4.2 Tangent and Normal

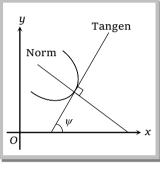
4.2.1 Slope of the Tangent and Normal

(1) **Slope of the tangent :** If tangent is drawn on the curve y = f(x) at point $P(x_1, y_1)$ and this tangent makes an angle ψ with positive *x*-direction then,

 $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \tan \psi$ = slope of the tangent

Note:
$$\Box$$
 If tangent is parallel to *x*-axis $\psi = 0 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = 0$

□ If tangent is perpendicular to *x*-axis $\psi = \frac{\pi}{2} \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \infty$



(2) **Slope of the normal :** The normal to a curve at $P(x_1, y_1)$ is a line perpendicular to the tangent at *P* and passing through *P* and slope of the normal = $\frac{-1}{\text{Slope of tangent}}$ =

$$\frac{-1}{\left(\frac{dy}{dx}\right)_{P(x_1,y_1)}} = -\left(\frac{dx}{dy}\right)_{P(x_1,y_1)}$$

Wole : If normal is parallel to *x*-axis

$$\Rightarrow -\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \text{ or } \left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0$$

□ If normal is perpendicular to *x*-axis (for parallel to *y*-axis)

$$\Rightarrow -\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0$$

 Example: 1
 The slope of the tangent to the curve $x^2 + y^2 = 2c^2$ at point (c, c) is
 [AMU 1998]

 (a) 1
 (b) - 1
 (c) 0
 (d) 2

Solution: (b) Given $x^2 + y^2 = 2c^2$

Differentiating w.r.t. x, $2x + 2y \frac{dy}{dx} = 0$

186 Application of Derivatives $\Rightarrow 2y \frac{dy}{dx} = -2x \Rightarrow \frac{dy}{dx} = \frac{-x}{y} \Rightarrow \left(\frac{dy}{dx}\right)_{(x,y)} = -1$ The line x + y = 2 is tangent to the curve $x^2 = 3 - 2y$ at its point Example: 2 [MP PET 1998] (c) $(\sqrt{3}, 0)$ (b) (-1, 1) (a) (1, 1) (d) (3, - 3) **Solution:** (a) Given curve $x^2 = 3 - 2y$ diff. w.r.t. x, $2x = -\frac{2dy}{dx}$; $\frac{dy}{dx} = -x$ Slope of the line = -1 $\frac{dy}{dx} = -x = -1 ; \quad x = 1$ $\therefore y = 1$ point (1, 1) The tangent to the curve $y = 2x^2 - x + 1$ at a point *P* is parallel to y = 3x + 4, the co-ordinate of *P* are **[Rajasthan H** Example: 3 (a) (2, 1) (b) (1, 2) (c) (-1,2) (d) (2, - 1) **Solution:** (b) Given $y = 2x^2 - x + 1$ Let the co-ordinate of *P* is (*h*, *k*) then $\left(\frac{dy}{dx}\right)_{(h,k)} = 4h-1$ Clearly 4h-1=3 $h=1 \implies k=2.P$ is (1, 2).

4.2.2 Equation of the Tangent and Normal

(1) **Equation of the tangent :** We know that the equation of *a* line passing through a point $P(x_1, y_1)$ and having slope *m* is $y - y_1 = m(x - x_1)$

Slope of the tangent at (x_1, y_1) is $= \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

The equation of the tangent to the curve y = f(x) at point $P(x_1, y_1)$ is

$$y - y_1 = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1)$$

(2) Equation of the normal : Slope of the Normal = $\frac{-1}{\left(\frac{dy}{dx}\right)_{(x-y)}}$

Thus equation of the normal to the curve y = f(x) at point $P(x_1, y_1)$

$$y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1)$$

Wate : \Box If at any point $P(x_1, y_1)$ on the curve y = f(x), the tangent makes equal angle with the axes, then at the point *P*, $\psi = \frac{\pi}{4}$ or $\frac{3\pi}{4}$. Hence, at *P* tan $\psi = \frac{dy}{dx} = \pm 1$. The equation of the tangent at (-4, -4) on the curve $x^2 = -4y$ is Example: 4 [Karnataka CET 2001] (d) 2x - y + 4 = 0(b) 2x - y - 12 = 0(c) 2x + y - 4 = 0(a) 2x + y + 4 = 0 $x^2 = -4y \implies 2x = -4 \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{-x}{2} \implies \left(\frac{dy}{dx}\right)_{(x-x)} = 2$. Solution: (d) We know that equation of tangent is $(y - y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_2)} (x - x_1) \Rightarrow y + 4 = 2(x + 4) \Rightarrow 2x - y + 4 = 0$. The equation of the normal to the curve $y = \sin \frac{\pi x}{2}$ at (1, 1) is Example: 5 (d) $y-1 = \frac{-2}{\pi}(x-1)$ (c) y = x(a) y = 1(b) x = 1**Solution:** (b) $y = \sin \frac{\pi x}{2} \Rightarrow \frac{dy}{dx} = \frac{\pi}{2} \cos \frac{\pi}{2} x \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 0$ \therefore Equation of normal is $y-1 = \frac{1}{2}(x-1) \Rightarrow x = 1$. The equation of the tangent to the curve $y = be^{-x/a}$ at the point where it crosses *y*-axis is Example: 6 (b) ax - by = 1 (c) $\frac{x}{a} - \frac{y}{b} = 1$ (d) $\frac{x}{a} + \frac{y}{b} = 1$ (a) ax + by = 1**Solution:** (d) Curve is $y = be^{-x/a}$ Since the curve crosses *y*-axis (*i.e.*, x = 0) \therefore y = bNow $\frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$. At point (0, b), $\left(\frac{dy}{dx}\right)_{a=1} = \frac{-b}{a}$ \therefore Equation of tangent is $y-b = \frac{-b}{a}(x-0) \Rightarrow \frac{x}{a} + \frac{y}{b} = 1$. If the normal to the curve y = f(x) at the point (3,4) makes an angle $\frac{3\pi}{4}$ with the positive *x*-axis then Example: 7 f'(3) is equal to [IIT Screening 2000; DCE 2001] (b) $\frac{-3}{4}$ (c) $\frac{4}{3}$ (a) – 1 (d) 1 **Solution:** (d) Slope of the normal $=\frac{-1}{dy/dx} \Rightarrow \tan \frac{3\pi}{4} = \frac{-1}{\left(\frac{dy}{dx}\right)_{2,4}}$ $\therefore \left(\frac{dy}{dx}\right) = 1; f'(3) = 1.$ The point (s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical (parallel to *y*-axis), is are[IIT Screenin Example: 8

