
Work, Energy And Power 

 

Work and Kinetic Energy - The Work Energy Theorem 

 We know that according to the third equation of motion, 

 

Multiplying both sides by m/2, we obtain 

 

∴  

Where, 

= Final kinetic energy 

= Initial kinetic energy 

W = FS = Work done 

Equation (i) is a special case of work energy (WE) theorem. The change in kinetic energy of 
a particle is equal to the work done on it by the net force. 

Work 

 Work is said to be done when the point of application of the forces moves in the direction 
of the force. 

 If a constant force  is applied on a body and the body has a displacement  in the 
direction of the force as shown in fig, then the work done on the body by the force is given 
by, 



 

 When the displacement is not in the direction of as shown in figure, 

 

In such a case, we find the work done by resolving into two rectangular components. 

(i) in the direction of  (where Fx = F cos θ) 

(ii)  perpendicular to  (where Fy = F sin θ) 

The work is done along the component  only. 

Thus, 

 

 

∴  

Kinetic Energy 

 The kinetic energy of a mass m having velocity v is, K=  

 It is a scalar quantity. 

Work, Energy and Variable Force 



Work Done by a Variable Force 

 

 The above given figure shows a variable force. 

 The entire path ABCD is broken into infinitesimally small displacements 

 One such small displacement is from P to Q. Let PQ = dx 

 Small amount of work done from P to Q is, 

dW = F × dx 

Along the small displacement dx, force is constant in magnitude and direction. 

dW = (PR) × (PQ) 

dW = Area of the strip PQRS 

 Total work done in moving the body from A to B is, 

 

 If the displacements are allowed to approach zero, then 

 

 

∴W = Area of ABCDA 



Work−Energy Theorem for a Variable Force 

Suppose, 

m = Mass of a body 

u = Initial velocity of the body 

v = Final velocity of the body 

a = Acceleration 

ki = Initial kinetic energy of the body 

kf = Final kinetic energy of the body 

The rate of change of kinetic energy is, 

 

 

dk = Fdx 

On integrating from the initial position (xA) to the final position (xB), we have 

 

 [From equation (i)] 

∴Work done on the body = Increase in K.E. of the body 

Potential Energy and Conservation of Mechanical Energy 

 Potential energy is the energy possessed by the body by virtue of its position. 



Two important types of potential energy are 

 Gravitational potential energy 

 Elastic potential energy 

 Gravitational potential energy: It is the energy possessed by the body by virtue of its 
position above the surface of the earth. 

 

Let, 

m = Mass of a body 

g = Acceleration due to gravity 

h = Height through which the body is raised. 

The force applied to just overcome gravitational attraction is 

F = mg 

Work done = Force × Distance 

OR 

W = (F) × h = mgh 

This work gets stored as potential energy. 

∴Gravitational P.E. = V (h) = mgh 

If h is taken as a variable, then 



 

Mathematically, the potential energy, V (x) is defined if the force F (x) can be written as 

 

 

The above equation shows that the work done by a conservative force like gravity in taking 
the body from initial position, (x1) to final position, (x2) is equal to the difference between 
the initial and final P.E. of the body. 

The Conservation of Mechanical Energy 

 Total mechanical energy of a system is always conserved. 

Total mechanical energy = Potential energy (V) + Kinetic energy (K) 

 Mechanical energy of a system is conserved if the forces doing work on it are conservative. 

 Let us consider a body undergoing a small displacement, Δx under the action of a 
conservative force, F. According to work energy theorem, 

Change in K.E = Work done 

Δk = F(x) Δx … (i) 

If the force is conservative, the P.E. function, V(x) can be defined such that 

−ΔV = F (x) Δx 

ΔV = − F (x) Δx … (ii) 



Adding equations (i) and (ii) 

Δk + ΔV = 0 

Δ (k + V) = 0, which means 

(k + V) = Constant. 

 Example of the law of conservation of mechanical energy: 

 

Let m be the mass of the body held at A, at a height, h above the ground. 

At point A 

The body is at rest at A. 

K.E. of the body = 0 

P.E. of the body = mgh 

T.E. of the body = K.E + P.E. = 0 + mgh 

E1 = mgh … (i) 

At point C 

Let the body be allowed to fall freely under gravity so as to strike the ground at C with a 
velocity, v. 

