Questions Pg-49

1. Question

What is the sum of the angles of a 52-sided polygon?

Answer

Given: Number of sides of polygon = 52

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (52 - 2) \times 180°

 \Rightarrow S = 50 \times 180°

⇒ S = 9000

 \therefore The sum of the angles of 52-sided polygon is 9000°.

2. Question

The sum of the angles of a polygon is 8100°. How many sides does it have?

Answer

Given: Sum of the angles = 8100°

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

```
\Rightarrow 8100° = (n - 2) × 180°
```

$$\Rightarrow \frac{8100}{180} = n - 2$$
$$\Rightarrow 45 = n - 2$$
$$\Rightarrow n = 45 + 2$$

 \therefore The number of sides of polygon having sum of the angles of 8100° is 47 sides.

3. Question

Is the sum of the angles of any polygon 1600°? How about 900°?

Answer

Given: Sum of the angles = 1600° and 900°

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

```
\Rightarrow 1600^{\circ} = (n - 2) \times 180^{\circ}
```

$$\Rightarrow \frac{1600}{180} = n - 2$$

⇒ 8.89 = n - 2

⇒ n = 8.89 + 2

⇒ n = 10.89

 \therefore There is no polygon which have sum of the angles as 1600°.

When sum is 900°

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 $\Rightarrow 900^\circ = (n - 2) \times 180^\circ$

 $\Rightarrow \frac{900}{180} = n - 2$ $\Rightarrow 5 = n - 2$ $\Rightarrow n = 5 + 2$ $\Rightarrow n = 7$

 \therefore The number of sides of polygon having sum of the angles of 900° is 7 sides.

4. Question

All the angles of a 20-sided polygon are the same. How much is each?

Answer

Given: Number of sides of polygon = 20

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (20 - 2) \times 180°

 \Rightarrow S = 18 \times 180°

```
⇒ S = 3240
```

 \therefore The sum of the angles of 20-sided polygon is 3240°.

5. Question

The sum of the angles of a polygon is 1980°. What is the sum of the angles of a polygon with one side less? What about a polygon with one side more?

Answer

Given: Sum of the angles = 1980°

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

```
\Rightarrow 1980^{\circ} = (n - 2) \times 180^{\circ}
```

```
\Rightarrow \frac{1980}{180} = n - 2
```

```
⇒ 11 = n - 2
```

```
\Rightarrow n = 11 + 2
```

```
⇒ n = 13
```

 \therefore The number of sides of polygon having sum of the angles of 1980° is 13 sides.

When the number of sides of polygon one side less than 13-sided polygon.

Number of sides of polygon = 12

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (12 - 2) × 180°

 \Rightarrow S = 10 \times 180°

 \Rightarrow S = 1800

 \therefore The sum of the angles of 12-sided polygon is 1800°.

When the number of sides of polygon one side more than 13-sided polygon.

Number of sides of polygon = 14

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (14 - 2) \times 180°

 \Rightarrow S = 12 \times 180°

⇒ S = 2160

 \therefore The sum of the angles of 14-sided polygon is 2160°.

Questions Pg-51

1. Question

Two angles of a triangle are 40° and 60°. Calculate all its outer angles.

Answer

Given:

In Δ ABC $\angle A + \angle B + \angle C = 180^{\circ}$ (sum of the angles of triangle = 180°) $\Rightarrow 60^{\circ} + 40^{\circ} + \angle C = 180^{\circ}$ $\Rightarrow 100^{\circ} + \angle C = 180^{\circ}$ ⇒ ∠C = 180° - 100° ⇒ ∠C = 80° $\angle ACJ + \angle ACB = 180^{\circ}$ (linear pair of angles at a vertex.) $\Rightarrow \angle ACJ + 80^{\circ} = 180^{\circ}$ $\Rightarrow \angle ACJ = 180^{\circ} - 80^{\circ}$ $\Rightarrow \angle ACJ = 140^{\circ}$ \angle CBI + \angle CBA = 180° (linear pair of angles at a vertex.) $\Rightarrow \angle CBI + 40^{\circ} = 180^{\circ}$ ⇒ ∠CBI = 180° - 40° ⇒ ∠CBI = 140° \angle BAH + \angle BAC = 180° (linear pair of angles at a vertex.) $\Rightarrow \angle BAH + 60^{\circ} = 180^{\circ}$ ⇒ ∠BAH = 180° - 60° $\Rightarrow \angle BAH = 120^{\circ}$ 2. Question

Compute all angles in the figure below.

