Probability
—_\

5.1 Some Fundamental Concepts

Sample Space and Event: Consider an experiment whose outco
an experiment is called a random experiment. However, although th
known in advance, let us suppose that the set of all possible outcomes i
of an experiment is known as the sample space of experiment and i

Some examples follows:

me is not predictable with certainty. Such
e outcome of the experiment will not be

s known. This set of all possible outcomes
s denoted by S.

(i) If the outcome of an experiment consist in the determination of the sex of a newborn child, then
S = {g, b} where the outcome g means that the child is a girl and b is the boy.
(if) If the outcome of an experiment consist of what comes up on a single dice,thenS=(1,2, 3, 4,5, 6}
(iii) If the outcome of an experiment is the order of finish in a race among the 7 horses having post
positions 1, 2, 3, 4, 5, 6, 7; then S = {all 7! permutations of the (1, 2, 3, 4, 5, 6, 7))
The outcome (2, 3, 1, 6, 5, 4, 7) means, for instances, that the number 2 horse comes in first, then the
number 3 horse, then the number 1 horse, and so on. -
Any subset E of the sample space is known as Event. That is, an event is a set consisting of some or all
of the possible outcomes of the experiment.
’ If the outcome of the experiment is contained in E, then we say that E has occurred. Always E ¢ S.
Since E and S are sets, theorems of set theory may be effectively used to represent and solve probability
i ore complicated. . " _
problemsE:v:;;zrsta:ll'rr\‘ the preceding example - (i) If £, = {g], then E, is the event that the child is a girl.
i i = {b}.
S]m“aﬂy!' iftﬁé ev{er}mt that the child is a boy. These are examples of simple events. Compounded events
e ;Ez .sre than one outcome. Suchas E = {1, 3, 5) for an experiment of throwing a dice. We say event
may consist of mo -
" ice comes up orsora. .
E has happened i thzsénts E and F of a sample space S, we define the new event E U F to consists of all
For any twonher in E orin Forin both E and F. That is, the event E u F will occur if either E or F or both
outcomes that are:es in dice example (i) ifevent E, = {1, 2) and E,={3,4},thenEUF= (1,23, 4).
occurs. For instances,



Ty
Thatis E U Fwould be another event consisting of 1 or 2 or 3 or 4, TheeventE UF s called

) union gf Bvent
E and the event F. Similarly, for any two events E and F we may also define the new eventENF calle

d intarsection
of E and F, to consists of all outcomes that are common to both E and F,
S S
3 F e, ;

S S

(c) Shaded region : E© (d)EcF

(a) Shaded region: E U F (b) Shaded region: En F

Mutually Exclusive Events

Two events E and F are mutually exclusive, if E A F = die P

(ENF)=0. In other words,
cannot occur and if F ocours, then E Cannot occur (i.e. both cannot oc

if Eoccurs,
cur together).

Collectively Exhaustive Events

outcomes, P(E UF) = P(S) = 1

DeMorgan’s Law
N = eodim P w .
@ (;Ei] e (6) [gﬁ-) o
Example: (€, U £, = EC AES (EUEC=EF UEF

Note that £7 ~ EC is called neither Eynor E,. E, UF, is called either E, or E, (or both)

5.1.1 Approaches to Probability
There are 2 approaches to quantifying probability of an Event E.

approaches is the frequency approac
occurrence of E.

. n , :
P(E) = Iﬁ'ﬂ—:(\jﬂ where N is the number of times ®xp is performed & n(E) s the no of times the event

E oceurs,

5.1.2 Axioms of Probability

Consider an experiment whose sample space s S. For each ey
that a number P(E) is defined and satisfies the following three axioms,



axdom-2: P(8) = 1 |
Axiom-3: For any sequence of mutually exclusive events E,, E,, .....(that is, events for which £, N E;=¢

i=

foe)- s
gxample: PXEy Y E,) = P(E,) + P(E,) (E,, E, are mutually exclusive)

some simple Propositions

Itis to be noted that E and E° are always mutually exclusive and since E u E° = S. We have by Axiom-
(3)that: PEVE?) = P(E) + P(E%) =P(S) =1

proposition-1: P(E%) = 1-P(E)

proposition-2: If E < F, then P(E) < P(F)

Proposition-3: P(EwF)=P(E) + P(F)-P(ENF)

prop - 3 is more general then axiom 3, since here E & F need not be mutually exclusive

Prop - 3 reduces to axiom - 3 when E, F mutually exclusive (ENF = ¢)

Prop - 3 may be extended for union of more sets as follows:

PEVFUG)=P(E) +P(F) + P(G) - PENF)-PENG)+PENFNG)

2) and

513 Conditional Probability

PENF)
EF = "p[
E/F is called the conditional probability of E given F.

A coin is flipped twice. What is the conditional probability that both flips
result in heads, given that the first flip does?

