

Properties of Triangle

QUESTIONS

1. Which of the following sets of measures cannot be the lengths of the sides of a right triangle?

(a) 5 cm, 4 cm and 03 cm	(b) 8 cm, 6 cm and 11 cm			
(c) 1 cm, 2.4 cm and 2.6 cm	(d) 60 cm, 25 cm and 65 cm			

- **2.** In a ΔPQR , If $PQ^2 = PR^2 + QR^2$, at which vertex is the right angle?
 - (a) P (b) Q (c) R (d) Either P or Q
- **3.** The given figure shows a right-angled ΔPQR . Each of the three sides of the triangle also act as sides of a square.

What is the area of the shaded region in the given figure?

(a) $9 \ cm^2$	(b) $13 \ cm^2$	(c) $26 \ cm^2$	(d) $18 \ cm^2$
(0,) > 0	(0) 10 0111	(0) =0 0	(4) 10 0

4. Which type of triangle is formed by BC = 7.2 cm, AC = 6 cm and $\angle C = 120^\circ$?

- (a) An acute angled triangle. (b) An obtuse angled triangle.
 - (c) A right angled triangle.
- **5.** What is the perimeter of the given figure?

(a) 12

(c) 16.6

(d) 18.2

(d) An isosceles triangle.

6. Which triangle is formed by $AB = 5 \ cm$, $BC = 6 \ cm$ and $AC = 7 \ cm$?

- (a) A scalene triangle. (b) An isosceles triangle.
- (c) An equilateral triangle (d) none of above

7. The length of one of the diagonals of a rhombus is 4 *cm*. If each side of the rhombus measures 2.5 *cm*, then what is the length of the other diagonal?

	(a) 5 cm	(b) 6 cm	(c) 3.5 <i>cm</i>	(d) 3 <i>cm</i>
8.	If two angles in a triangle	are 55° and 45° , what	is the third angle?	
	(a) 80°	(b) 55°	(c) 45°	(d) 90°

9. The given figure shows two buildings AB and CD. X is a point between the buildings from which two ropes are tied without slack to the top of the buildings.

- (c) A right angled triangle. (d) A right angled isosceles triangle.
- 11. If two angles of a triangle measure 45° and 60°, then which of the following angle cannot be the measure of one of the exterior angles of the triangle?
 (a) 105°
 (b) 120°
 (c) 140°
 (d) 135°
- **12.** In $\triangle ABC$, If AB = BC and $\angle B = 40^\circ$, what is the measure of $\angle C$?
 - (a) 70° (b) 80° (c) 130° (d) 40°
- **13.** The given figure shows two parallel lines AB and CD, which are intersected by transversal PQ at L and M. LD is also joined as shown.

What is the value of x in the given figure?

- (a) 63° (b) 58° (c) 70° (d) 85°
- **14.** Which triangle is formed by $BC = AC = 4.8 \ cm$ and $\angle C = 90^\circ$?
 - (a) A right angled triangle.
 - (b) An isosceles triangle.

10.

- (c) A right angled isosceles triangle.
- (d) No triangle is formed.

15. What is the value of $\angle a$ in the given figure?

16. Which of the following statement is true?

- (a) The sum of two sides of a triangle is greater than the third side.
- (b) In a right angled triangle, hypotenuse is the shortest side.
- (c) A, B and C are not collinear if AB + BC = AC.
- (d) The sum of angles in a triangle is less than 180° .
- **17.** $AB \parallel CD$ in the figure as shown below, then $\angle ACD$ is equal to

23. The given figure shows an isosceles $\triangle ABC$ with AB = BC. Sides BC and AC are extended to S and T respectively, such that CS and CT along with ST form sides of $\triangle CST$.

- 34. What is the ratio in which the centroid of a triangle divides the medians?
 - (a) 1:2 (b) 1:3 (c) 2:1 (d) 3:1
- 35. The centroid of a triangle is the point or concurrence of which of these?
 - (a) Angle bisectors (b) Perpendicular bisectors
 - (c) Altitudes (d) Medians
- 36. Which of the following statements is false?
 - (a) The centroid of an acute angled triangle lies in the interior of the triangle.
 - (b) The orthocenter of an acute angled triangle lies in the interior of the triangle
 - (c) The medians of a triangle are concurrent.
 - (d) From cicumcenter, we cannot draw a circle touching all the three vertices of triangle.
- 37. Which of the following statements is false?
 - (a) The orthocenter of a right angled triangle is the vertex containing the right angle.
 - (b) The median of a triangle joins a vertex to the midpoint of the opposite side.
 - (c) The centroid of a right angled triangle lies in the interior of the triangle.
 - (d) Incentre lies outside then triangle.
- In ΔPQR , PQ = PR; M is a mid point on QR and $MT \perp QR$. What do you call MT? 38.

