1. PARTITION VALUES

<u>EXRCISE 1.1</u>

1) Compute all the quartiles or the following series of observations:

16, 149, 115, 118, 11., 1 14.5, 1, 4 12, 10., 9 10.7, 106, 10.5, 13.5, 13, 12..6

SOL: Arranging the given data in ascending order,

10.5, 10.6, 10.7, 10.9, 11.1, 11.5, 11.8, 12, 12.6, 13, 13.5, 14, 14.5, 14.9, 16

Here, n=15

$$Q_{1} = \left(\frac{n+1}{4}\right)^{th} \text{observation}$$
$$= \left(\frac{15+1}{4}\right)^{th} \text{observation}$$

 $= 4^{th}$ observation

*Q*₁ = 10.9

$$Q_{2} = \left(\frac{n+1}{2}\right)^{th} \text{observation}$$
$$= \left(\frac{15+1}{2}\right)^{th} \text{observation}$$

 $= 8^{th}$ observation

 $Q_2 = 12$

 $Q_{3} = 3 \left(\frac{n+1}{4}\right)^{th} \text{observation}$ $= 3 \left(\frac{15+1}{4}\right)^{th} \text{observation}$

= ^{12th} observation

2) The heights (in cm) of 10 students are given below:

148,171,158,151,154,159,152, 163,171, 145.

Calculate Q1 and Q3 for above data.

SOL: We arrange the data in ascending order: 145, 148, 151,152,154, 158, 159,

163, 171, 171. Here, n = 10 $Q_1 = \left(\frac{n+1}{4}\right)^{th}$ observation $=\left(\frac{10+1}{4}\right)^{th}$ observation = ^{2.75th} observation $= 2^{nd}$ observation + 0.75 (3^{rd} observation -2nd observation) = 148 + 0.75 (151 - 148)= 148 + 2.25 $\frac{1}{2} Q_1 = 150.25$ $Q_1 = \left(\frac{3(n+1)}{4}\right)^{th}$ observation $=\left(\frac{3(10+1)}{4}\right)^{th}$ observation = 8.25th observation $= 8^{th}$ observation + 0.25 ($9^{th} - 8^{th}$ observation = 163 + 0.25 (171 - 163)= 163 + 0.25(8) $= Q_3 = 165$

3) Monthly consumption of electricity (in units) of families in a certain locality is

given below: 205, 201, 190, 188, 195, 172, 210, 225, 215, 232, 260, 230. Calculate electricity consumption (in units) below which 2500 of families lie.

SOL: To find consumption of electricity units below which 2500 of families lie means to find Q_1 .

Arranging the data in ascending order.

172, 188, 190, 195, 201, 205, 210, 215, 225, 230, 232, 260.

Here, n = 12 $Q_{1} = \left(\frac{n+1}{4}\right)^{th} \text{observation}$ $= \left(\frac{12+1}{4}\right)^{th} \text{observation}$ $= 3.25^{th} \text{ observation}$ $= (3^{rd} \text{observation})$ $+ 0.25 (4^{th} \text{observation} - 3^{rd} \text{observation})$ = 190 = 0.25 (195 - 190) = 190 + 1.25 $Q_{1} = 191.25$

* 25% families consume less than 191.25 units of electricity.

4) For the following data of daily expenditure of families (in Rs.), compute the expenditure below which 75% of families include their expenditure.

Daily expenditure (in Rs.)	350	450	550	650	750
No. of families	16	19	24	28	13

SOL:	To fi	ind the	expenditu 🖉	below wh	nich 75%	of the t	families	have their
оо ц.	101	mu une	capenanture		nen / 5 /0		lumines.	

	No. of families (f)	Cumulative frequency (less
Daily expenditure (in Rs.)		than type)
350	16	16
450	19	35
550	24	59
650	28	87
750	13	100
	n=100	

Here, n= 100

 $Q_{3} = \frac{3}{4} (n+1)^{th} \text{ observation}$ $= \frac{3(100+1)^{th}}{4} \text{ observation}$

=^{75.75th} observation

 $Q_3 = 650$

^{..} 75% families have expenditure below Rs. 650.

5) Calculate all the quartiles for the following frequency distribution.

	0	10	2	3	4	5	6	7
No. of E-								
transactions								
per day								
No. of days	10	35	45	95	64	32	10	9

Sol:

No. of E- transaction	No. of days (f)	Less than cumulative frequency
0	10	10
1	35	45
2	45	90
3	95	185
4	64	249

5	32	281
6	10	291
7	9	300
	N = 300	

Here, n = 300

 $\therefore Q_3 = 4$

6) The following is the frequency distribution of heights of 200 male adults in a factory.