From v2 − u2 = 2as 

OR 

v2 − 0 = 2 (g) h 



OR 

v2 = 2gh … (ii) 

K.E. of the body = mv2 = m (2gh) = mgh …[From equation (ii)] 

P.E. of the body = mgh = mg (0) = 0 

Total energy of the body = K.E. + P.E. 

E2 = mgh + 0 = mgh … (iii) 

At point B 

In free fall, suppose the body crosses point B with a velocity, v1, where AB = x 

v2 − u2 = 2as 

 

OR 

 

K.E. of the body  

Height of the body at B = CB = (h − x) 

∴P.E. of the body at B = mg (h − x) 

Total energy of the body at B = K.E. + P.E. 

E3 = mgx + mg (h − x) 

= mgx + mgh − mgx 

OR 

E3 = mgh … (iv) 



From equation (i), (iii) and (iv), we find that 

E1 = E2 = E3 = mgh 

i.e., the total energy of the body during free fall remains constant at all positions 

The Potential Energy of a Spring 

Consider a light and perfectly elastic spring fixed at one end of a rigid support at point O 
and the other end attached to a block of mass ‘m’. 

 

When the block is pulled from its equilibrium position (C) to point A, the restoring force is 
set up in the spring due to elasticity. 

The work done in stretching the spring from C to A is stored in the system in the form of 
potential energy of the spring. 

 

Let us calculate the P.E stored in the spring, when the it is pulled from the mean position C 
up to a point P, such that CP = x 

The restoring force set up in the string is given by, 

F ∝ x 

F = − kx 

Where, k is the constant of proportionality known as force constant or spring constant 

Suppose that the block is further displaced through an infinitesimally small distance, PQ 
= dx 



 

Small work done in increasing the length of the spring by dx is 

dW = Fdx = kxdx [Considering magnitude only] 

The work done in increasing the length of the spring by an amount x can be calculated by 
integrating the above limits x = 0 to x = x i.e, 

 

 

This work done is stored in the system as its potential energy at point P. 

The potential energy of the system, when the block is pulled up to point A, can be obtained 
by setting x = r 

∴P.E. of the system at point A  

 

If we plot the P.E and K.E against the displacement x, then the graph will be as 
depicted by the two dotted curves: 

 



The Law of Conservation Of Energy and Power 

Different Forms of Energy 

 Internal energy − The sum of kinetic and potential energies of all the molecules constituting 
the body is called internal energy. 

 Heat energy − A body possesses heat energy due to the disorderly motion of its molecules. 
 Chemical energy − A body possesses chemical energy because of chemical bonding of its 

atoms. 

Exothermic reaction − A chemical reaction in which energy is released 

Endothermic reaction − A chemical reaction in which energy is absorbed 

 Electrical energy − Work has to be done in order to move an electric charge from one point 
to another in an electric field. This work done appears as the electrical energy of the 
system. 

 Nuclear energy − When a heavy nucleus (such as U − 235) breaks up into lighter nuclei on 
being bombarded by a slow neutron, a tremendous amount of energy is released. This 
energy is known as nuclear energy. 

Principle of Conservation Of Energy 

It states that energy can be neither created nor destroyed. It can only be converted from 
one form to another. 

Power 

The rate of doing work is called power. The average power is given by, 

 

Where, W is work performed by the agent in time‘t’ 

Instantaneous power − Limiting value of the average power of an agent in a small time 
interval, when the time interval approaches zero. 

If ΔW is work done in a small interval Δt, then instantaneous power is defined as 



 

Therefore, 

 

If θ is angle between and , then 

P = Fv cos θ 

If θ = 0°, then 

P = Fv 

Unit of power − Watt 

 

The bigger unit of power is kilowatt (kW). 

1 kW = 103 W 

Collisions 

Collision between two particles is defined as mutual interaction of the particles for a short 
interval of time as a result of which the energy and momentum of the interacting particles 
change. 



Types of Collision 

 Elastic collision − Those collisions in which both momentum and kinetic energy of the 
system are conserved. 

 Inelastic collision − Those collisions in which momentum of the system is conserved, but 
kinetic energy is not conserved. 

 Elastic Collision in One Dimension 

  
 Consider that two perfectly elastic bodies A and B of masses M1 and M2 moving with 

initial velocities u1 and u2 undergo head on collision and continue moving along the 
same straight line with final velocities v1 and v2. 