Solution:

PENF)
E/fF= 55—
F="rp
i.e. P (both are heads | first is heads)

P(bothheads & firstishead)
P(firstishead)

_ P(bothheads) _ V4 _1
~ “P(firsthead) 12 2
- —— -
514 The Multiplication Rule
P(E, N Ey) = PIE)) " PLEE)) {B:1)
= P(E,)* P(E,/E)) .. (5.2)

Notice that (1) and (2) can pe obtained from the following conditional probability formulas after cross

multiplication. P(EynEy)
_P(ENE P(E\nE,)
AEIE) = —pE) 20 AE[E)=—5r?
P(Ey) et P(ER)



5.1.5 Rule of Total Probability and Bayes Theorem

Consider an event E which occurs via two different events A and B. Furth

; : . er
mutually exclusive and collectively exhaustive events, This situation may be represente More, Let A

and
dby foliowing i 1, o b

o diagra-»;

Bna_PEB__

Now, the probability of E js given by value of total probability as:
PE) = P(AnE)+P(BnE)
= P(A)* P(E/A) + P(B) *(E/B)

Sometimes we wish to know that, given that the event E has alread ' :
oceurr .
it occurred with A? y occurred, what is the Probabifty 4,

i.e. PA|E) = P(AnE) _ P(ANE)
PE) P(ANE)+P(BNE)
P(A)*P(EA)

~ P(APEA)+PE) PED

Notice that the denominator of Bayes theorem formula is obtained Dy using rule of total probability,

Suppose we have 2 bags. Bag 1 contains 2 red and 5 green marbles. Bag 2
contains 2 red and 6 green marbles. A person tosses a coin and if it is heads goes to bag 1 and draws
a marble. If it is fails he goes to bag 2 and draws a marble. In this situation.

1. What is the probability that the marble drawn this is Red?
2. Given that the marble draw is red, what is probability that it came from bag 1.

Solution:

The tree diagram for above problem,

1. - & P(Red) = 1/2x 2/7 + 1/2 + 2/8 1y o Bag 2 _
P(bag1 |Red P(baginRed)

= (bag1{Red) = P(Red) 12 218

Bag2 ———— Red

yZX% = ) = 8/15
%x%x%x% %6

5.1.6 IndependentEvents

Two events are said to be independent if equation (A) holds.
P(ENF) = P(E)*P(F)

Two events are said to be dependent if they are not independent.

Also it E and F are independent

(A

PENF) _ P(E)xP(F)
FIEIF) = (P(F))= PE)

Similarly, PEIF) = P(F)

= P(E)




" I scaled conditional probabllity of E given F and P (E) in called marginal probabilty of £
! of Eto

gt from P(EIF)
dgsllﬂﬂUP(F) |gtho marginal probabliity of F.

jo: Acard s selected at random from an ordinary deck of 52 playing cards. If E s the event that
: a

oclod card Is @n aco and F is the event that itis a spade, then
gl0%

0o
P(E ~F) = P(Ace and Spade) = —
2

_ 4
P(E) = P(Ace) = % and P(F) = P(Spade) = %
Here, P(ENF) = P(F)*P(F)
. EandF independent.
proposition: f Eand F are independent, then so are E and FC, EC & F, E® & F°
Condttion for three Events to be Independent: The events E, F ad G' " ; ,
P(EFG) = P(E) P(F) P(G) ' are said to be independent i
dPER=PO PP [EFRG
and PEG)=PE) PG) |painwise
and PFG)=P(F) PG) |independent
it should be noted that if E, F and G are independent, then E will be independent of any event formed

rom F and G. For instance, E is independent of FU G.

52 Mean

Arithmetic Mean
The formula for calculating the arithmetic mean is: x = —n£

7 -arithmetic mean

x-refers to the value of an observation

n-number of observations.

The number of visits made by ten motherstoa clinicwere86557459 TF

Calculate the average number of visits.

Solution:
Tx = total of all these numbers of visits, tha
8+6+5+5+7+4+5+9+7+4=60
Number of mothers n = 10

t is the total number of visits made by all mothers.

|
2

e

The Arithmetic Mean of a Frequency pistribution
Jated from a frequency distribution has to be amended to

The formula for the arithmetic mean calcu
mes.

include the frequency- It beco
| 5(fx)

if

x|



Arithmetic Mean of a Grouped Data

To show how wo can calculate the arithmetic

mean of a grouped frequency e
of weights of 75 plgs, The classes and frequencios

tributjm, there 836
are glven in following table: i

Yatrg,
Midpoint ["Number of T——
Welght(kg) | of clagg pigs fx
x (frequoncy)

Under 20 ~15 1 15 |
20&under30 | 25 7 175 |
30 & under 40 35 8 280 |
408&under 40 | 45 11 495 |
50 & under60 | &5 19 (1045
60&under70 | 65 10 650
70&undergo [ 75 7 525 |
80&undergo | g5 5 [ 425

90 & under 105 95 4 380 |
[ Over100 ~105 3 215
Total 75 4305

median.

