Application Of Derivatives

Que 1:

Marks :(4)

Let $f(x)=a \chi^2 +bx+4$ be a real function. Where a and b are real numbers.

1.Find f^1 (x)

2.If the function attains its minimum value -1 at x=1.Find a and b

Ans:

1.
$$f^1$$
 (x)=2ax+b

2.
$$f^1$$
 (1)=0

2a+b=0

a+b+5=0

a=5,b=-10

Que 2:

Marks :(4)

Consider the curve $y^2 = p_X^3 + q$, where p and q are real numbers

1.Find
$$\frac{dy}{dx}$$
 at the point (2,3)

2.If y=4x-5 is the tangent to the curve at (2,3) then find the value of p and q

Ans:

1.
$$\frac{dy}{dx}$$
 =2p

2.
$$\frac{dy}{dx} = 4$$

q=-7

Que 3: The surface area $S = 4\pi r^2$ of a spherical balloon changes with radius.

- 1. At what rate does the surface area changes w.r.t the radius
- 2. Using differentials find approximately how much does the surface area increase when the radius changes from 5cm to 5.2cm *Marks :(4)*

Ans:

1.
$$S = 4\pi r^2$$

$$\frac{ds}{dr} = 8\pi r$$
When r=5cm, $\frac{ds}{dr} = 40\pi cm^2$ /cm
$$2.\Delta S = \frac{ds}{dr}\Delta r$$

$$= 40\pi \times .2 = 8\pi cm^2$$

Que 4:

Marks :(3)

Consider the curve 2 χ^3 -3 γ^2 +27=0

1. Find the points on the curve at which the tangent is parallel to X axis

2. Show that
$$\frac{d^2y}{dx^2} = \frac{2x}{y} - \frac{x^4}{y^3}$$
, $y \ne 0$

Ans:

1. 2
$$x^3$$
 -3 y^2 +27=0
 $\frac{dy}{dx} = \frac{x^2}{y}$, $y \neq 0$

When tangent is parallel to X axis, $\frac{dy}{dx} = 0$

x=0

When x=0,y=±3

Points are (0,3) and (0,-3)

2.
$$\frac{d^2 y}{d x^2} = \frac{y \cdot 2x - x^2 \cdot \frac{dy}{dx}}{y^2}$$

$$=\frac{2x}{v}-\frac{x^4}{v^3}$$