(a) Centroid

(b) Median

- **39**. Which of the following statements is NOT true?
 - (a) A triangle can not have two obtuse angles.
 - (c) A triangle can have two right angles.
- (b) A triangle can have three acute angles.

(c) Perpendicular bisector

(d) A triangle can have all three angles equal.

(d) Vertex

40. Find the angles x and y respectively, $BE \parallel DC$

ANSWER - KEY									
1.	В	2.	С	3.	С	4.	В	5.	В
6.	А	7.	D	8.	А	9.	D	10.	С
11.	С	12.	А	13.	С	14.	С	15.	В
16.	А	17.	С	18.	А	19.	В	20.	В
21.	В	22.	С	23.	С	24.	А	25.	С
26.	А	27.	D	28.	В	29.	С	30.	А
31.	С	32.	С	33.	В	34.	С	35.	D
36.	D	37.	D	38.	С	39.	С	40.	С

SOLUTIONS

1. (B): It is easy to mentally calculate the combinations $a^2 + b^2 = c^2$ ('p' y thagoras theorem) which is applicable in a right Δ i.e., In (A), it is easily can, $3^2 + 4^2 = 5^2$; In (C) $1^2 + 2.4^2 = 2.6^2$; In (D), $65^2 = 60^2 + 25^2$. However, to arvive at the same result, we can also apply a different method mathematically; $65^2 = (60+5)^2 = 60^2 + 2 \times 60 \times 5 + 5^2$

 $=60^2 \times 600 + 25$

$$=60^2 + 25$$

Mind of a mathematician: A maths students tries to solve some problem in different ways, at least during practice".

- **2.** (C) Not available
- **3.** (C): Shaded region (on 2 cm side) $= 2^2 = 4$ Shaded region (on 3 cm side) $= 3^2 = 9$

Shaded region (on 2 cm side) $= 2^2 + 3^2 = 13$

- $\therefore \text{ Total} = 4 + 9 + 13$ = 26
- **4.** (B): This is obvious as $\angle C = 120^\circ > 90^\circ$

5. (B):
$$AC = \sqrt{5 \cdot 2^2 - 4 \cdot 8^2} = \sqrt{0 \cdot 4 \times 10} = 2$$

$$AD = \sqrt{CD^2 - AC^2} = \sqrt{2.5^2 - 2^2} = \sqrt{0.5 \times 4.5} = 1.5$$

$$\therefore AD + CD + CB + BA = 1.5 + 2.5 + 4.8 + 5.2 = 14$$

- **6.** (A) Not available
- **7.** (D): In a rhombus, diagonals are \perp lar to each others.

In right Δle SOR, so $=\sqrt{2.5^2 - 2^2} = 1.5$

 \Rightarrow other diagonal = 3 *cm*

8. (A): Third $\angle le = 180^{\circ} - 55^{\circ} - 45^{\circ} = 80^{\circ}$

9. (D): Distance

$$= BX + XD = \sqrt{10^2 - 6^2} + \sqrt{5^2 - 3^2}$$
$$= 8 + 4 = 12$$

10. (C): Mind of a Mathematician: Let $\angle les$ be $x - \alpha$, x, x, $+ \alpha$ (we can choose such variables intelligently; by making such choice, middle angle is automatically average of first and third angles): Now difference

 $= (x + \alpha) - (x - \alpha) = 2\alpha = 60^{\circ}$ Also sum of $\angle les$ $= x - \alpha + x + x + \alpha$ $= 3x = 180^{\circ}$ $= x = 60^{\circ}$ $= x - \alpha = 30^{\circ}$ $= x + \alpha = 90^{\circ}$ $= \angle right \Delta le.$

11. (C):

We can easily see that three exterior $\angle les$ are 105°, 135°, 120° therefore (C) 140° is the answer.