Uaighta in am	No. of male adults
neights in chi	
145-150	4
150-155	6
155-160	25

160-165	57
165-170	64
170-175	30
175-180	8
180-185	6

Find the central height.

SOL: The median of the given data represents the central height.

... We have to find the median of the data.

Heights in cm	No. of male adults	Cumulative frequency (less than type)
145-150	4	4
150-155	6	10
155-160	25	35
160-165	57	92
165-170	64	156
170-175	30	186
175-180	8	194
180-185	6	200
	N=200	

Here, N= 200 For Q_2 , $\frac{N}{2} = 100$ $\therefore Q_2$ lies in the class 165 - 170 L = 165, f = 64; c.f. = 92; h = 5 $\therefore Q_2 = L + \frac{h}{f} (\frac{N}{2} - c.f)$ = $165 + \frac{5}{64} (100 - 92)$ = $165 + \frac{5}{64} \times 8$ = 165 + 0.625 $Q_2 = 165.625$

Central height = 165.625

7) The following is the data of pocket expenditure per week of 50 students in a class. It is known that the median of the distribution is Rs. 120. Find the missing frequencies.

	0-50	50-100	100-150	150-200	200-250
Expenditure per week (in Rs.)					
No. of students	7	?	15	?	3

Sol: Let the missing frequencies be a and b. We prepare the following tale to construct l.c.f column:

Classes	No. of students (f)	Cumulative frequency (less than type)
0-50	7	7
50-100	а	7 + a
100-150	15	22 + a
150-200	В	22 + a + b
200-250	3	25 + a + b = N
Total	25 + a + b	

Given: N = 50 and median = 120

But, N = 25 + a + b.

 $\therefore 25 + a + b = 50$

 $\therefore a + b = 25$

Also since median = 120

^{..} Median class is 100-150

$$L = 100, f = 15, c.f. = 7+a, h = 50; \frac{N}{2} = \frac{50}{2} = 25$$
Median = $L + \frac{h}{f} \left(\frac{N}{2} - c.f. \right)$

$$120 = 100 + \frac{50}{15} [25 - (7+a)]$$

 $120 - 100 = \frac{50}{15} (18 - a)$ $\therefore \frac{20 \times 15}{50} = 18 - a$ $\therefore 6 = 18 - a$ $\therefore a = 12$ Substituting a=12 in eqn. (1) $\therefore 12 + b = 25$ $\therefore b = 13$ i.e. the missing frequencies are 12 and 13

8) The following is the distribution of 160 Workers according to 'the wages in a certain factory:

Wages more than (in Rs.)	No. of workers
8000	160
9000	155
10000	137
11000	91
12000	57
13000	23
14000	10
15000	1
16000	0

Determine the values of all quartiles and interpret the results.

Sol: The given data provides more than cumulative frequency table. We will change it in the form of class- intervals and corresponding frequencies and add the column of less than cumulative frequency.

Wages (in Rs.)	No. of workers (f)	Cumulative frequency (less than type)
8000-9000	5	5
9000-10000	18	23
10000-11000	46	69
11000-12000	34	103

12000-13000	34	137
13000-14000	13	150
14000-15000	9	159
15000-16000	1	160
	N = 160	

Here, N = 160

Q1 Calculation

For $Q_1 \quad \frac{N}{4} = \frac{160}{4} = 40$ $\therefore Q_1$ lies in the class 10000-11000 $\therefore L = 10000, f = 46, c.f. = 23;$ h = 1000 $Q_1 = L + \frac{h}{f} \left(\frac{N}{4} - c.f. \right)$ $= 10000 + \frac{1000}{46} (40-23)$ $\therefore Q_1 = 10000 + 369.57$ $Q_1 = 10369.57$ Q_2 Calculation For $Q_2, \frac{N}{2} = \frac{160}{2} = 80$ $\therefore Q_2$ lies in the class 11000-12000

∴ L= 11000, f = 34, c.f. = 69;
h = 1000

$$Q_2 = L + \frac{h}{f} \left(\frac{N}{2} - c.f. \right)$$

= 11000 + $\frac{1000}{34}$ (80-69)
∴ $Q_2 = 11000 + 323.53$

 $Q_2 = 11323.53$

Q³Calculation

For Q_3 , $\frac{3N}{4} = \frac{3(160)}{2} = 120$ $\therefore Q_3$ lies in the class 12000-13000 $\therefore L = 12000, f = 34, c.f. = 103;$ h = 1000 $Q_3 = L + \frac{h}{f} \left(\frac{3N}{4} - c.f.\right)$ $= 12000 + \frac{1000}{34} (120-103)$ $Q_3 = 12500$ \therefore The quartiles are $Q_1 = \text{Rs.} 10369.57$ $Q_2 = \text{Rs.} 11323.53$

 $Q_1 < Q_2 < Q_3$ Ans.