Median is the central value in a sense different from the arit
itis the "numerical magnitude” of the deviations that balances, B
greater than the median which balances against the number of val

have nvalues of x, they can be arranged in ascending order as:
Xy <X, < ... <x,

Suppose n is odd, then

hmetic mean. In case of the arithmetic mean
ut, for the median it is the ‘number of vah.&ﬁ
ues of less than the median. In general, if we

Median = the (_”5_12 -th value

However, if nis even, we have two middle points

E)—th value +( —'23 + 1]-th value
Median = 5




il
.5, The helghts (In cm) of sl
mmpfe 54 x studonts In class aro 160, 15
wht 8 medlan helght? + 167, 166, 161, 159, 162,

solution:

Arranging the helghts In ascending ordor
156, 157, 169, 160, 161,162

Two middle most values are the 39 and 4!,

1
Median = -2—(159 +160) = 159,56

i

Median for Grouped Data

1. Identify the median class which contains the middle observation (= (n+1/2) observation), This can

2e+§1;3200 by observing tha first class in which the cumulation frequency Is equal o or more than

o, Calculate Median as follows:

% -(F+1)
Median = L+ xh

fm
Where,
L = Lower limit of median class
N = Total number of data Items = ZF
E = Cumulative frequency of the class immediately preceding the median class
f,= Frequency of median class
h = width of median class

Median for Grouped Data
Consider the following table glving the marks obtained by students in an exam
f Cumulative
MarkRange | ., ststudents | Frequency
0-20 2 2
20-40 3 5
40-60 10 15
60-80 15 30
80-100 20 50
N+1
— 25,5
Here 2
The class 60-80 is the median class since cum-freq is 30>25.5
60+[25.5—-(15+1
Median = ————-—*—[ 15 ( )] x 20 = 69.66
Median marks of the class s approximately 69.7 (at most),
e

& ot st half the students got less than 69.7 and (almost) half got more than 69.7 marks.
i.e. (&l




5.4 Mode and Standard Deviation

Mode: Mode is defined as the value of the variable which occurs most frequently.

Calculation of Mode: Mode is that value of x for which the frequency is maximum. i the valuss of
grouped into the classes (such that they are uniformly distributed within any class) and we have a fre
distribution then:

() Identify the class which has the largest frequency (modal class)

(i) Calculate the mode as:

Xare

QU‘.?:}Q!

Mode = L+—-%lxh
2-h-h
Where,
L = Lower limit of the modal class
f, = Largest frequency (frequency of Modal Class)
f, = Frequency in the class preceding the modal class
f,= Frequency in the class next to the modal class
h = Width of the modal class

Data relating to the height of 352 school students are given in the folla;z;g—"
frequency distribution. Calculate the modal height.

Heigh [ Number of
(infeet) | students
3.0-35 12
35-40 37
40-45 79
45-50 152
5.0-55 65
55-6.0 7

Total 352

Solution:

Since 152 is the largest frequency, the modal class is (4.5—-5.0).

Thus L=45,f,=152,f, =79, f,=65, h=05.
152-79

2(152)-79-65

While mean, median and mode are measures of central tendency.

Mode = 4.5 + x 0.5 = 4.73 (approx.)

5.5 Standard Deviation

Standard Deviation is a measure of dispersion or variation amongst data. :

Instead of taking absolute deviation from the arithmetic mean, we may square each deviation and 0bta"
the arithmetic mean of squared deviations. This gives us the ‘variance’ of the values.

The positive square root of the variance is called the 'Standard Deviation® of the given values.



—

' dard peviation from Raw Data
s

. o ,
8 Supp0se ¥y %2 x, are nvalues of the x, their arithmetic mean s

1

L d x -X, -X..Xp~—X iati
g Nzx,an =g n — ¥ are the deviations of the values of x from . Then

1 Ly R
e ?ﬂxi —3)? is the variance of x, It can be shown that

e P ) 1)
n n n?
it is conventional to represents the variance by the symbol 62 Infact, 6 is small sigma and = ital
4 .} ¥ S iQ .}S C«':'l,') =1

sigma. ; .
Square root of the variance is the standard deviation

o= wfirts-5F = (2 F -7 - [IRA-(Ea)

calculation of Standard Deviation from Grouped Data

Calculation for standard deviation for grouped data can be shown by this example:

The frequency distribution for heights of 150 young ladies in a beauty contest is given below for which we
have to calculate standard deviation.

gt =

Height | Mid values | Frequency
(ininches) x f x| fxg
62.0-63.5| 6275 12 753,00 gzgzc:.?s
63.5-65.0| 64.25 20 1285.00 22
12104575
650-66.5| 6575 28 1841.00 | gouoeioe
66.5-680| 67.25 18 121050 | oo or
68.0-69.5| 68.75 19 130625 | ooy care
69.5-71.0 70.25 20 1405.00 93761 25
71.0-725| 71.75 30 215250 | 1 o0s oo |
9.7 g
705-740| 73.25 3 219.75 | 4 6006.6875
[:E: 750 |10173.00 | 691308.375
Ty _ 10173 _erpo
Thus, s '
S _ 4p087225

and >f;

where N=E= .