12. (A):

It is isosceles $\Delta le \implies x + x + 40^\circ = 180^\circ$ $\therefore x = 70^\circ$

- **13.** (C): $\angle LNM = 70^\circ = NLB$ (alternate $\angle les$) Now, $\angle x + \angle NLB + 40^\circ = 180^\circ \Rightarrow \angle x = 180^\circ - 40^\circ - 70^\circ = 70^\circ$
- **14.** (C):

- **15.** (B): 'a' = exterior $\angle le = \angle ABC + \angle ACB = 90^\circ + \angle ACB$ $\angle ACB = 180^\circ - 145^\circ = 35^\circ$ $\therefore a = 90 + 35^\circ$ $= 125^\circ$
- **16.** (A) Not available

17. (C):
$$\angle ACD + \{\angle CAE + 30^\circ\} = 180^\circ$$
 [internal $\angle les$ 'sum]
 $\angle CAE = 90^\circ \Longrightarrow \angle ACD = 180^\circ - 90^\circ - 30^\circ = 60^\circ$

18. (A): 30 cm & 0.4m \Rightarrow 30 cm & 40 cm

:. hypotenuse =
$$\sqrt{30^2 + 40^2} = 50$$

19. (B): Let $\angle les$ be x, 2x, 3x

 $\therefore x + 2x + 3x = 180^{\circ} \Longrightarrow 3x = 90^{\circ}$

20. (B): Let equal legs be

 $x \therefore x^2 + x^2 = 400 \Longrightarrow x^2 = 200$ $\therefore x = \sqrt{200} = 10\sqrt{2} \, cm$

21. (B): Case 1:30° can be equal $\angle le, \Rightarrow \angle les$ are 30°,30°,120° then, difference =120°-30° = 90°

Case 2:30° is not equal $\angle le$; $\Rightarrow \angle les$ are 30,75°,75°, then, difference = 75° - 30° = 45°

- **22.** (C): Third side may be equal to 9 (then equal sides are 4, 4) Or, Third side may be equal to 4 (then equal sides are 9.9)
- **23.** (C): Since $\triangle ABC$ is isosceles $\therefore \angle ACB = 35^{\circ}$ Now, $\angle TCS = 35^{\circ}$ (vertically oppositely) $\therefore TSC = 55^{\circ} \therefore CTS = 180^{\circ} - 55^{\circ} - 35^{\circ} = 90^{\circ}$
- **24.** (A) Not available
- **25.** (C):

$$\Rightarrow x = \frac{90^{\circ}}{12} = 7.5^{\circ} \therefore \angle C = 5x = 37.5^{\circ}$$

26. (A) Not available

- **27.** (D): Sum of any sides is always greater than 3rd side \Rightarrow (D) is correct Difference of two sides is always less then 3rd sides \Rightarrow (A) is wrong
- **28.** (B): Angles will be x, 3x, 14x

 $\therefore \ \angle les$ are 10°,30°,140° \Rightarrow OBTUSE

- **29.** (C) Not available
- **30.** (A): We may know three sides; OR, two sides and included angle etc.
- **31.** (C): Side opposite to largest $\angle le$ (here $\angle B$) will be longest. Hence it is AC.
- **32.** (C):

Distance between tops = $AC = \sqrt{5^2 + 12^2} = 13$

33. (B):

Height of tree = 8 + hypotenuse

$$=8+\sqrt{8^2+15^2}=8+17=25$$

34. (C): This can shown in figure as below

35. (D) Not available

- **36.** (D) Not available
- **37.** (D) Not available
- **38.** (C): $MT \perp QR$ and M being mid-point (\Rightarrow MT bisects QR)

 \therefore MT is \perp lar bisector. (Tips: Use mathematical symbols as far as possible) for eg use \perp for "is perpendicular to".

- **39.** (C): A Ale has 3 angles, if out of this, two $\angle les$ are right $\angle les$ third $\angle le = 0^\circ$, which means Δle cannot be formed.
- **40.** (C): Since $BE \parallel DC \Rightarrow \angle ABE = 100^\circ$ and $\angle x = 50^\circ$

In $\triangle ABE$, $\angle y = 180^{\circ} - 100^{\circ} - 50^{\circ} = 30^{\circ}$