 $Q_3 = Rs. 12500$

9) Following is the grouped data for duration of fixed deposits of 100 senior citizens from a certain bank:

	0-180	180-360	360-540	540-720	720-900
Fixed deposit (in days)					
No. of senior citizens	15	20	25	30	10

Calculate the limits of fixed deposits of central 50% senior citizens.

SOL: To find limits of fixed deposits of central 50% senior citizens means we have to find Q_1 and Q_3 .

	No. of senior citizens	Cumulative
Fixed deposit (in	(f)	frequency (less than
days)		type)
0-180	15	15
180-360	20	35
360-540	25	60
540-720	30	90
720-900	10	100
	N = 100	

Here, N = 100

For $Q_1 \quad \frac{N}{4} = \frac{100}{4} = 25$

 $\therefore Q_1$ lies in the class 180 - 360

 $\dot{\cdot} L = 180, f = 20, c.f. = 15, h = 180$ $Q_{1} = L + \frac{h}{f} \left(\frac{N}{4} - c.f\right)$ $= 180 + \frac{180}{20} (25 - 15)$ = 180 + 90 $\dot{\cdot} Q_{1} = 270 \text{ days}$ For $Q_{3}, \frac{3N}{4} = \frac{3(100)}{2} = 75$ $\dot{\cdot} Q_{3} \text{ lies in the class } 540 - 720$ $\dot{\cdot} L = 540, f = 30, c.f. = 60, h = 180$ $Q_{3} = L + \frac{h}{f} \left(\frac{3N}{4} - c.f.\right)$ $= 540 + \frac{180}{30} (75 - 60)$ 540 + 90 $\dot{\cdot} Q_{3} = 630 \text{ days}$

 $\dot{}$ Limits of fixed deposits for central 50% of senior citizens lies between 270 days and 630 days.

10) Find the missing frequency given that the median of distribution is 1504.

Life in	950-1150	1150-	1350-	1550-	1750-	1950-
hours		1350	1550	1750	1950	2150
No. of bulbs	20	43	100	_	23	13

SOL: Let the missing frequency -'a'

Median = 1504

The less than type cumulative frequency' table is as below:

Life (in hours)	No. of bulbs (f)	Cumulative frequency (less than type)
950-1150	20	20
1150-1350	43	63
1350-1550	100	163
1550-1750	A	163 +
1750-1950	23	A
1950-2150	13	186 + a
		199 + a
	N = 199 + a	

"Median = 1540

• Median lies in the class 1350 - 1550
$ L = 1350, f = 100, c.f. = 63, h = 200 Also \frac{N}{2} = \frac{199+a}{2} $
Median = L + $\frac{h}{f} \left(\frac{3N}{4} - c.f. \right)$
$1540 = 1350 + \frac{\frac{200}{100}}{\frac{199+a}{2}} - 63$
$1540 - 1350 = 2\left(\frac{199 + a}{2} - 63\right)$
$\therefore 154 = 199 + a - 126$
154 = 73 + a

∴ a = 81

<u>EXERCISE 1.2</u>

1) Calculate D6 and P85 for the following data: 79,82,36,38,51,72,68,70,64,63.

SOL: Arranging the data in ascending order, 36, 38, 51, 63, 64, 68, 70, 72, 79, 82

Here, n = 10 $D6 = 6 \left(\frac{n+1}{10}\right)^{th}$ observation $= 6 \left(\frac{10+1}{10}\right)^{th}$ observation = **6.6**th observation $= 6^{th}$ observation + 0.6 (^{7th} observation - 6th observation) = 68 + 0.6 (70-68) = 68 + 0.6(2)= 68 + 1.2... D6 = 69.2 $P85 = 85 \left(\frac{n+1}{100}\right)^{th} \text{observation}$ $= 85 \left(\frac{10+1}{100}\right)^{th}$ observation = 9.35th observation = 9^{th} observation + 0.35 (10^{th} observation - 9^{th} observation) = 79 + 0.35 (82-79)= 79 + 0.35(3)= 79 + 1.05

2) The daily wages (in Rs.) of 15 laboures are as follows: 230,400,350,200,250,380,210,225,375, 180,375,450,300,350,250 Calculate D8 and P90.