Answer

Let us name the different coordinate in the above question figure:

3. Question

Compute all outer angles of the quadrilateral shown below.

Answer

Let us name the different coordinate in the above question figure:

Sum of the angles of 4-sided polygon Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$ \Rightarrow S = (4 - 2) × 180° \Rightarrow S = 2 \times 180° ⇒ S = 360° In ABCD $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ \Rightarrow 130° + 70° + 60° + \angle D = 360° $\Rightarrow 260^{\circ} + \angle D = 360^{\circ}$ ⇒ ∠ D = 360° - 260° $\Rightarrow \angle D = 100^{\circ}$ **Exterior Angles** \angle FAB + \angle DAB = 180° (linear pair of angles at a vertex) $\Rightarrow \angle FAB + 130^{\circ} = 180^{\circ}$ ⇒ ∠ FAB = 180° - 130° $\Rightarrow \angle FAB = 50^{\circ}$ \angle CBE + \angle CBA = 180° (linear pair of angles at a vertex) $\Rightarrow \angle CBE + 70^{\circ} = 180^{\circ}$ ⇒ ∠ CBE = 180° - 70° $\Rightarrow \angle CBE = 110^{\circ}$ \angle DCB + \angle DCH = 180° (linear pair of angles at a vertex) $\Rightarrow 60^{\circ} + \angle \text{ DCH} = 180^{\circ}$

⇒ ∠ DCH = 180° - 60°

 $\Rightarrow \angle \text{DCH} = 120^{\circ}$

 \angle ADG + \angle ADC = 180° (linear pair of angles at a vertex)

- $\Rightarrow \angle ADG + 100^{\circ} = 180^{\circ}$
- ⇒ ∠ ADG = 180° 100°
- $\Rightarrow \angle ADG = 80^{\circ}$

4 A. Question

Compute all angles of each of the figures below:

Answer

Let us name the vertices of the triangle.

 $\angle ABC + \angle ABD = 180^{\circ}$ $\Rightarrow \angle ABC + 145^{\circ} = 180^{\circ}$ $\Rightarrow \angle ABC = 180^{\circ} - 145^{\circ}$ $\Rightarrow \angle ABC = 35^{\circ}$ In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 35^{\circ} + 70^{\circ} = 180^{\circ}$ $\Rightarrow \angle A + 105^{\circ} = 180^{\circ}$ $\Rightarrow \angle A + 105^{\circ} = 180^{\circ}$ $\Rightarrow \angle A = 180^{\circ} - 105^{\circ}$ $\Rightarrow \angle A = 75^{\circ}$ $\angle CAF + \angle CAB = 180^{\circ}$ $\Rightarrow \angle CAF + 75^{\circ} = 180^{\circ}$ $\Rightarrow \angle CAF = 180^{\circ} - 75^{\circ}$ $\Rightarrow \angle CAF = 105^{\circ}$ \angle BCE + \angle BCA = 180° $\Rightarrow \angle$ BCE + 70° = 180° $\Rightarrow \angle$ BCE = 180° - 70° $\Rightarrow \angle$ BCE = 110°

4 B. Question

Compute all angles of each of the figures below:

Answer

Let us name the vertices of quadrilateral.