 As in an elastic collision, momentum is conserved. 
 ∴ M1u1 + M2u2 = M1v1 + M2v2 … (i) 
 Since kinetic energy is also conserved in an elastic collision, we obtain 

  
 From equation (i), we obtain 
 M1 (u1 − v1) = M2 (v2 − u2) … (iii) 
 From equation (ii), we obtain 

  
 Dividing equation (iv) by (iii), we obtain 

  
 ∴u1 − u2 = v2 − v1 … (v) 
 From equation (v), it follows that in one-dimensional elastic collision, the relative 

velocity of approach (u1 − u2) before collision is equal to the relative velocity of 
separation (v2 − v1) after collision.The 

 The ratio of relative velocity of separation after the collision to the relative velocity 
of the approach before the collision is known as coefficient of restitution or 
coefficient of resilience. 

 

For perfectly elastic collision, e = 1 

Calculation of velocities after collision: 



Let us first find the velocity of body A after collision. 

From equation (v), we have 

v2 = u1 − u2 + v1 

Substituting for v2 in equation (i), we obtain 

 

Again from equation (v), we have 

v1 = v2 − u1 + u2 

Substituting for v1 in equation (i), we obtain 

 

Special Cases 

 When the two bodies are of equal masses i.e., 

M1 = M2 = M (say) 

From equation (vi), we have 

 

Also from equation (vii), we have 

 

 When the target body (B) is at rest: 

In this case, u2 = 0 



Substituting u2 = 0 in equations (vi) and (vii), we obtain 

 

When M2 >> M1, in equation (viii) and (ix), M1 can be neglected in comparison 
to M2 i.e., M1 − M2 ≈ -M2 and M1 + M2 ≈ M2. Therefore, we have 

 

Elastic Collision in Two Dimensions 

Suppose m1, m2 are the masses of two bodies A and B moving initially along X-axis with 
velocities u1 and u2 respectively. 

When u1 > u2, the two bodies collide. After collision, let body A move with a velocity v1 at an 
angle θ with X-axis. Let body B move with a velocity v2 at an angle Φ with X-axis. 

 

As the collision is elastic, K.E. is conserved. 

∴ Total K.E. after collision = Total K.E. before collision 

 

 

In elastic collision, linear momentum is also conserved (along X-axis). 



∴ Total linear momentum after collision = Total linear momentum before collision 

 

Along Y-axis, linear momentum before collision is zero (as both the bodies are moving 
along X-axis). After collision, total linear momentum along Y-axis is (m1v1sinθ − m2v2sinΦ). 

 

From equations (ii), (iii), and (iv), we have to calculate 4 variables v1, v2, θ, and Φ, which is 
not possible. We have to measure any one parameter experimentally. 

 
Inelastic Collision in One Dimension 

 

 

Consider that two bodies A and B of masses M1 and M2 moving with initial 
velocities u1 and u2 undergo head on collision and continue moving along the same straight 
line with final velocities v1 and v2. 

As in an inelastic collision, momentum is conserved. 

∴ M1u1 + M2u2 = M1v1 + M2v2  

The kinetic energy of the system in inelastic collision is not conserved. 

 

Perfectly Inelastic Collision in One Dimension 

 
Consider a perfectly inelastic collision between two bodies of masses M1 and M2. The 
mass M2 was initially at rest (u2 = 0) as shown in the figure. Here, the body of mass M1 , 
moving with velocity u1 collides with the body of mass M2. 
After the collision, the two bodies moves together with a common velocity v. 
 



 
 
 
 
As in inelastic collision, the total linear momentum of the system remains constant. 
Therefore, 

 

 



Perfectly Inelastic Collision in Two Dimensions 

 

 

Consider a body of mass M1 moving with velocity u1 collides with another mass M2 moving 

with velocity u2 in perfectly inelastic way as shown in the figure. 

 

 
Initially mass M1 is moving with velocity u1 at an angle θθ with x-axis and the mass M2 is 

moving with velocity u2 along the x-axis.  

After the collision at point O, the two masses stick to each and start moving together with a 

new velocity v.  

 

As in inelastic collision, the total linear momentum of the system remains constant. 

Applying conservation of momentum along x-axis, we get 

 

 