Therefore, the variance Ly

st o NI =(Ztx)
oF = Sg-F = 7 ) _ g 1701

o, = 3.03 (Iinches) and standard deviation is 3.03 (inches).



5.6 Random Variables

Itis frequently the case when an experiment is performed that we are mainly interested in SOma fUﬂcﬁg.-,

of the outcome as opposed to the actual outcome itself.
For instances, in tossing dice we are often interested in the sum of two dice and are not realty CONCerne,

about the separate value of each die. That is, we may be interested in knowing that the sum is 7 and net b,
concerned over whether the actual outcome was (1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). =
Also, in coin flipping we may be interested in the total number of heads that occur ang nat care ata

about the actual head tail sequence that results. These quantities of interest, or more formally, thege real vajyey

functions defined on the sample space, are known as random variables.
Because the value of a random variable is determined by the outcome of the experiment, we may asgig,

probabilities to the possible values of the random variable.
Types of random variable: Random variable may be discrete or continuous.

Discrete random variable: A variable that can take one value from a discrete set of values,
Example: Let x denotes sum of 2 dice, Now x is a discrete random variable as it can take one value from
theset{2, 3, 4,5, 6,7, 8,9, 10, 11, 12}, since the sum of 2 dice can only be one of these values,
Continuous random variable: A variable that can take one value form a continuous range of valyes_
Example: x denotes the volume of Pepsi in a 500 ml cup. Now x may be a number from 0 to 500, any of

which value, x may take.

5.7 Distributions
Based on this we can divide distributions also into discrete distribution (based on a disc random

variable) or continuous distribution (based on a continuous random variable).
Examples of discrete distribution are binomial, poisson and hypergeometric distributions.
Examples of continuous distribution are uniform, normal and exponential distribution.

Properties of Discrete Distribution
s SPxx)=1
* Fx)=XZxAx)
* V) =E(x?)-(E(x)?
*  V(x) =2x? Ax) - [Ex P(x)]?

Properties of Continuous Distribution

. Tf(x)dx =1

x
* Fl)= [ f(x)dx(cumulative distribution function)

-0

e Ex)= T xf(x)dx

» 2
* Wx)= Ixzf(x)dx-[f :cf(x)dx]

—00

b
* Pla<x<b)=Plasx<h)= If(x)dx



o iscrete Distributions

T)"Pes Of D
i omial pistribution
1 i ‘
a trial or an ex
Suppose that periment, whose outcome can be classified as either a
success or a failure

] parformEd‘ hat ind :
guppose now that nin ependent trials, each of which results in a
failure with probability 1-p, are to be performed. succes
if X represents the number of successes that oceur | i
. R nthe ntrials, then X is sai P
sariable with parameters f"‘ p). The Binomial distribution occurs when experim :3 said to be bn?or.nnal random
assumptions of bernolli trials: ent performed satisfies the three
1. Only 2 outcomes are possible, success and failure
2. Probability of success (p) and failure (1 - p) remains same from trial to tial
3. The trials are statistically independent. i.e ; ves
sl .1.e The outcome of one trial does not influence subsequent
The probability of x success from n triais is given by P(X = x) = 1C, p(1 - p)-*
Where p s the probability of success in any trial and (1-p) = g i6 the probabiliiy of failure

10 dice are thrown. What is the probability of getting exactly 2 sixes?

Solution:

ses with probability pandin a

8
P(X=2) = °C, [%T [g} =0.2907

Example-5.7 It is known that screws produced by a certain company will be defective

with probability 0.01 independently of each other. The company sells the screws in packages of 10 and

offers a money-back guarantee that at most 1 of the 10 screws is defective. What proportion of packages

sold must the company replace?

Solution:
If X is the number of defective screwsina packages, then X is a binominal variable with parameters

(10, 0.01). Hence, the probability that a package will have to be replaced is:
P(X22)= 1-[PX < 1)]=‘I—[P{X=O}+P{x= 1]

= 1_[[18](0.01)"(0.99)“’ +F1°J(o.o1)‘ (0.99)9] =0.004

Hence only 0.4% of packages will have to be replaced.

For Binomial distribution:
Mean = E[X] =nP
Variance = V[X] = np(1 - p)

ce are thrown. How many are expected to fall 6. What is the variance

Example-5.8 100d!

in the number of 6's?

Solution: Etx) = np =100 X 16 =16.7
Vix) = np (1-p) =100 1/6 x (1- 1/6) = 13.9

e —




2. Polsson Distribution
Arandom variable X, taking on one of the values 0, 1, 2 .... is said to be a Poisson random variabla with

parameter A if for some A > 0,

-As X
For Poisson distribution:
Mean = E(x)=A

Variance = V(x)=A
Therefore, expected value and variance of a Poisson random variable are both equal to its parameter ),

A certain airport recelves on an average of 4 alrcrafts per hour. What is the
probability that no aircraft lands in a particular 2 hr period?