 \angle CDA + \angle CDE = 180° (linear pair of angles at a vertex)

 $\Rightarrow \angle CDA + 115^{\circ} = 180^{\circ}$

 $\Rightarrow \angle \text{CDA} = 180^{\circ} - 115^{\circ}$

$$\Rightarrow \angle CDA = 65^{\circ}$$

Sum of the angles of 4-sided polygon

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 $\Rightarrow S = (4 - 2) \times 180^{\circ}$ $\Rightarrow S = 2 \times 180^{\circ}$ $\Rightarrow S = 360^{\circ}$ In ABCD $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

 $\Rightarrow \angle A + 100^{\circ} + 75^{\circ} + 65^{\circ} = 360^{\circ}$

 $\Rightarrow 240^{\circ} + \angle A = 360^{\circ}$

⇒ ∠ A = 360° - 240°

 $\Rightarrow \angle A = 120^{\circ}$

 \angle DAH + \angle DAB = 180° (linear pair of angles at a vertex)

 $\Rightarrow \angle \text{DAH} + 120^\circ = 180^\circ$

 $\Rightarrow \angle DAH = 180^{\circ} - 120^{\circ}$ $\Rightarrow \angle DAH = 60^{\circ}$ $\angle ABG + \angle ABC = 180^{\circ} \text{ (linear pair of angles at a vertex)}$ $\Rightarrow \angle ABG + 100^{\circ} = 180^{\circ}$ $\Rightarrow \angle ABG = 180^{\circ} - 100^{\circ}$ $\Rightarrow \angle ABG = 80^{\circ}$ $\angle BCF + \angle BCD = 180^{\circ} \text{ (linear pair of angles at a vertex)}$ $\Rightarrow \angle BCF + 75^{\circ} = 180^{\circ}$ $\Rightarrow \angle BCF = 180^{\circ} - 75^{\circ}$ $\Rightarrow \angle BCF = 105^{\circ}$

4 C. Question

Compute all angles of each of the figures below:

Answer

Let us name the vertices of quadrilateral

 \angle ADC + \angle ADE = 180° (linear pair of angles at a vertex)

- $\Rightarrow \angle ADC + 80^{\circ} = 180^{\circ}$
- $\Rightarrow \angle ADC = 180^{\circ} 80^{\circ}$
- $\Rightarrow \angle ADC = 100^{\circ}$
- \angle DCB + \angle DCJ = 180° (linear pair of angles at a vertex)
- $\Rightarrow \angle \text{DCB} + 95^\circ = 180^\circ$
- $\Rightarrow \angle \text{DCB} = 180^{\circ} 95^{\circ}$
- $\Rightarrow \angle \text{DCB} = 85^{\circ}$

Sum of the angles of 4-sided polygon Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$ \Rightarrow S = (4 - 2) × 180° \Rightarrow S = 2 \times 180° ⇒ S = 360° In ABCD $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow \angle A + 85^{\circ} + 85^{\circ} + 100^{\circ} = 360^{\circ}$ $\Rightarrow 270^{\circ} + \angle A = 360^{\circ}$ ⇒ ∠ A = 360° - 270° $\Rightarrow \angle A = 90^{\circ}$ \angle BAG + \angle BAD = 180° $\Rightarrow \angle BAG + 90^{\circ} = 180^{\circ}$ ⇒ ∠ BAG = 180° - 90° $\Rightarrow \angle BAG = 90^{\circ}$ \angle BAG = \angle DAF (opposite angle at a vertex) $\angle DAF = 90^{\circ}$ \angle DAB = \angle GAF (opposite angle at a vertex) $\angle GAF = 90^{\circ}$

5. Question

Prove that in any triangle, the outer angle at a vertex is equal to the sum of the inner angles at the other two vertices.

Answer

Let us consider Δ ABC and \angle ACD is and exterior angle

To show: $\angle ACD = \angle A + \angle B$

Through C draw CE parallel to AB

Proof:

 $\angle A = \angle y$ (AB || CE and AD is a transversal) $\angle B = \angle x$ (AB || CE and AC is a transversal; alternate angles are equal) $\angle 1 + \angle 2 = \angle x + \angle y$ Now, $\angle x + \angle y = \angle ACD$

Hence, $\angle 1 + \angle 2 = \angle ACD$

 $\angle ACD = \angle A + \angle B$

Hence Proved.