(a)
$$\left[\pm \frac{4}{\sqrt{3}}, -2\right]$$
 (b) $\left(\pm \frac{\sqrt{11}}{3}, 1\right)$ (c) $(0,0)$ (d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

Solution: (d) $y^3 + 3x^2 = 12y$

	$\Rightarrow 3y^2 \cdot \frac{dy}{dx} + 6x = 12 \cdot \frac{dy}{dx} \Rightarrow \frac{dy}{dx}(3y^2 - 12) + 6x = 0 =$	$\Rightarrow \frac{dy}{dx} = \frac{6x}{12 - 3y^2} \Rightarrow \frac{dx}{dy} = \frac{12 - 6}{6}$	$\frac{3y^2}{x}$
	Tangent is parallel to <i>y</i> -axis, $\frac{dx}{dy} = 0 \implies 12 - 3y$	$y^{2} = 0 \text{ or } y = \pm 2.$ Then $x = \pm 2$	$\frac{4}{\sqrt{3}}$, for $y = 2$
	y = -2 does not satisfy the equation of the curv	ve, \therefore The point is $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$	
Example: 9	At which point the line $\frac{x}{a} + \frac{y}{b} = 1$ touches the c	Surve $y = be^{-x/a}$	[Rajasthan PET 1999]
	(a) (0, 0) (b) (0, a)	(c) (0, <i>b</i>)	(d) (<i>b</i> , 0)
Solution: (c)	Let the point be (x_1, y_1) \therefore $y_1 = be^{-x_1/a}$	(i)	
	Also, curve $y = be^{-x/a} \Rightarrow \frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$		
	$\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{-b}{a}e^{-x_1/a} = \frac{-y_1}{a}$	(by (i))	
	Now, the equation of tangent of given curve a	t point (x_1, y_1) is $y - y_1 = \frac{-y_1}{a}$	$(x - x_1) \implies \frac{x}{a} + \frac{y}{y_1} = \frac{x_1}{a} + 1$
	Comparing with $\frac{x}{a} + \frac{y}{b} = 1$, we get, $y_1 = b$ and $\frac{y}{b} = 1$	$1 + \frac{x_1}{a} = 1 \implies x_1 = 0$	
	Hence, the point is (0, <i>b</i>).		
Example: 10	The abscissa of the point, where the tangent t	o curve $y = x^3 - 3x^2 - 9x + 5$	is parallel to <i>x</i> -axis are [Karnataka G
	(a) 0 and 0 (b) $x = 1$ and -1	(c) $x = 1$ and -3	(d) $x = -1$ and 3
Solution: (d)	$y = x^3 - 3x^2 - 9x + 5 \implies \frac{dy}{dx} = 3x^2 - 6x - 9.$		
	We know that this equation gives the slope of	f the tangent to the curve.	. The tangent is parallel to x -
axis $\frac{dy}{dx} = 0$			

Therefore, $3x^2 - 6x - 9 = 0 \implies x = -1, 3$.

4.2.3 Angle of Intersection of Two Curves

The angle of intersection of two curves is defined to be the angle between the tangents to the two curves at their point of intersection.

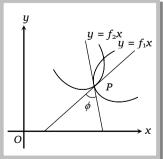
We know that the angle between two straight lines having slopes

$$\phi = \tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$$

Also slope of the tangent at $P(x_1, y_1)$

$$m_1 = \left(\frac{dy}{dx}\right)_{1(x_1, y_1)}$$
, $m_2 = \left(\frac{dy}{dx}\right)_{2(x_1, y_1)}$

Thus the angle between the tangents of the two curves $y = f_1(x)$ and $y = f_2(x)$



[MP PET 2001]

$\tan \phi =$	$\left(\frac{dy}{dx}\right)_{1(x_1,y_1)} - \left(\frac{dy}{dx}\right)_{2(x_1,y_1)}$
	$1 + \left(\frac{dy}{dx}\right)_{1(x_1, y_1)} \left(\frac{dy}{dx}\right)_{2(x_1, y_1)}$

Orthogonal curves : If the angle of intersection of two curves is right angle, the two curves are said to intersect orthogonally. The curves are called orthogonal curves. If the curves are orthogonal, then $\phi = \frac{\pi}{2}$

$$m_1m_2 = -1 \implies \left(\frac{dy}{dx}\right)_1 \left(\frac{dy}{dx}\right)_2 = -1$$

Example: 11 The angle between the curves $y^2 = x$ and $x^2 = y$ at (1, 1) is

(a)
$$\tan^{-1}\frac{4}{3}$$
 (b) $\tan^{-1}\frac{3}{4}$ (c) 90° (d) 45

Solution: (b) Given curve $y^2 = x$ and $x^2 = y$

Differentiating w.r.t. x, $2y \frac{dy}{dx} = 1$ and $2x = \frac{dy}{dx}$ $\left(\frac{dy}{dx}\right) = \frac{1}{2}$ and $\left(\frac{dy}{dx}\right) = 2$

$$\left(\frac{dy}{dx}\right)_{(1,1)} = \frac{1}{2}$$
 and $\left(\frac{dy}{dx}\right)_{(1,1)} = 2$