SOL: Arranging the data in ascending order. 180, 200, 210, 225; 230, 250, 250, 300, 350, '350,375,375,380,400,450

Here, n = 15 $D8 = 8 \left(\frac{n+1}{10}\right)^{th}$ observation $= 8 \left(\frac{15+1}{10}\right)^{th}$ observation = 12.8th observation $= 12^{th}$ observation + 0.8 (13^{th} observation - 12^{th} observation) = 375 + 0.8 (380 - 375)= 375 + 0.8(5)= 375 + 4... D8 = 379 $P90 = 90 \left(\frac{n+1}{100}\right)^{th} \text{observation}$ $=90 \left(\frac{15+1}{100}\right)^{th}$ observation = ^{14.4th} observation $= 14^{th}$ observation + 0.4 (15^{th} observation - 14^{th} observation) =400 + 0.4 (450 - 400)=400 + 0.4(50)=400+20 $\cdot P90 = 420$

x	80	100	120	145	200	280	310	380	400	410
f	15	18	25	27	40	25	19	16	8	7

3) Calculate 2nd decide and 65^{th} percentile for the following:

Sol: Preparing the less than cumulative frequency' table

X	F	Cumulative frequency (less than type)
80	15	15
100	18	33
120	25	58
145	27	85
200	40	125
280	25	150
310	19	169
380	16	185
400	8	193
410	7	200
	N = 200	

N = 200

 $D2 = 2^{\left(\frac{N+1}{10}\right)^{th}} \text{ observation}$ $= 2^{\left(\frac{200+1}{10}\right)^{th}} \text{ observation}$ $= 40.2^{th} \text{ observation}$ $\therefore D2 = 120$ $P65 = 65^{\left(\frac{N+1}{100}\right)^{th}} \text{ observation}$ $= 65^{\left(\frac{200+1}{100}\right)^{th}} \text{ observation}$ $= 130.65^{th} \text{ observation}$

 $\cdot P65 = 280$

4) From the following data calculate the rent of 15th, 65th & 92th house.

House rent (in Rs.)	11000	12000	13000	15000	14000	16000	17000	18000
No. of house	25	17	13	14	15	8	6	2

SOL: Preparing the less than cumulative frequency table

	No. of house (f)	Cumulative frequency
House Rent (in Rs.)		(less than type)
11000	25	25
12000	17	42
13000	13	55
15000	15	70
14000	14	84
16000	8	92
17000	6	98
18000	2	100
	N = 100	

Here, N =100

P15 = $15 \left(\frac{N+1}{100}\right)^{th}$ observation = $15 \left(\frac{100+1}{100}\right)^{th}$ observation = 15.15^{th} observation \therefore P15 = 11000 P65 = $65 \left(\frac{N+1}{100}\right)^{th}$ observation = $65 \left(\frac{100+1}{100}\right)^{th}$ observation = 65.65^{th} observation \therefore P65 = 14000 P92 = $92 \left(\frac{N+1}{100}\right)^{th}$ observation $=92\left(\frac{100+1}{100}\right)^{th}$ observation

- = 92.92th observation
- = 92nd observation + 0.92 (93rd observation 92nd observation)
- = 16000 + 0.92 (17000 16000)
- = 16000 + 0.92 (1000)
- = 16000 + 920

 $\dot{P}92 = 16920$

 \therefore Rent of the 15th house = p15 = Rs. 11000

 \therefore Rent of the 65th house = p65 = Rs. 14000

 \therefore Rent of the 92th house = p92 = Rs. 16920

5) The following frequency distribution shows the weight of students in a class.

	40	45	50	55	60	65
Weight (in kg)						
No. of students	15	40	29	21	10	5

(a) Find the percentage of students whose weight is more than 50 kg.

(b) If the weight column provided is of mid values then find the percentage of students whose weight is more than 50 kg.

SOL: From the given data we note that the number of people with weight more than 50 kg is 21 + 10+5=36.

Also since total number of students i s 120.

 \therefore Percentage of students with weight more Than 120 kg is $\frac{36}{120} \times 100 = 30\%$

(b) The given mid values are 40, 4'5, 550etc. Since the common difference of

these mid values is 5, the corresponding class boundaries are. 37.5 -42.5, 42.5 -47.5, and so on Preparing the "less than cumulative frequency' table:

Mid values	Classes	No. of persons (f)	Cumulative frequency(less than type)
40	37.5-42.5	15	15
45	42.5-47.5	40	55
50	47.5-52.5	29	84
55	52.5-57.5	21	105
60	57.5-62.5	10	115
65	62.5-67.5	5	120
		N = 120	