Questions Pg-54

1. Question

All angles in an 18-sided polygon are equal. How much is each outer angle?

Answer

We know that,

Sum of outer angles of any polygon = 360°

Sum of each exterior angle = $\frac{360^{\circ}}{n}$

Sum of each exterior angle of 18-sided polygon = $\frac{360}{18}$ = 20°

2. Question

The sides PQ, RS of the quadrilateral shown below are parallel. Compute all inner and outer angles of the quadrilateral.

⇒∠S = 180° - 50°

⇒∠S = 130°

Let RQ be the transversal and PQ || RS

 \angle R + \angle Q = 180° (consecutive interior angle adds up to 180°)

 $\Rightarrow 110^{\circ} + \angle Q = 180^{\circ}$

⇒ ∠ Q = 180° - 110°

 $\Rightarrow \angle Q = 70^{\circ}$

The sum of inner and outer angle at vertex is 180°.

- $\angle P + ext. \angle P = 180^{\circ}$
- $\Rightarrow 50^{\circ} + \text{ext.} \angle P = 180^{\circ}$
- ⇒ ext. ∠ P = 180° 50°
- \Rightarrow ext. \angle P = 130°
- $\angle Q + ext. \angle Q = 180^{\circ}$
- ⇒ 70° + ext. ∠ Q = 180°
- ⇒ ext. ∠ Q = 180° 70°
- ⇒ ext. ∠ Q = 110°
- $\angle R + ext. \angle R = 180^{\circ}$
- \Rightarrow 110° + ext. \angle R = 180°
- ⇒ ext. ∠ R = 180° 110°

 \Rightarrow ext. \angle R = 70°

 \angle S + ext. \angle S = 180° \Rightarrow 130° + ext. \angle S = 180° \Rightarrow ext. \angle S = 180° - 130° \Rightarrow ext. \angle S = 50°

3. Question

Draw a quadrilateral and mark any two outer angles. Is there any relation between the sum of these two and the inner angles at the outer two and the inner angles at the other two vertices?

Answer

 \angle ADC + \angle CDF = 180° (linear pair of angles at a vertex)

 \angle CDF = 180° - \angle ADC ...(1)

 \angle ABC + \angle CBE = 180° (linear pair of angles at a vertex)

 \angle CBE = 180° - \angle ABC ... (2)

Sum of two exterior angles marked.

 $\Rightarrow \angle CBE + \angle CDF = 180^{\circ} - \angle ABC + 180^{\circ} - \angle ADC$

 $\Rightarrow \angle CBE + \angle CDF = 360^{\circ} - (\angle ABC + \angle ADC) ...(3)$

In ABCD

 \angle ABC + \angle BCD + \angle ADC + \angle DAB = 360°

[sum of all interior angles 4-sided polygon is 360°]

 $\Rightarrow \angle ABC + \angle ADC = 360^{\circ} - \angle BCD - \angle DAB$

Put this value in equation (3)

 $\Rightarrow \angle CBE + \angle CDF = 360^{\circ} - (360^{\circ} - \angle BCD - \angle DAB)$

 $\Rightarrow \angle CBE + \angle CDF = 360^{\circ} - 360^{\circ} + \angle BCD + \angle DAB$

 $\Rightarrow \angle CBE + \angle CDF = \angle BCD + \angle DAB$

Hence, yes there is a relation between the sum of exterior angles marked and sum of inner angles at the other two vertices.

4. Question

In a polygon with all angles equal, one outer angle is twice an inner angle.

i) How much is each of its angle?

ii) How many sides does it have?

Answer

Let x be the measure of inner angle and 2x be the measure of outer angle.