Angle between the curve

$$\Rightarrow \tan \phi = \frac{2 - \frac{1}{2}}{1 + \frac{1}{2} \cdot 2} \Rightarrow \tan \phi = \frac{3}{4} \Rightarrow \phi = \tan^{-1} \frac{3}{4} \cdot \frac{3}{4}$$

Example: 12 If the two curves $y = a^x$ and $y = b^x$ intersect at α , then $\tan \alpha$ equal

(a) $\frac{\log a - \log b}{1 + \log a \log b}$ (b) $\frac{\log a + \log b}{1 - \log a \log b}$ (c) $\frac{\log a - \log b}{1 - \log a \log b}$ (d) None of these

Solution: (a) Clearly the point of intersection of curves is (0, 1) Now, slope of tangent of first curve, $m_1 = \frac{dy}{dx} = a^x \log a \implies \left(\frac{dy}{dx}\right)_{(0,1)} = m_1 = \log a$ Slope of tangent of second curve, $m_2 = \frac{dy}{dx} = b^x \log b \implies m_2 = \left(\frac{dy}{dx}\right)_{(0,1)} = \log b$ $\therefore \tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{\log a - \log b}{1 + \log a \log b}$.

Example: 13 The angle of intersection between curve xy = 6 and $x^2y = 12$ (a) $\tan^{-1}\left(\frac{3}{4}\right)$ (b) $\tan^{-1}\left(\frac{3}{11}\right)$ (c) $\tan^{-1}\left(\frac{11}{3}\right)$ (d) 0°

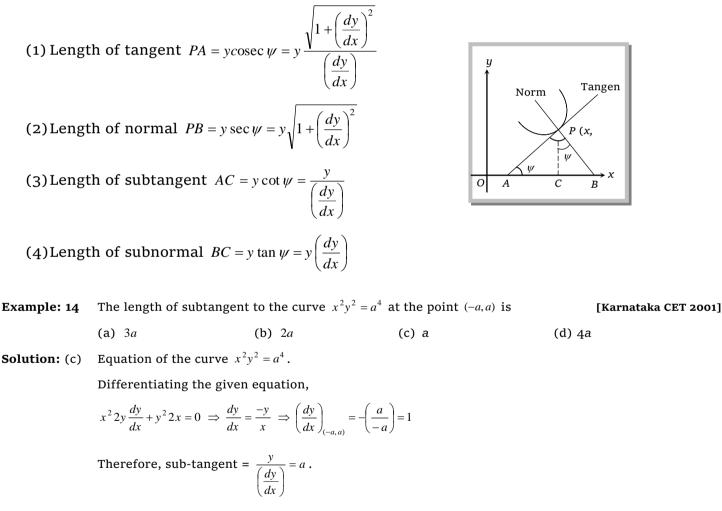
Solution: (b) The equation of two curves are xy = 6 and $x^2y = 12$ from (i) we obtain $y = \frac{6}{x}$ putting this value of y in equation (ii) to obtain $x^2 \left(\frac{6}{x}\right) = 12 \implies 6x = 12 \implies x = 2$ Putting x = 2 in (i) or (ii) we get, y = 3. Thus, the two curves intersect at P(2, 3)Differentiating (i) w.r.t. x, we get $x \frac{dy}{dx} + y = 0 \implies \frac{dy}{dx} = \frac{-y}{x} \implies \left(\frac{dy}{dx}\right)_{x=0} = -\frac{3}{2} = m_1$

Differentiating (ii) w.r.t. x, we get
$$x^2 \frac{dy}{dx} + 2xy = 0 \Rightarrow \frac{dy}{dx} = \frac{-2y}{x}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(2,3)} = -3 = m_2 \Rightarrow \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \left(\frac{-3}{2} + 3\right) / \left(1 + \left(\frac{-3}{2}\right)(-3)\right) = \frac{3}{11} \Rightarrow \theta = \tan^{-1}\frac{3}{11}.$$

4.2.4 Length of Tangent, Normal, Subtangent and Subnormal

Let the tangent and normal at point P(x,y) on the curve y = f(x) meet the *x*-axis at points *A* and *B* respectively. Then *PA* and *PB* are called length of tangent and normal respectively at point *P*. If *PC* be the perpendicular from *P* on *x*-axis, the *AC* and *BC* are called length of subtangent and subnormal respectively at *P*. If *PA* makes angle ψ with *x*-axis, then $\tan \psi = \frac{dy}{dx}$ from fig., we find that



Example: 15 For the curve $y^n = a^{n-1}x$, the sub-normal at any point is constant, the value of *n* must be (a) 2 (b) 3 (c) 0 (d) 1

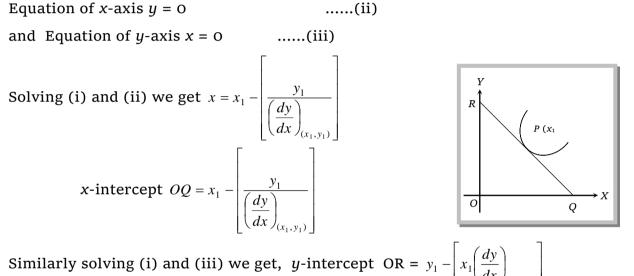
Solution: (a) $y^n = a^{n-1}x \implies ny^{n-1}\frac{dy}{dx} = a^{n-1} \implies \left(\frac{dy}{dx}\right) = \frac{a^{n-1}}{ny^{n-1}}$

: Length of the subnormal =
$$y \frac{dy}{dx} = \frac{ya^{n-1}}{ny^{n-1}} = \frac{a^{n-1}y^{2-n}}{n}$$

We also know that if the subnormal is constant, then $\frac{a^{n-1}}{n} y^{2-n}$ should not contain y. Therefore, 2-n=0 or n=2.