Solution:

o = rate of occurrence of event = 4/hr

A = average no of occurrences of event in specified observation period At = oAt
In this case a = 4/hr and At = 2h
A=4x1=8

Now we wish that no aircraft should land for 2 hrs. i.e. x =0

Frequently, poisson distribution is used to approximate binominal distribution when n is very large and p
is very small. Notice that direct computation of nC,p*(1-p)"~*may be erroneous or impossible when nis very
large and pis very small. Hence, we resort to a poisson approximation with A = np.

Example-5.10 A certain company sells tractors which fail at a rate of 1 out of 1000. If 500
tractors are purchased from this company what is the probability of 2 of them failing within first year.

Solution:

A=np 500)(%000 = )é

_}é 1 2
Px=2) = e—z(!i) =0.1011

5.7.2 Types of Continuous Distributions
1. Uniform distribution
2. Exponential distribution
3. Normal distribution
4. Standard normal distribution

1. Uniform Distribution

In general we say that X is a uniform random variable on the interval (o, B) if its probability density
function is given by:



IR
fx) = {Pp-a fa<x<p

0 otherwise
gince f(x) is a constant, all values of x between o and Baree

Graphical representation: qually likely (uniform),

f(x)

-, &

L

1

B-a

For discrete uniform distribution:

Mean = E[X] = B_“‘;E

Variance = V(X) = B-o)

12
m If X is uniformly distributed over (0, 10), calculate the probability that:
(a) X<3 (b) X>6 (c) 3<X<8
Solution:
31 3
P{X<3}= jﬁadx =

10 1 4
PX <6} = g 5% =70

8 1 1
P[3<X<8}= J‘ajl-adx = 5
e e

2. Exponential Distribution

i ty density function is given for some A > 0 by
A continuous random varia

ble whose probabili
e ™ ifx20
fx)=10  ifx<0

tial random variable with parameter A. The cumulative distributive function F(a) of
entia

jable is given by:
a _h _Ax a _ aa - D
F(a)-_-HXSa):J'Ole dx= (—B )0—1ﬂe ,a=

is said to be expon
: r
an exponential random va@

<21 distribution:
For Exponenti! "
Mean = E[X] =

Variance = V{x) = }{2



Suppose that the length of a phone call in minutes Isan exponentlam
variable with parameter A = 1/10. If someone arrives Immediately ahead of you at a public telephong

booth, find the probability that you will have to wait,
(a) More than 10 minutes (b) Between 10 and 20 minutes

Solution:
Letting X denote the length of the call made by the person in the booth, we have that the desired
probabilities are:
(a) P{X>10}=1-P(x < 10)
=1-F(10)
1-(1- e—lxm)
e =e1=0.368
F(20)-F(10)
=(1- gzol)_ (1- 9-10?..)
=eg'-e2=0.233

(b) P{10 < X < 20}

3. Normal Distribution
We say that X is a normal random variable, or simply that X is normally distributed, with parameters p
and o2 if the probability density function is given by:

(x)?

flx) = e 20 ,—00 <X < oo

2nc°

The density function is a bell-shaped curve that is symmetric about p.
For normal distribution:
Mean = E(X)=p
Variance = V(X) = 62

4. Standard Normal Distribution

Since the for N (., 6?) varies with i & o2 & the integral can only be evaluated numerically, it is more
reasonable to reduce this distribution to another distribution called Standard normal distribution N (0, 1) for which,
the shape and hence the integral values remain constant.

Since all N (i, 0%) problems can be reduced to N(0, 1) problems, we need only to consult a standard table
giving calculations of area under N (0, 1) from 0 to any value of z.

The conversion from N (u, %) to N (0, 1) is effected by the following transformation,

X-p
ag

Z=

Where Z is called standard normal variate.
For Standard Normal distribution:
Mean = E(X)=0
Variance = V(X) = 1
Hence the standard normal distribution is also referred to as the N(0, 1) distribution.



not ocey e P(EnF) =0
cannot occurtogener) randitF occyrg, then E cannot ;):cur (Ilz oéher
Axioms of Probabillity: o
Axiom-1:0 < P(E) <1

Axiom-2: P(S) = 1
Axiom-3: For any se

: quence of mutually exclye;

sy En E = g when B sive events E,, Epr....(thatis, events
P G = 3

' 131 i :§1 PED
Median for Ungrouped Data;

Median = the (lﬂ) -th value

However, ifnis éven, we have two middle points

E}th value + [g + 1]»th value

Median = 5
Median for Grouped Data:
%ﬂ -(F+1)
Median = [ 4| = xh
=1t fm
Where,

L = Lower limit of median class
N = Total number of data items = ZF
F = Cumulative frequency of the class immediately preceding the median class
f_= Frequency of median class

= width of median class 2 3
: ‘A:iard Deviation is a measure of dispersion or variation amongst data. The positive
ik root of the variance is called the ‘Standard Deviation' of the given values.
square bability of x success from n trials is given by P(X =x) = nC, p* (1 - p?n—r_
-\l;,,h: prop isthe probability of success in any trial and (1 - p) = qis the probability of

ere

failure.