Assume that the regular polygon has n sides (or angles) Sum of the interior angles = $(n - 2) \times 180^{\circ}$ $n \times x = (n - 2) \times 180^{\circ}$ $\Rightarrow nx = (n - 2) \times 180^{\circ} \dots (1)$ Sum of the exterior angle = 360° $\Rightarrow n \times 2x = 360^{\circ}$ $\Rightarrow 2nx = 360^{\circ}$ $\Rightarrow x = \frac{360^{\circ}}{2n}$ Substitute this value for x in equation (1) $\Rightarrow n \times \frac{360^{\circ}}{2n} = (n - 2) \times 180^{\circ}$ $\Rightarrow 180^{\circ} = 180^{\circ}n - 360^{\circ}$

 $\Rightarrow 180^\circ = 180^\circ n - 360^\circ$

 \Rightarrow 180°n = 180° + 360°

$$\Rightarrow$$
 n = $\frac{540}{180^{\circ}}$

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (3 - 2) × 180°

 \Rightarrow S = 1 \times 180°

Measure of each interior angle = $\frac{\text{sum of all interior angles}}{\text{number of sides}}$

$$\Rightarrow x^{\circ} = \frac{180^{\circ}}{3} = 60^{\circ}$$

i. Measure of each interior angle is 60°

ii. Number of sides of this polygon is 3.

5. Question

The sum of the outer angles of polygon is twice the sum of the inner angles. How many sides does it have? What if the sum of outer angles is half the sum of inner angles? And if the sums are equal?

Answer

As we know the sum of exterior angles in each polygon is 360°.

Let n be the number of angles in the polygon.

Then the sum of interior angle is $(n - 2) \times 180^{\circ}$

Since the sum of interior angle is twice the sum of exterior angles

 \Rightarrow (n - 2) \times 180° = 2 \times 360°

$$\Rightarrow (n-2) = \frac{2 \times 360^{\circ}}{180^{\circ}}$$

 \Rightarrow (n - 2) = 2 \times 2

 $\Rightarrow (n - 2) = 4$ $\Rightarrow n = 4 + 2$ $\Rightarrow n = 6$

Since the sum of exterior angle is half the sum of interior angles

```
\Rightarrow \frac{(n-2) \times 180^{\circ}}{2} = 360^{\circ}
\Rightarrow (n-2) \times 180^{\circ} = 2 \times 360^{\circ}
\Rightarrow (n-2) = \frac{2 \times 360^{\circ}}{180^{\circ}}
\Rightarrow (n-2) = 2 \times 2
\Rightarrow (n-2) = 4
\Rightarrow n = 4 + 2
\Rightarrow n = 6
Given the same of interiors of
```

Since the sum of interior angle is equal to the sum of exterior angles

$$\Rightarrow (n - 2) \times 180^{\circ} = 360^{\circ}$$

$$\Rightarrow n - 2 = \frac{360^{\circ}}{180^{\circ}}$$

$$\Rightarrow n - 2 = 2$$

$$\Rightarrow n = 2 + 2$$

$$\Rightarrow n = 4$$

Questions Pg-58

1. Question

Draw a hexagon of equal sides and unequal angles.

Answer

2. Question

Draw a hexagon of equal angles and unequal sides.

Answer

3. Question

How much is each angle of a 15-sided regular polygon? How much is each outer angle?

Answer

Given: number of side of polygon = 15

Measure of each exterior angle = $\frac{360^{\circ}}{n}$

$$\Rightarrow$$
 ext. $\angle x = \frac{360^{\circ}}{15}$

⇒ ext. $\angle x = 24^{\circ}$

The sum of inner and outer angle at vertex is 180°.

$$\angle x + ext. \angle x = 180^{\circ}$$

 $\Rightarrow \angle x + 24^{\circ} = 180^{\circ}$

 $\Rightarrow \angle x = 180^{\circ} - 24^{\circ}$

⇒∠ x = 156°

Measure of interior angles is 156° and exterior angle is 24°.

4. Question

One angle of a regular polygon is 168°. How many sides does it have?