4.2.5 Length of Intercept made on Axis by the Tangent

Equation of tangent at any point (x_1, y_1) to the curve y = f(x) is $y - y_1 = \left(\frac{dy}{dx}\right)$ $(x - x_1)$ (i)



Similarly solving (i) and (iii) we get, y-intercept OR = $y_1 - \left| x_1 \left(\frac{dy}{dx} \right)_{(x_1, x_2)} \right|$

The sum of intercepts on co-ordinate axes made by tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is Example: 16

(c) $2\sqrt{a}$ (d) None of these (a) a $\sqrt{x} + \sqrt{y} = \sqrt{a} \implies \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \implies \therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ Solution: (a) Hence tangent at (x, y) is $Y - y = -\frac{\sqrt{y}}{\sqrt{x}}(X - x)$ or $X\sqrt{y} + Y\sqrt{x} = \sqrt{xy}(\sqrt{x} + \sqrt{y}) = \sqrt{axy}$ or $\frac{X}{\sqrt{a}\sqrt{x}} + \frac{Y}{\sqrt{a}\sqrt{y}} = 1$. Clearly its intercepts on the axes are $\sqrt{a}\sqrt{x}$ and $\sqrt{a}\sqrt{y}$. Sum of the intercepts = $\sqrt{a}(\sqrt{x} + \sqrt{y}) = \sqrt{a} \cdot \sqrt{a} = a$.

4.2.6 Length of Perpendicular from Origin to the Tangent

Length of perpendicular from origin (0, 0) to the tangent drawn at point $P(x_1, y_1)$ of the curve y = f(x)

$$p = \left| \frac{y_1 - x_1 \left(\frac{dy}{dx}\right)_{(x_1, y_1)}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} \right|$$

Example: 17 The length of perpendicular from (0, 0) to the tangent drawn to the curve $y^2 = 4(x+2)$ at point (2, 4) is

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) 1

Solution: (c) Dif

ifferentiating the given equation w.r.t. x,
$$2y \frac{dy}{dx} = 4$$
 at point (2, 4) $\frac{dy}{dx} = \frac{1}{2}$

$$P = \frac{y_1 - x_1\left(\frac{dy}{dx}\right)}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} = \frac{4 - 2\left(\frac{1}{2}\right)}{\sqrt{1 + \frac{1}{4}}} = \frac{6}{\sqrt{5}}.$$

Tangent and Normal

Basic Level If the line y = 2x + k is a tangent to the curve $x^2 = 4y$, then k is equal to 1. [AMU 2002] (b) $\frac{1}{2}$ (d) $-\frac{1}{2}$ (a) 4 (c) - 4 The point on the curve $y^2 = x$ where tangent makes 45° angle with *x*-axis is 2. [Rajasthan PET 1990, 92] (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) (4, 2) (d) (1, 1) If $x = t^2$ and y = 2t, then equation of the normal at t = 1 is 3. (b) x + y - 1 = 0(a) x + y - 3 = 0(c) x + y + 1 = 0(d) x + y + 3 = 0If normal to the curve y = f(x) is parallel to x-axis, then correct statement is [Rajasthan PET 2000] 4. (c) $\frac{dx}{dy} = 0$ (a) $\frac{dy}{dx} = 0$ (b) $\frac{dy}{dy} = 1$ (d) None of these The equation of the tangent to the curve $(1 + x^2)y = 2 - x$, where it crosses the *x*-axis, is 5٠ (a) x + 5y = 2(b) x - 5y = 2(c) 5x - y = 2(d) 5x + y - 2 = 0The equation of tangent to the curve $y = 2\cos x$ at $x = \frac{\pi}{4}$ is 6. (a) $y - \sqrt{2} = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (b) $y + \sqrt{2} = \sqrt{2}\left(x + \frac{\pi}{4}\right)$ (c) $y - \sqrt{2} = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (d) $y - \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$ For the curve $x = t^2 - 1$, $y = t^2 - t$, the tangent line is perpendicular to *x*-axis where 7. [MNR 1980] (c) $t = \frac{1}{\sqrt{3}}$ (d) $t = -\frac{1}{\sqrt{3}}$ (b) $t = \infty$ (a) t = 0If at any point on a curve the sub-tangent and subnormal are equal, then the tangent is equal to 8. (b) $\sqrt{2}$ ordinate (a) Ordinate (c) $\sqrt{2}$ (ordinate) (d) None of these If the tangent to the curve $2y^3 = ax^2 + x^3$ at the point (a, a) cuts off intercepts, α and β on the coordinate axes 9. such that $\alpha^2 + \beta^2 = 61$, then a =(c) ± 6 (a) ±30 (b) ±5 (d) ±61 If the tangent to the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ at $\theta = \frac{\pi}{3}$ makes an angle α with x-axis, then $\alpha = \alpha$ 10.

