{9} = 2$$

	L L	9			
5.	x _i	f _i	$\int f_i x_i$		
	3	6	18		
	5	8	40		
	7	15	105		
	9	р	9р		
	11	8	88		
	13	4	52		
		$\sum f_i = 41 + p$	$\sum f_i x_i = 303 + 9p$		

$$\overline{\Sigma f_i = 41 + p, \Sigma f_i x_i = 303 + 9p}$$

$$\therefore \quad ext{Mean} = -$$

 $\Rightarrow \quad 7.5 = rac{303}{414}$

41 + p $\Rightarrow 7.5(41+p) = 303+9p$ \Rightarrow 307.5 + 7.5p = 303 + 9p \Rightarrow 9p - 7.5p = 307.5 - 303 \Rightarrow 1.5p = 4.5 \Rightarrow p =3

6.

We know that the tangent at a point to a circle is perpendicular to the radius passing through the point of contact.

 $\therefore \quad \angle OAP = 90^{\circ}$ Now, $\angle AOP + \angle BOP$ = 180° $\Rightarrow \angle AOP = 180^{\circ} - \angle BOP$ = 180° -115° = 65°. Now, $\angle OAP + \angle AOP + \angle APO = 180^{\circ}$ [sum of angles of a triangle is 180°] = 180° - (90° + 65°) = 25°. OR

Length of the tangents drawn from an external point to a circle are equal. $\therefore CA = BA = 2.8cm$...(i)

AB = AP = 2.8cm ...(ii) From equation (i) and (ii) : CA = AB = 2.8cmCB = CA = AB $\therefore BC = 2.8 + 2.8$ BC = 5.6 cm 7. Given, a = 10, and S₁₄ = 1050 Let the common difference of the A.P. be d we know that $S_n = rac{n}{2}[2a+(n-1)d]$ $\therefore S_{14} = rac{14}{2} [2 imes 10 + (14 - 1)d]$ 1050 = 7(20 + 13d) or 20 + 13d = $\frac{1050}{7}$ 20 + 13d = 150 13d = 150 - 20 13d = 130 $d = \frac{130}{13}$ d = 10 Now, a₂₁ = a + (n - 1)d = 10 + (21 - 1) 10 $= 10 + 20 \times 10$ = 10 + 190= 210

- Hence, a₂₀ = 210
- 8. Let PQ be the tower and let PA and PB be its shadows when the altitudes of the sun are 45° and 30° respectively. Then,

Section **B**

 $\begin{array}{l} \angle PAQ = 45^{\circ}, \angle PBQ = 30^{\circ}, \angle BPQ = 90^{\circ}, PQ = 50 \mathrm{m.} \\ \mathrm{Let} \ AB = x \ m. \\ \mathrm{From \ right} \ \Delta APQ, \ \mathrm{we \ have} \\ \frac{AP}{PQ} = \cot 45^{\circ} = 1 \\ \Rightarrow \ \frac{AP}{50\mathrm{m}} = 1 \Rightarrow AP = 50 \mathrm{m.} \\ \mathrm{From \ right} \ \Delta BPQ, \ \mathrm{we \ have} \\ \frac{BP}{PQ} = \cot 30^{\circ} = \sqrt{3} \Rightarrow \ \frac{x+50}{50} = \sqrt{3} \Rightarrow \quad x = 50(\sqrt{3}-1). \\ \Rightarrow \ x = 50(1.732-1) = (50 \times 0.732) = 36.6 \\ \mathrm{Hence}, \ x = 36.6 \end{array}$

OR

Let height of tower be h m and distance BC be x m In riangle DBC, $rac{h}{x}= an 60^\circ$

 $\Rightarrow h = \sqrt{3x} \dots (i)$ $\frac{h}{x+20} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\Rightarrow \sqrt{3h} = x + 20 \dots (ii)$ Substituting the value of h from eq. (i) in eq. (ii), we get 3x = x + 20 3x - x = 20Or 2x = 20 $\Rightarrow x = 10 m \dots (iii)$ Again $h = \sqrt{3x}$ or, $h = \sqrt{3} \times 10 = 10\sqrt{3}$ $= 10 \times 1 \cdot 732$ = 17.32 m[from (i) and (in)]
Hence, height of tower is 17.32 m and distance of
tower from point A is 30 m

Let TR be x cm and TP be y cm
OT is perpendicular bisector of PQ
So PR = 4 cm (PR =
$$\frac{PQ}{2} = \frac{8}{2}$$
)
In \triangle OPR, OP² = PR² + OR²
S² = 4² + OR²
OR = $\sqrt{25 - 16}$
 \therefore OR = 3 cm
In \triangle PRT, PR² +RT² = PT²
y² = x² + 4²(1)
In \triangle OPT, OP² + PT² = OT²
(x + 3)² = 5² + y² (OT = OR + RT = 3 + x)
 \therefore (x + 3)² = 5² + x² + 16 [using (1)]
Solving, we get x = $\frac{16}{3}$ cm
From (1), y² = $\frac{256}{9}$ + 16 = $\frac{400}{9}$
So, y = $\frac{20}{3}$ cm = 6.667 cm
10. Given,
 $\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
 $\Rightarrow \frac{-(a+b)}{x(a+b+x)} = \frac{(a+b)}{ab}$
On dividing both sides by (a+b)
 $\Rightarrow \frac{-1}{x(a+b+x)} = \frac{1}{ab}$
Now cross multiply
 \Rightarrow x(a + b + x) = -ab
 \Rightarrow x(x + a) + b(x + a) = 0
 \Rightarrow (x + a) (x + b) = 0
 \Rightarrow x + a = 0 or x + b = 0
 \Rightarrow x = -a or x = -b.