Answer

Each interior angle = $\frac{180^{\circ}(n-2)}{n}$ $\Rightarrow 168^{\circ} = \frac{180^{\circ}(n-2)}{n}$ $\Rightarrow 168^{\circ}n = 180^{\circ}n - 360^{\circ}$ $\Rightarrow 168^{\circ}n + 360^{\circ} = 180^{\circ}n$ $\Rightarrow 360^{\circ} = 180^{\circ}n - 168^{\circ}n$ $\Rightarrow 360^{\circ} = 12^{\circ}n$ $\Rightarrow n = \frac{360^{\circ}}{12^{\circ}}$ $\Rightarrow n = 30$

5. Question

Can we draw a regular polygon with each outer angle 6°? What about 7°?

Answer

We know that,

Sum of exterior angles = 360°

Measure of each exterior angle = $\frac{360^{\circ}}{n}$

 $\Rightarrow 6^{\circ} = \frac{360^{\circ}}{n}$ $\Rightarrow 6^{\circ}n = 360^{\circ}$ $\Rightarrow n = \frac{360^{\circ}}{6^{\circ}}$

⇒ n = 60

Yes, we can draw regular polygon with each outer angle 6°

Sum of exterior angles = 360°

Measure of each exterior angle = $\frac{360^{\circ}}{n}$

$$\Rightarrow 7^{\circ} = \frac{360^{\circ}}{n}$$
$$\Rightarrow 7^{\circ}n = 360^{\circ}$$
$$\Rightarrow n = \frac{360^{\circ}}{7^{\circ}}$$
$$\Rightarrow n = 51.42$$

No, we cannot draw regular polygon with each outer angle 6°

6. Question

The figure shown a regular pentagon and a regular hexagon put together. How much is ∠PQR?

Answer

In regular pentagon,

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (5 - 2) × 180°

 \Rightarrow S = 3 \times 180°

Measure of each interior angle = $\frac{\text{sum of all interior angle}}{\text{number of sides}} = \frac{S}{n}$

$$\Rightarrow \frac{540^{\circ}}{5} = 108^{\circ}$$

In regular hexagon,

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (6 - 2) × 180°

- \Rightarrow S = 4 \times 180°
- ⇒ S = 720°

 $\label{eq:measure} \text{Measure of each interior angle} = \frac{\text{sum of all interior angle}}{\text{number of sides}} = \frac{\text{S}}{\text{n}}$

$$\Rightarrow \frac{720^{\circ}}{6} = 120^{\circ}$$

Let us assume the point opposite to Q as S.

 \angle PQS + \angle RQS + \angle PQR = 360° (pair of angles at a vertex)

 $\Rightarrow 120^{\circ} + 108^{\circ} + \angle PQR = 360^{\circ}$ $\Rightarrow 228^{\circ} + \angle PQR = 360^{\circ}$ $\Rightarrow \angle PQR = 360^{\circ} - 228^{\circ}$ $\Rightarrow \angle PQR = 132^{\circ}$

7. Question

The figure shows a square, a regular pentagon and a regular hexagon put together. How much is ∠BAC?

Answer

We know that, all angles of square are 90°.

In regular pentagon,

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (5 - 2) × 180°

 \Rightarrow S = 3 \times 180°

Measure of each interior angle = $\frac{\text{sum of all interior angle}}{\text{number of sides}} = \frac{S}{n}$

$$\Rightarrow \frac{540^{\circ}}{5} = 108^{\circ}$$

In regular hexagon,

Sum of the angles of n-sided polygon = $(n - 2) \times 180^{\circ}$

 \Rightarrow S = (6 - 2) \times 180°

 \Rightarrow S = 4 \times 180°

Measure of each interior angle = $\frac{\text{sum of all interior angle}}{\text{number of sides}} = \frac{S}{n}$

$$\Rightarrow \frac{720^{\circ}}{6} = 120^{\circ}$$

Let us assume the two points adajacent A as P and L.