	(a) $\frac{\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{5\pi}{6}$
1.	If the tangent to the curve	e xy + ax + by = 0 at (1, 1) is in	clined at an angle $\tan^{-1} 2$ wi	th x-axis, then
	(a) $a = 1, b = 2$	(b) $a=1, b=-2$	(c) $a = -1, b = 2$	(d) $a = -1, b = -2$
2.	The fixed point <i>P</i> on the o is given by	curve $y = x^2 - 4x + 5$ such that	the tangent at <i>P</i> is perpend	licular to the line $x + 2y - 7 =$
	(a) (3, 2)	(b) (1, 2)	(c) (2, 1)	(d) None of these
3.	The points of contact of the	he tangents drawn from the o		e on the curve
	(a) $x^2 - y^2 = xy$	(b) $x^2 + y^2 = x^2 y^2$	(c) $x^2 - y^2 = x^2 y^2$	(d) None of these
1 .	The slope of the tangent t	to the curve $y^2 = 4ax$ drawn a	t point $(at^2, 2at)$ is	[Rajasthan PET 199
	(a) <i>t</i>	(b) $\frac{1}{t}$	(c) - <i>t</i>	(d) $\frac{-1}{t}$
5.	The slope of the curve <i>y</i> =	$= \sin x + \cos^2 x$ is zero at the po	int, where	
	(a) $x = \frac{\pi}{4}$	(b) $x = \frac{\pi}{2}$	(c) $x = \pi$	(d) No where
5.	The equation of tangent t	o the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the	the point (x_1, y_1) is	
	(a) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \frac{1}{\sqrt{a}}$	(b) $\frac{x}{\sqrt{x_1}} + \frac{y}{\sqrt{y_1}} = \sqrt{a}$	(c) $x\sqrt{x_1} + y\sqrt{y_1} = \sqrt{a}$	(d) None of these
7.	A tangent to the curve <i>y</i> =	$=x^{2}+3x$ passes through a point	int (0, – 9) if it is drawn at t	he point
	(a) (- 3, 0)	(b) (1, 4)	(c) (0, 0)	(d) (- 4, 4)
3.	The sum of the intercepts	made by a tangent to the cu	eve $\sqrt{x} + \sqrt{y} = 4$ at point (4, 4)) on coordinate axes is
	(a) $4\sqrt{2}$	(b) $6\sqrt{3}$	(c) $8\sqrt{2}$	(d) $\sqrt{256}$
).	The angle of intersection	between the curve $y^2 = 16x$ a	and $2x^2 + y^2 = 4$ is	[Rajasthan PET 199
	(a) 0°	(b) 30°	(c) 45°	(d) 90°
) .	The equation of normal to	the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the	point ($a \sec \theta, b \tan \theta$) is	
	(a) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$	(b) $\frac{ax}{\sec\theta} - \frac{by}{\tan\theta} = a^2 - b^2$	(c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$	(d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a - b$
ι.	If tangent to a curve at a	point is perpendicular to <i>x</i> -ax	kis, then at the point	
	(a) $\frac{dy}{dx} = 0$	(b) $\frac{dx}{dy} = 0$	(c) $\frac{dy}{dx} = 1$	(d) $\frac{dy}{dx} = -1$
2.	If m be the slope of a tan	gent to the curve $e^y = 1 + x^2$ t	hen	
	(a) $ m > 1$	(b) <i>m</i> < 1	(c) m <1	(d) $ m \le 1$
3.	The equation of the tange	ent to the curve $y = e^{- x }$ at the	point where the curve cuts	the line $x = 1$ is
	(a) $x + y = e$	(b) $e(x+y) = 1$	(c) $y + ex = 1$	(d) None of these

24.	The slope of the tangent	to the curve $y = \int_0^x \frac{dx}{1+x^3}$ at	the point where $x = 1$ is	
	(a) $\frac{1}{2}$	(b) 1	(c) $\frac{1}{4}$	(d) None of these
25.	The angle of intersection	n between the curves $x^2 = 4a$	y and $y^2 = 4ax$ at origin is	[Rajasthan PET 1997]
	(a) 30°	(b) 45°	(c) 60°	(d) 90°
6.	The equation of the norr	mal to the curve $y = x(2-x)$ a	t the point (2, 0) is	[Rajasthan PET 1989, 199
	(a) $x - 2y = 2$	(b) $x - 2y + 2 = 0$	(c) $2x + y = 4$	(d) $2x + y - 4 = 0$
·7•	The angle of intersection [Rajasthan PET 1989, 1993	n of the curve $y = 4 - x^2$ and 3; MNR 1978]	$y = x^2$ is	
	(a) $\frac{\pi}{2}$	(b) $\tan^{-1}\left(\frac{4}{3}\right)$	(c) $\tan^{-1}\left(\frac{4\sqrt{2}}{7}\right)$	(d) None of these
8.	Tangent to the curve $y =$	e^{2x} at point (0, 1) meets x-a	ixis at the point	
	(a) (0, a)	(b) (2, 0)	(c) $\left(-\frac{1}{2},0\right)$	(d) Non where
9.	The equation of the tang	gent to the curve $x = a\cos^3 t, y$	$= a \sin^3 t a t t'$ point is	[Rajasthan PET 1988]
	(a) $x \sec t - y \csc t = a$	(b) $x \sec t + y \csc t = a$	(c) $x \operatorname{cosec} t - y \sec t = a$	(d) $xco \sec t + y \sec t = a$
0.	The length of the tangen	at to the curve $x = a \left(\cos t + \log t \right)$	$\tan\frac{t}{2}$, $y = a\sin t$ is	
	(a) <i>ax</i>	(b) <i>ay</i>	(c) a	(d) <i>xy</i>
1.	The point at the curve <i>y</i>	$=12x-x^3$ where the slope o	f the tangent is zero will be	[Rajasthan PET 1992]
	(a) (0, 0)	(b) (2, 16)	(c) (3, 9)	(d) None of these
2.	The angle of intersection	h between the curves $y = x^2$	and $4y = 7 - 3x^3$ at point (1, 1)) is [Andhra CEE 1992]
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) None of these
		Advan	ce Level	
3.	Consider the following s	tatements:		
	Assertion (A) : The circ	le $x^2 + y^2 = 1$ has exactly two	tangents parallel to the <i>x</i> -ax	is
	Reason (R) : $\frac{dy}{dx} = 0$ on t	the circle exactly at the poin	ts $(0,\pm 1)$. Of these statements	S [SCRA 1996]
		ue and R is the correct expla		
		ue but <i>R</i> is not the correct ex	planation of A	
	(c) A is true but R is fall	lse		

- (d) *A* is false but *R* is true
- **34.** The slope of the tangent to the curve $x = 3t^2 + 1$, $y = t^3 1$ at x = 1 is