Uniform Distribution:
"_1_ fa<x <[}
fix) = {B-
0 otherwise
+0
Mean = E[X] = ﬂT
L2
_ Variance = V(X):_LE__E)_

LA



* Exponentlal Distribution:

| -
) m {w ' lfx20

0 Ifx<0
1
Mean = E[X] = —
A
e Varlance = v(x) = )ip_
'« Normal Distribution:
' (x-p)?
fix) = o 2° _—w<x<oo
2no?
e Mean = E(X)=p
f gty Variance = V(X) = o2
Standard Normal distribution:
Mean = E(X)=0

: Variance = V(X) =1
Hence the standard normal drstrrbution is also referred to as the N(O 1) dlstnbutlon

e VR O Q.3
Student's
Assrgnments

Q.1 LetP (E)denotes the probability of the event E.

Given P(A) = 1, P(B) = —, then if A and B are

independent, then the values of P(g) and

P[%J respectively are Q.4
11 11
@32 © 23
1 1
— 1 d o
() (d) 1, =
Q.5
Q.2 IfP(A) = 51 PANB) = then p(%) .
1
(@) 1 (b) >
© 2 (d) 0

A bag contains 5 black, 2 red, and 3 white
marbles, Three marbles are drawn simultaneously.
The probability that the drawn marbles are of the
different color is

1
@ 5 (b) %
5
© 5 (d) Noneofthese

A and B are equally likely and independent
events. p(AuB) = 0.1, Then what is the value of

P(A)?
(a) 0.032 (b) 0.046
(c) 0513 (d) 0.05

The probability of occurrence of an event. A is
0.7, the probability of non-occurrence of an event
B is 0.45 and the probability of at least one of A
and B not occurring is 0.6. The probability that
at least one of A and B occurs is

(@) 0.4 (b) 0.6

(© 1 (d) 0.85



ity donsity function of a varlable

# rc,babil
o ™° { 28346 6
g K 8K BK 7K BK1TK 13K
ind the value of K
1
1 ) ==
@ 79 50
1 i
© 51 @ 5
o7 w3 < +$6) =" (From previous question)
B 7
7 ®) 25
34 @ 4
© 5 4
3 s
a8 Given P(B) = 7 PANnBN C) = % and

ph nBA 0= 3. PBNC) =7

1 1
@ 33 ® 3
1 1
© 15 (d 18

Q9 In a lottery, 2 tickets are drawn at a time out
of 6 tickets numbered from 1 to 6. The expected
of the sum of the numbers on the tickets

value
drawnis
(@) 7 (b) 6
(©) 5 (d) 4
Q.10 Two dice are thrown simultaneously. The

probability that atleast one of them will have

6 facing up is
1 © 3
(@) 3% 3
1
2 0 =
(©) % 3

h
Q.11 Let X be a contiuous random variable wit

following distribution

= p<xs?2
i gx elsewheré .
= =
The value of kand p(1sx52)8® respectively

1 Al p

) = = 14

837 ) 57
1 2

0) =, = 11

Q.12 A gambler has 4 colns In hor pockel. Two are
double-headed, ono Is double-tallod, and one fs
normal. The colns can not bo distingulshed
unless one looks at them. The gambler takes a
coin at random, opens her oyes and geeg that
the upper face of the coln Is a head. What s the
probability that the lower face Is a head?

@ o 3

ol

(c) (d)

w[n oo

X
2

Q.13 Let X be uniformly distributed on {0, 1, ..., 32}
what is Pr[3x + 12=0(mod 33)]7

1 2
(@ 37 (0) 37
() 515 (d) 11

Q.14 Suppose you are given a bag containing n

unbalsed coins you are told that n- 1 of these
are normal coins, with heads on one slde and
tails on the other; however the remaining coin
has heads on both its sides.
Suppose you reachinto the bag, pickouta coin
uniformly at random, flip itand get a head. What
is the (conditional) probability that this coin you
choose Is the fake (l.e., double-headed) coin?

1 2
@ 75 ®) 73
1 2
(c) e (d) e

Q.16 Tworandom varlables Xand Yare Independent
it the palr of events X and Y are independent no
matter how you choose the values i and /. Which
of the following most accurately expresses the
proposition that Xand Y are notindependent?



() foralli,j PrX and Y] Pr[X] Pr[ Y’]

(b) foralli, some j, Pr[X AND Y1#Pr[X]Pr[ Y]
(¢) for some j. alli. Pr[X AND Y]=Pr(X] PrY]
(d) for some i, j. Pr{X AND Y]=Pr{X] Pr[)’,]

Q.16 Suppose you are given a bag containing n
unbiased coins. You are total that n- 1 of these
are normal coins, with heads on one side and
tails on the other; howaver, the remaining coin
has heads on both its sides.