 \angle BAP + \angle BAC + \angle CAL + \angle PAL = 360° (pair of angles at a vertex) $\Rightarrow 120^{\circ} + 108^{\circ} + 90^{\circ} + \angle$ BAC = 360° $\Rightarrow 318^{\circ} + \angle$ BAC = 360° $\Rightarrow \angle$ BAC = 360° - 318° $\Rightarrow \angle$ BAC = 42°

8. Question

In the figure, ABCDEF is a regular hexagon. Prove that ΔBDF, drawn joining alternate vertices is equilateral.

Answer

Construction: Draw a perpendicular AO on BF

All the angles are 120° as it is regular hexagon and all the sides are equal.

Now in \triangle AOB and \triangle AOF, AO = AO [common] AB = AF [all sides are equal] \angle AOB = \angle AOF = 90° [by construction] So, \triangle AOB \cong \triangle AOF \angle BAO = \angle FAO = 60° [CPCT] \angle ABO = \angle AFO [CPCT] ... (1) Similarly, \triangle BGC \cong \triangle DGC

 \angle BCG = \angle DCG = 60° \angle CBG = \angle CDG ... (2) Similarly, Δ DHE $\cong \Delta$ FHE \angle DEH = \angle FEH = 60° \angle EDH = \angle EFH ... (3) In Δ BAO, \angle BAO + \angle AOB + \angle ABO = 180° $\Rightarrow 60^{\circ} + 90^{\circ} + \angle ABO = 180^{\circ}$ $\Rightarrow 150^{\circ} + \angle ABO = 180^{\circ}$ ⇒ ∠ ABO = 180° - 150° $\Rightarrow \angle ABO = 30^{\circ}$ \therefore from (1) \angle ABO = \angle AFO = 30° Similarly \angle CBG = \angle CDG = 30° \angle EDH = \angle EFH = 30° \angle ABO + \angle FBD + \angle CBG = \angle ABC $\Rightarrow 30^{\circ} + \angle FBD + 30^{\circ} = 120^{\circ}$ $\Rightarrow \angle$ FBD + 60° = 120° ⇒ ∠ FBD = 120° - 60° $\Rightarrow \angle FBD = 60^{\circ}$ Similarly, \angle BDF = DFB = 60° In Δ BDF \angle FBD = \angle BDF = DFB = 60° $\therefore \Delta$ BDF is an equilateral triangle.

9. Question

In the figure, ABCDEF is a regular hexagon. Prove that ACDF is a rectangle.

Answer In \triangle ABC and \triangle FED AB = FE [sides of hexagon] BC = ED [sides of hexagon] \angle ABC = \angle FED = 120° $\therefore \triangle$ ABC $\cong \triangle$ FED

AC = FD [CPCT]In Δ ABC \angle BAC = \angle BCA [angle made on opposite sides] \angle BAC + \angle BCA + \angle ABC = 180° 2∠ BCA + 120° = 180° ⇒ 2 ∠ BCA = 180° - 120° $\Rightarrow 2\angle$ BCA = 60° $\Rightarrow \angle BCA = \frac{60^{\circ}}{2} = 30^{\circ}$ $\therefore \angle BCA = \angle BAC = 30^{\circ}$ Similarly, \angle EFD = \angle EDF = 30° \angle BCD = \angle BCA + \angle ACD $\Rightarrow 120^{\circ} = 30^{\circ} + \angle ACD$ $\Rightarrow \angle ACD = 120^{\circ} - 30^{\circ}$ $\Rightarrow \angle ACD = 90^{\circ}$ \angle EDC = \angle FDE + \angle FDC $\Rightarrow 120^{\circ} = 30^{\circ} + \angle FDC$ ⇒ ∠ FDC = 120° - 30° $\Rightarrow \angle$ FDC = 90°

- \therefore From above calculations AC = FD and AF = CD and \angle FDC = \angle ACD = 90°
- \therefore ACDF is a rectangle.