	* *			
	(a) O	(b) $\frac{1}{2}$	(c) ∞	(d) -2
5.	The slope of tangent to the	e curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2$	2t-5 at the point $(2,-1)$ is	[MNR 1994]
	(a) $\frac{22}{7}$	(b) $\frac{6}{7}$	(c) -6	(d) None of these
6.	At what points of the curv	e $y = \frac{2}{3}x^3 + \frac{1}{2}x^2$, tangent make	es the equal angle with axis	[UPSEAT 1999]
	(a) $\left(\frac{1}{2}, \frac{5}{24}\right)$ and $\left(-1, -\frac{1}{6}\right)$	(b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and (-1, 0)	(c) $\left(\frac{1}{3},\frac{1}{47}\right)$ and $\left(-1,\frac{1}{3}\right)$	(d) $\left(\frac{1}{3},\frac{1}{7}\right)$ and $\left(-3,\frac{1}{2}\right)$
7.	For the curve $xy = c^2$ the s	ubnormal at any point varies	as	
	(a) x^2	(b) x^3	(c) y^2	(d) y^3
8.	The point of the curve $y^2 =$	= 2(x-3) at which the normal i	s parallel to the line $y - 2x$ -	+1 = 0 is
	(a) (5, 2)	(b) $\left(-\frac{1}{2},-2\right)$	(c) (5, - 2)	(d) $\left(\frac{3}{2},2\right)$
9.	Coordinates of a point on t	the curve $y = x \log x$ at which t	he normal is parallel to the	line $2x - 2y = 3$ are [Rajasthan
	(a) (0, 0)	(b) (<i>e</i> , <i>e</i>)	(c) $(e^2, 2e^2)$	(d) $(e^{-2}, -2e^{-2})$
) .	The abscissa of the points	of curve $y = x(x-2)(x-4)$ when	re tangents are parallel to x	-axis is obtained as
	(a) $x = 2 \pm \frac{2}{\sqrt{3}}$	(b) $x = 1 \pm \frac{1}{\sqrt{3}}$	(c) $x = 2 \pm \frac{1}{\sqrt{3}}$	(d) $x = \pm 1$
	The length of the normal a	at point 't' of the curve $x = a(t + a)$	$-\sin t$), $y = a(1 - \cos t)$ is	[Rajasthan PET 2001]
	(a) $a\sin t$	(b) $2a\sin^3\left(\frac{t}{2}\right)\sec\left(\frac{t}{2}\right)$	(c) $2a\sin\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right)$	(d) $2a\sin\left(\frac{t}{2}\right)$
2.	The length of normal to th	e curve $x = a(\theta + \sin \theta), y = a(1 - c)$	os θ) at the point $\theta = \frac{\pi}{2}$ is	[Rajasthan PET 1999;
	AIEEE 2004]		2	
	(a) 2 <i>a</i>	(b) $\frac{a}{2}$	(c) $\sqrt{2}a$	(d) $\frac{a}{\sqrt{2}}$
3.	The area of the triangle fo	rmed by the coordinate axes a	and a tangent to the curve	$xy = a^2$ at the point (x_1, y_1) on
	it is	[DCE 2001]		
	(a) $\frac{a^2 x_1}{y_1}$	(b) $\frac{a^2 y_1}{x_1}$	(c) $2a^2$	(d) $4a^2$
4.		$= a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$	s $ heta$) at any $ heta$ is such that	[DCE 2000]
	(a) It makes a constant an	gle with <i>x</i> -axis	(b) It passes through the o	origin
	(c) It is at a constant dista	ance from the origin	(d) None of these	
5.	An equation of the tangent	t to the curve $y = x^4$ from the y	point (2, 0)not on the curve	is
	(a) $y = 0$	(b) $x = 0$	(c) $x + y = 0$	(d) None of these
6.	For the curve $by^3(x+a)^3$ the	ne square of subtangent is proj	portional to	

			Appl	ication of Derivatives 197							
	(a) (Subnormal) ^{1/2}	(b) Subnormal	(c) (Subnormal) ^{3/2}	(d) None of these							
47 .	The tangent to the curve	$y = ax^2 + bx$ at $(2, -8)$ is paralle	el to <i>x</i> -axis. Then	[AMU 1999]							
	(a) $a = 2, b = -2$	(b) $a = 2, b = -4$	(c) $a = 2, b = -8$	(d) $a = 4, b = -4$							
48.	If the area of the triangle equal to	include between the axes an	d any tangent to the curve	$x^n y = a^n$ is constant, then <i>n</i> is							
	(a) 1	(b) 2	(c) $\frac{3}{2}$	(d) $\frac{1}{2}$							
49.	All points on the curve y^2	$=4a\left(x+a\sin\frac{x}{a}\right)$ at which the	tangents are parallel to the	axis of x, lie on a							
	(a) Circle	(b) Parabola	(c) Line	(d) None of these							
50.	If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a	and $\frac{x^2}{l^2} - \frac{y^2}{m^2} = 1$ cut each other	orthogonally, then								
	(a) $a^2 + b^2 = l^2 + m^2$	(b) $a^2 - b^2 = l^2 - m^2$	(c) $a^2 - b^2 = l^2 + m^2$	(d) $a^2 + b^2 = l^2 - m^2$							
51.	The length of the normal a	at any point on the catenary y	$v = c \cos h\left(\frac{x}{c}\right)$ varies as								
	(a) (abscissa) ²	(b) (Ordinate) ²	(c) abscissa	(d) ordinate							
52.	The point <i>P</i> of the curve $y^2 = 2x^3$ such that the tangent at <i>P</i> is perpendicular to the line $4x - 3y + 2 = 0$ is given by										
	(a) (2, 4)	(b) (1, $\sqrt{2}$)	(c) $\left(\frac{1}{2}, -\frac{1}{2}\right)$	(d) $\left(\frac{1}{8}, -\frac{1}{16}\right)$							
53.	The length of the normal t	to the curve $y = a \left(\frac{e^{-x/a} + e^{x/a}}{2} \right)$	at any point varies as the								
	(a) Abscissa of the point		(b) Ordinate of the point								
	(c) Square of the abscissa	a of the point	(d) Square of the ordinat	te of the point							
5 4 .	If the parametric equatio	n of a curve given by $x = e^t c$	$t, y = e^t \sin t$, then the tangent to the curve at the point								
	$t = \frac{\pi}{4}$ makes with axes of	x the angle									
	(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$							
55.	For the parabola $y^2 = 4ax$, the ratio of the subtangent to	o the abscissa is								
	(a) 1:1	(b) 2:1	(c) <i>x</i> : <i>y</i>	(d) $x^2: y$							
56.	Tangents are drawn from	the origin to the curve $y = \cos y$	x. Their points of contact	lie on							
	(a) $x^2y^2 = y^2 - x^2$	(b) $x^2y^2 = x^2 + y^2$	(c) $x^2y^2 = x^2 - y^2$	(d) None of these							
57.	If $y = 4x - 5$ is a tangent to	to the curve $y^2 = px^3 + q$ at (2,	3) then								
	(a) $p = 2, q = -7$	(b) $p = -2, q = 7$	(c) $p = -2, q = -7$	(d) $p = 2, q = 7$							
58.	The curve $y - e^{xy} + x = 0$ has	as a vertical tangent at the po	int								
	(a) (1, 1)	(b) At no point	(c) (0, 1)	(d) (1, 0)							