Therefore, -a and -b are the roots of the equation.

11. Steps of construction

STEP I Draw a circle with centre O and radius 3 cm.

STEP II Draw a radius OA of this circle and produce it to B.

STEP III Construct an angle $\angle AOP$ equal to the complement of 30° i.e. equal to 60°. **STEP IV** Draw perpendicular to OP at P which intersects OA produced at Q Clearly, PQ is the desired tangent such at $\angle OQP = 30^\circ$

OR

We follow the following steps of construction.

Steps of construction

STEP I Draw a line segment AB = 10 cm by using a ruler. **STEP II** Draw a ray AX making an acute angle $\angle BAX$ with AB. **STEP III** Along AX, mark-off 5 (= 3 + 2) points A₁, A₂, A₃, A₄ and A₅ such that

 $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$(1)

STEP IV Join points $B \& A_5$.

STEP V Through A₃ draw a line A₃P parallel to A₅ B by drawing angle AA₃P equals to angle AA₅B. A₃P

intersects AB at point P. Since, AA₃ : A₃A₅ = 3:2 [from(1) & figure] . Thus, AP : PB = 3:2. (due to symmetry) Hence, point P divides AB internally in 3:2.

12. Let the missing frequencies are a and b.

Class Interval	Frequency f _i	Cumulative frequency
0 - 5	12	12
5 - 10	а	12 + a
10 - 15	12	24 + a
15 - 20	15	39 + a
20 - 25	b	39 + a + b
25 - 30	6	45 + a + b
30 - 35	6	51 + a + b

Then, 55 + a + b = 70 $a + b = 15 \dots (1)$ Median is 16, which lies in 15 - 20 So, The median class is 15 - 20 Therefore, l = 15, h = 5, N = 70, f = 15 and cf = 24 + a Median is 16, which lies in the class 15 - 20. Hence, median class is 15 - 20. $\therefore l = 15, h = 5, f = 15, c. f. = 24 + a$ Now, Median = $l + \left\{ h \times \frac{\left(\frac{N}{2} - cf\right)}{f} \right\}$ $\therefore 16 = 15 + \left\{5 imes rac{35 - 24 - a}{15}
ight\}$ $\Rightarrow 16 = 15 + \left\{ rac{11-a}{3}
ight\}$ $\Rightarrow 1 = \frac{11-a}{3}$ $\Rightarrow 3 = 11 - a$ $\Rightarrow a = 8$ Now, 55 + a + b = 70 \Rightarrow 55 + 8 + b = 70 $\Rightarrow 63 + b = 70$ $\Rightarrow b = 7$ Hence, the missing frequencies are a = 8 and b = 7. 13. i. Given: $\alpha = 0.00244^{\circ}$ OA = Radius of the earth = 3958.8 miles

Since $\angle OAB = 90^{\circ}$, we have $\sin \alpha = \frac{OA}{OB}$ $OB = \frac{OA}{\sin \alpha} = \frac{3958.8}{\sin 0.00244} = 92960054.1 = 93 \text{ million (approx)}$ So, the distance from the center of the earth to the sun is approximately 93 million miles.

ii. Now, $\tan \alpha = \frac{OA}{AB}$ AB = $\frac{OA}{\tan \alpha} = \frac{3958.8}{\tan 0.00244} = 92960054.02 = 93$ million (approx)

As, OB and AB are approx equal, so we can say points O and A are approximately the same points in this problem.

14. For cone, Radius of the base (r)

$$= 2.5 \text{cm} = \frac{3}{2} \text{cm}$$
Height (h) = 9 cm
∴ Volume = $\frac{1}{3}\pi r^2 h$
= $\frac{1}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times 9$
= $\frac{825}{14} \text{cm}^3$

For hemisphere, Radius (r) = 2.5cm = $\frac{5}{2}$ cm

W

- :. Volume = $\frac{2}{3}\pi r^3$ = $\frac{2}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} = \frac{1375}{42} \text{ cm}^3$
 - i. The volume of the ice-cream without hemispherical end = Volume of the cone $= \frac{825}{14} \text{ cm}^3$
- ii. Volume of the ice-cream with hemispherical end = Volume of the cone + Volume of the hemisphere $= \frac{825}{14} + \frac{1375}{42} = \frac{2475 + 1375}{42}$ $= \frac{3850}{42} = \frac{275}{3} = 91\frac{2}{3}\text{ cm}^{3}$