Suppose you reach into the bag, pick out a coin
uniformly at random.

Suppose you flip the coin ktimes after picking it
(instead of just once) and see k heads. What is
now the conditional probability that you picked
the fake coin?

ok okt
) m ®) (n+25)

ok

© (n-7)+2X

(d) None ofthese

Q.17 The expectation and variance of arandom variable
z= X, + X, where X, and X, are independent
random variables with expectation M and

variance g2
(@ wo (b) w20
(€) 2u, 02 (d) 2u, 26

Q.18 Foreach square of an 8 x 8 checker board, flipa
fair coin, and color that square black or red
according to whether you get heads or tails.
Assume that all coin flips are independent. A
same-color row in a row on the board were all
squares in the row have the same color (ie.,all
red, or all black). Let the random variable X
denote the number of same colour rows. What is
the Pr(X = 0)

1 [
® e ek [(20)

_1_ 8 1 8
9 (@) # HED

Q.19 Suppose you are given a bag Containing p
unbiased coins and you are tolg that n
these are normal coins, with heads on on
and tails and the other: however, the rem
coin has heads on both its sides.
Suppose you reachin to the bag, pick outa coin
uniformly at random.

Suppose you wanted to decide whether the
chosen coin was fake by flipping it ktimes; The
decision procedure returns FAKE if all k-fips come
up heads, otherwise it returns NORMAL. Wha is
the (unconditional) probability that this procedurs
makes an error?

(@) (/2 (nn+1)

(b) (1/2)*(n-1)/n

(€) (1/2)x+'(n-1)/n

(d) None of the above

= 1.0f
€ Side
aining

Q.20 In a multi-user operating system, 20 requests
are made to use a particular resource per hour,
on an average. The probability that no requests
are made in 45 minutes is
(@) e (b) es
(c) 1-e5 (d) 1-gm™

Common Data Questions (21 and 22):
Arandom variable x has PDF

Plx) = %afor—-a <x < aand P(x) =0, else
where

Q.21 Find the central moments
(@) Alleven central moments are zero and odd

1 1 1
centralmomentare — &2, — &, — &
SgRvpdiy

(b) All odd central moments are zero and even

1

5

(c) Allthe odd and even central moments are
equal to zero

(d) All the odd and even central moments are
not equal to zero.

central moments are % & —a, %a“



’ g o above distribution value of is
of

Y
K]
P(!xlz’z'a)

9

9 b) <=
027 () <z
4 5

) %3 @ %3

Jmmon pata Questions (23 and 24):

pnalysis of the daily registration at an Examination on
5 certain day indicated that the source of registration
rom North India are 15%, South India are 359 and
rom western part of India are 50%. Further suppose
hat the probabilities that a registration being a free
registration from these parts are 0.01, 0.05, and 0,02,
respectively.

(.23 Find the probability that a registration chosen at
random is a free registration
(a) 0.603 (b) 0.029
(c) 0.009 (d) None ofthese

Q.24 Find the probability that a randomly chosen
registration comes from south India, given that
itis a free registration.
(a) 60%

() 17%

(b) 3%
(d) None of these

Q.25 Amanufacturer produces IC chips, 1% of which
are defective. Find the probability that in a box
containing 100 chips, no defective are found.
Use Poisson distribution approximation to
binomial distribution?

(@) 0.366 (b) 0.368
(c) 01 (d) Noneof these
Answer Key:
L 2 (b 3. b 40 5. (d)
. 7@ s@ @ 0@
M@® 12@ 3@ W ® 15 (d:
6 7@ 1@ 120 :: ::)
M) 2@ 230 2. (3) '

1. (d)

Since A ang B Independen events

PIAIB) = p(a)

=1 and p(B[A) - p(B) = %
2. (b)
1
P(E)= P(AnB) 7 1
A P(A) 172
' 2
5. (d)
Given,
p(A) = 0.7
P(B) = 0.4
p(A UB) =06
pP(AUB) =7
p(B) = 1-p(B)
=1-45=055

PANB) = 1-p(AnB)

=1-p(A U B)
=1-06=04
Now, p(AuB)= p(A)+ p(B)-p(AnB)
=0.7+055-0.4=0.85
p(AUB) = 0.85

6. (a)
If X is a randon variable, then
ZpX)=1
= K+ 38Kk+5k+7k+9k+ 11k+ 13k=1

gL
= 49

7. (a)
P(3 <x<6) =9+ 11k + 13k = 33k

PB<x<6) = o3
29



: .
8. (a) .. Probability that at [east one dice i 6 = B

2t
Alternatively we can solvé this problem by
1 i y 3 anather method: '
p(6 on | dice or 6 0N Il dics)
=1~ p{not 6 on | dice and not € on Il dice)
' 5 5 _,.5_11
=1-"§%"6" =1—36 = 8
c
c

11. (b) , ,
&)= 1 ilf sity function,
PB)PIANBNC)=73 For f(x) to be a probability density