9.	If the tangent and norma	l at any point P of parabola n	neet the axes at <i>T</i> and <i>G</i> resp	ectively then		
	(a) ST = SG.SP	(b) $ST = SG = SP$	(c) ST \neq SG = SP	(d) $ST = SG \neq SP$		
0.	Slope of the tangent to th	he curve $y = x^3 $ at origin is				
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) o		
•	The line $\left(\frac{x}{a}\right) + \left(\frac{y}{b}\right) = 2$, to	uches the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n =$	= 2 at point (a , b) then n =	[Rajasthan PET 1998]		
	(a) 1 n	(b) 2	(c) 3	(d) For non-zero values of		
•	The sum of the squares o	f intercepts made by a tange	to the curve $x^{2/3} + y^{2/3} = a^{2/3}$	^{2/3} with coordinate axes is [Raj		
	(a) <i>a</i>	(b) 2a	(c) a^2	(d) $2a^2$		
•	The point of the curve <i>y</i>	$=x^2-3x+2$ at which the tang	gent is perpendicular to the	y = x will be		
	(a) (0, 2)	(d) (2, -2)				
•	The equation of normal t	o the curve $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at the	e point $(8, 3\sqrt{3})$ is	[MP PET 1996]		
	(a) $\sqrt{3}x + 2y = 25$	(b) $x + y = 25$	(c) $y + 2x = 25$	(d) $2x + \sqrt{3}y = 25$		
	The angle of intersection	between the curves $xy = a^2$ a	and $x^2 + y^2 = 2a^2$ is	[Rajasthan PET 1998]		
	(a) 0°	(b) 30 ^{<i>o</i>}	(c) 45°	(d) 90 [°]		
	The subtangent to the cu	rve $x^m y^n = a^{m+n}$ at any point i	s proportional to	[Rajasthan PET 1998]		
	(a) Ordinate	(b) Abscissa	(c) (Ordinate) ⁿ	(d) (Abscissa) ⁿ		
	If tangents drawn on the	curve $x = at^2$, $y = 2at$ is perpe	ndicular to <i>x</i> -axis then its po	pint of contact is		
	(a) (<i>a, a</i>)	(b) (a, 0)	(c) (0, a)	(d) (o, o)		
•	Tangents are drawn to th are	the curve $y = x^2 - 3x + 2$ at the	points where it meets <i>x</i> -axi	s. Equations of these tangents		
				[Rajasthan PET 1993]		
	(a) $x - y + 2 = 0, x - y - 1 =$	0 (b) $x + y - 1 = 0, x - y = 2$	(c) $x - y - 1 = 0, x - y = 0$	(d) $x - y = 0, x + y = 0$		
•	If the tangents at any p $p^{-4/3} + q^{-4/3}$ is	point on the curve $x^4 + y^4 =$	a^4 cuts off intercept p and	l q on the axes, the value of		
	(a) $a^{-4/3}$	(b) $a^{-1/2}$	(c) $a^{1/2}$	(d) None of these		
	At any point (x_1, y_1) of th	e curve $y = ce^{x/a}$				
	(a) Subtangent is consta	nt				
	(b) Subnormal is propor	tional to the square of the ord	linate of the point			
	(c) Tangent cuts <i>x</i> -axis a	at $(x_1 - a)$ distance from the o	rigin			
	(d) All the above					
	The equation of the tange	ent to the curve $y = 1 - e^{x/2}$ at	the point where it meets y-	axis is		

			A m	plication of Dominations 100
	(a) $x + 2y = 2$	(b) $2x + y = 0$	(c) $x - y = 2$	(d) None of these
72.	The coordinates of the p	points on the curve $x = a(\theta + \theta)$	$\sin \theta$, $y = a(1 - \cos \theta)$, where t	angent is inclined an angle $\frac{\pi}{4}$ to
	the <i>x</i> -axis are			
	(a) (<i>a</i> , <i>a</i>)	(b) $\left(a\left(\frac{\pi}{2}-1\right),a\right)$	(c) $\left(a\left(\frac{\pi}{2}+1\right),a\right)$	(d) $\left(a, a\left(\frac{\pi}{2}+1\right)\right)$
/3.	If equation of normal at	a point $(m^2 - m^3)$ on the cur	rve $x^3 - y^2 = 0$ is $y = 3mx - 4$	m^3 , then m^2 equals
	(a) 0	(b) 1	(c) $-\frac{2}{9}$	(d) $\frac{2}{9}$
74.	For a curve $\frac{(\text{Length of non})}{(\text{Length of tan})}$	$\frac{\text{rmla}}{\text{gent}}^2$ is equal to		
	(a) (Subnormal)/(Subta (Subtangent/Subnormal	0	(Subtangent)/(Subnor	mal) (c)
75.	If the curve $y = x^2 + bx + bx$	c, touches the line $y = x$ at	the point (1, 1), the values of	of <i>b</i> and <i>c</i> are
	(a) - 1, 2	(b) -1, 1	(c) 2, 1	(d) -2, 1
76.	Let <i>C</i> be the curve $y^3 - 3$ horizontal and vertical p		e set of points on the curve	e <i>C</i> where tangent to the curve is
	(a) $H = \{(1,1)\}, V = \phi$	(b) $H = \phi, V = \{(1,1)\}$	(c) $H = \{(0,0)\}, V = \{(1,1)\}, V = \{(1,1)\},$	(d) None of these
77.	If the line $ax + by + c = 0$	is a normal to the curve <i>xy</i>	=1 then	
	(a) $a,b \in R$	(b) $a > 0, b > 0$	(c) $a < 0, b > 0 \text{ or } a > 0, b < 0$	b < 0 (d) $a < 0, b < 0$
78.	If the tangent to the cur the curve, then <i>a, c, b</i> ar		<i>c</i>)) is parallel to line joining	the points $(a, f(a))$ and $(b, f(b))$ on
	(a) H.P.	(b) G.P.	(c) A.P.	(d) A.P. and G.P. both
79.	The area of triangle form	med by tangent to the hyper	bola $2xy = a^2$ and coordinat	es axes is
	(a) <i>a</i> ²	(b) $2a^2$	(c) $\frac{a^2}{2}$	(d) $\frac{3a^2}{2}$
80.	The angle of intersection	n between the curves $r = a \sin \theta$	$n(\theta - \alpha)$ and $r = b\cos(\theta - \beta)$ is	
	(a) $\alpha - \beta$	(b) $\alpha + \beta$	(c) $\frac{\pi}{2} + \alpha + \beta$	(d) $\frac{\pi}{2} + \alpha - \beta$
81.	The distance between th	ne origin and the normal to t	the cure $y = e^{2x} + x^2$ at the p	point $x = 0$ is
	(a) $2\sqrt{5}$	(b) $\frac{2}{\sqrt{5}}$	(c) √5	(d) None of these
82.	If the curve $y = ax^2 - 6x$	+b passes through (0, 2) as	nd has its tangent parallel t	to x-axis at $x = \frac{3}{2}$, then the value
	of a and b are			
				[SCRA 1999]
	(a) 2, 2	(b) -2, -2	(c) -2, 2	(d) 2, -2

83.	If at any point S of th	be curve $by^2 = (x+a)^3$ the re-	elation between subnorma	l SN and subtangent ST be							
	$p(SN) = q(ST)^2$ then p/q is	equal to									
	[Rajasthan PET 1999; EAMC	CET 1991]									
	(a) $\frac{8b}{27}$	(b) $\frac{8a}{27}$	(c) $\frac{b}{a}$	(d) None of these							
84.	The points on the curve 9	$y^2 = x^3$ where the normal to t	he curve cuts equal intercep	ots from the axes are							
	(a) (4, 8/3), (4, -8/3)	(b) (1, 1/3) (1, -1/3)	(c) (0, 0)	(d) None of these							
85.	The equation of the norma	al to the curve $y^2 = x^3$ at the p	point whose abscissa is 8, w	rill be							
	(a) $x \pm \sqrt{2}y = 104$	(b) $x \pm 3\sqrt{2}y = 104$	(c) $3\sqrt{2}x \pm y = 104$	(d) None of these							
86.	At any point (except verte	ex) of the parabola $y^2 - 4ax$ su	ubtangent, ordinate and sub	normal are in							
	(a) AP	(b) GP	(c) HP	(d) None of these							
87.	At what point the slope of	The tangent to the curve x^2 +	$y^2 - 2x - 3 = 0$ is zero	[Rajasthan PET 1989, 1995]							
	(a) (3 0); (-1, 0)	(b) (3,0); (1,2)	(c) (-1, 0); (1, 2)	(d) (1, 2); (1, -2)							
88.	Let the equation of a cur	rve be $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$	$\cos \theta$). If θ changes at a condition	stant rate k then the rate of							
	change of the slope of the tangent to the curve at $\theta = \frac{\pi}{3}$ is										
	(a) $\frac{2k}{\sqrt{3}}$	(b) $\frac{k}{\sqrt{3}}$	(c) <i>k</i>	(d) None of these							
89.				makes angles $\frac{\pi}{6}, \frac{\pi}{3}$ and $\frac{\pi}{4}$							
	respectively with the posi	tive direction of the <i>x</i> -axis. T	hen the value of $\int_{2}^{3} f'(x) f''(x) dx$	$lx + \int_{1}^{3} f''(x) dx$ is equal to							
	(a) $-\frac{1}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{3}}$	(c) 0	(d) None of these							
90.	$P(2,2)$ and $Q\left(\frac{1}{2},-1\right)$ are t	two points on the parabolas	$y^2 = 2x$. the coordinates of	the point R on the parabola,							
	where the tangent to the	curve is parallel to the chord	PQ, is								
	(a) $\left(\frac{5}{4}, \sqrt{\frac{5}{2}}\right)$	(b) (2, - 1)	(c) $\left(\frac{1}{8}, \frac{1}{2}\right)$	(d) None of these							
91.	The number of tangents to	b the curve $x^{3/2} + y^{3/2} = a^{3/2}$,.	where the tangents are equ	ally inclined to the axes, is							
	(a) 2	(b) 1	(c) 0	(d) 4							
92.	If at each point of the c direction of the <i>x</i> -axis the		tangent is inclined at an a	cute angle with the positive							
	(a) $a > 0$	(b) $a \le \sqrt{3}$	(c) $-\sqrt{3} \le a \le \sqrt{3}$	(d) None of these							

\mathcal{A} nswer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	b	a	с	a	с	a	b	a	d	b	a	С	b	b	b	a	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	d	a	d	a	с	с	b	с	b	d	a	a	b	a	d	с	d	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	с	С	a	b	с	a	b	с	b	d	d	d	b	с	a	d	b	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	С	b	d	a	b	d	b	a	d	d	с	d	a	b	b	с	с	a	d
81	82	83	84	85	86	87	88	89	90	91	92								
b	a	a	a	b	b	d	d	a	с	b	с								