) . J‘ f(x)dx =1
A £ —
2
iy Ikxdx =1
(4]
P c

2
- k[%]@:1=>2k=1
K

P(ANBNC) PBNC)
From the zbove Venn diagram = - _1_
_ - = 2
PBNC)PB)-P(ANBA C) -P(A NnBN C) )
3 101 1 1s5x<2) = L f(x)dx
"4 373712 R |
I T4
9. (a)
LetX be the vandon variable thatrepresentsthe  12. (b)
sum of 2 tickets. There are 5 faces that are heads out of a total of
The probability distribution table of X is 5
8, so the probability is =. Let A be the event
X [3|4|5]6[7[8]9][10]11 dnnai i
’ll_‘_’i 2 il?_]?_l_l{_l thatthe upper face is a head, and B be the event
15115115[15]15 (15|15 |15 |15 that the lower face is heads.
=ZX
E(X) = ZXp(X) Pr{A] = Pr[B] = g
1 2
=3x = +4x — 45x = 4
15
1o s PHANB] = 2 = 1
105 4 2
- —= 7
1 1
10. (d) So, PriB|A] = E(%)ﬁ‘l -2. %
The possible combinations for at least one dice 8
being 6 is given by 11 orde

red pairs below: 13. (d
(1,6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (6, D2 o

(6.2), (6,3), (6, 4), (6, 5) 3X+12 = 0(mod 33)

= 3X = -12(mod 33)



aX = 21 (mod 33)

= X = 7mod 11

2 ¥ =7+11k
:rm x = Ol 11 2- mery 32
Onty solutions aré 7,182and 29
Now

Y,
o3+ 12=0(mod 33)]
=prl(x=7)or (x=18)or (x = 29)]
=pr[x=7]+p{x=18]+p[x=29]
S
33 33

-—
s — e— e —
=

14, (b)
The ree diagram with probabilities for the given
problemis shown below:

(y:\<Nom1a! coin

% double headed coin 1 __ Heads

1
_2_ Heads

1
—x1
p{double head coin |Heads)= —— 0
2t O
—%x—+—x1
n 2 n

o1
T n+1
16. (c)
The tree diagram with probabilities for this
problemis shown below:
1

% k heads out of k trials

A . 5
8% - Normal coin
. __1 _kheads outof k trials

T 2 head headed coin
. p(2 headed coin | k heads out of ktrials)

-1-><1 ok

=n-11 +%X1 (n_ )

——

n

17..(d)
E(X, + %) i

=

E(X)+E (X,) always
+H =21

aX, + bX) = V() + VX
1 2

18.

19.

20,

WX and X areing

epends
Putting, pendent)

a=h=1
VOG+X) = vix) + vixy
=0+ 02=2¢?
(d)

plarow being same color)

= p(a row being all black) + ej
w ) + p(a row being all

= p(all heads) + plall tails)

o (18(1Y 171
-] 2 +20g) (ET
_ 1 -] 1 3

(2 +3)

pr(X = 0) = pr(0 out of 8 rows being of same
calour)

AV 1Y ( 1Y
“{7)(-2)-(-2)
(b)

The tree diagram with probabilities is

1

_

\
K~ Normal coin z
1

5 “2headed coin —_1__ koutof k heads

p(procedure isin error) = p(normal coin and kout
of k heads) + p(fake coin and not kout of kheads)

n
)
n |2 n
(a)

The arrival pattern follows poisson distribution.

k out of k heads

X
pX=x) = 2 g
x|

Here A= oAt

where, o = number of events/unit time = 20/hr

At=45min=%hr



h=all= ZOXE:- =15

R TR
p(x = 0)- ‘6!-9 = -'6!—9 = g
21. (b)
a x
p= I:'zux)dx = J.a-z—‘:dx
a ¥
=7 (x-n) px)ax = | 520
2 0 ifrisodd
1|2
- Z{f+1} - iﬁrsevm
a4 |r+1
-, odd central moments are zero, even central
moments are
1 1 1
= _32' = _.a“. ==
=% k=3 7
22. (d)

Here,p=0ando = %

Using Bienayme-Chebyshev rule,

p(sl—konSu+ko)21—£2-

p(—konS+ko)21-k2i
J3
ko = —2—
a B3
= foarns = =
J3
3
= —
b 2

—
njw

23. (b)
The tree diagram is shown below:

5/ Norhinda _001_ tree registration
)

g South India ————-0'05 free leg".'ab ation
a
o i _
Westemn Indi2 _002 free registration

pffree registration) = 0.15x0.01+0.35x0.05+
0.50 x 0.02=0.029

24. (a)
p(South India l free registration)

_ p(South India and free registration)

p(free registration)
0.35x0.05
= 0020 =0.6034 ~ 60%
25. (b)
p=0.01,n=100

Using poisson approximation to binomial
distribution,
A=np=100x0.01=1

A2 .,
pX=0)= El-e' - &' = 0368

eHel+Ne