Since $P_x = 50$ lies in the class 47.5 – 52.5

L = 47.5, f = 29, c.f. = 55, h = 5Also N = 120 $p_x = L + <math>\frac{h}{f} \left(\frac{N}{4} - c.f \right)$ 50 = 47.5 + $\frac{5}{29} \left(\frac{x(120)}{100} - 55 \right)$ $\therefore 50 = 47.5 + \frac{5}{29} (1.2x - 55)$ $\therefore (2.5)(29) = 5(1.2x - 55)$ $\therefore (2.5)(29) = 5(1.2x - 55)$ $\therefore 14.5 = 1.2x - 55$ $\therefore 14.5 = 1.2x - 55$ $\therefore 1.2x = 69.5$ $\therefore x = \frac{69.5}{1.2}$ = 57.92 $\chi \approx 58$ $\therefore 58\%$ students have weight (below)50 kg

: 42% students have weight (below)50 kg

6) Calculate D4 and P48 from the following data:

	2.5	7.5	12.5	17.5	22.55	Total
Mid value						
Frequency	7	18	25	30	20	100

5

SOL: Here we are given mid-values 2.5, 7.5, 12.5...etc. Since the common difference of these mid-values is 5, the corresponding class boundaries will be 0 5, 5 10, etc., as shown in the following table. We also have to prepare the l.c.f. column for the given data.

Mid values	Classes	No. persons	Cumulative frequency (less than type)
2.5	0 – 5	7	7
7.5	5 - 10	18	25
12.5	10 – 15	25	50
17.5	15 – 20	30	80
22.5	20 - 25	20	100

Here, N = 100

For D4,
$$\frac{4N}{10} = \frac{4 \times 100}{10} = 40$$

 \therefore D4 lies in the class 10-15
 \therefore L=10, f = 25, c.f. = 25, h =
D4 = L + $\frac{h}{f} \left(\frac{4N}{10} - c.f \right)$
= 10 + $\frac{5}{25} (40 - 25)$
= 10 + 3
 \therefore D4 = 13
For P48, $\frac{48N}{100} = \frac{48 \times 100}{100} = 48$
 \therefore P48 lies in the class 10-15

$$\stackrel{\text{t}}{=} L = 10, f = 25, c.f. = 25, h = 5$$

$$P48 = L + \frac{h}{f} \left(\frac{48N}{100} - c.f \right)$$

$$= 10 + \frac{5}{25} (48 - 25)$$

$$= 10 + \frac{1}{5} (23) = 10 + 4.6$$

 $^{-1}$ P48 = 14.6

7) Calculate D6 and P20 of the following distribution

	0-20	20-40	40-60	60-80	80-100	100-120
Length (in inches)						
No. of units	1	14	35	85	90	15

SOL: Preparing the less than cumulative frequency table:

Length (in inches)	No. of units (f)	Cumulative frequency (less than type)
0-20	1	1
20-40	14	15
40-60	35	50
60-80	85	135
80-100	90	225
100-120	15	240
	N = 240	

Here, N = 240

For D9, $\frac{9N}{10} = \frac{9 \times 240}{10} = 216$

^{..} D9 lies in the class 80-100

 \therefore L=80, f = 90, c.f. = 135, h = 20

$$D9 = L + \frac{h}{f} \left(\frac{9N}{10} - c.f \right)$$
$$= 80 + \frac{20}{90} (216 - 135)$$

= 80 + 18 \therefore D9 = 98 For P20, $\frac{20N}{100} = \frac{20 \times 240}{100} = 48$ \therefore P20 lies in the class 10-15 \therefore L=40, f = 35, c.f. = 15, h = 20 P20 = L + $\frac{h}{f} (\frac{20N}{100} - c.f)$ = 40 + $\frac{20}{35} (48 - 15)$ = 40 + $\frac{4}{7} (33)$ \therefore P20 = 58.86

8) Weekly Wages for group of 100 persons are given below:

	0-500	500-	1000-	1500-	2000-
Wages (in Rs.)		1000	1500	2000	2500
No. of	7	?	25	30	?
persons					

D3 for this group is Rs. 1100 Calculate the missing frequencies.

SOL: Let the missing frequencies be ^{*a*} and ^{*b*}. We prepare the l.c.f column for the given data as follows:

Wages (in Rs.)	No. of persons	Cumulative frequency (less than type)
0-500 500-1000 1000-1500 1500-2000 2000-2500	7 a 25 30 b	7 7 + a 32 + a 62 + a 62 + $a + b$
	N = 62 + a + b	

```
Here, N = 62 + a + b
Given: n = 100
∴ a + b
 62 +
             = 100
\therefore a + b
Also, = 1100
Δ.
: D3 lies in the class 10@0-1500
 L=1000, f = 25, c.f. = +7, h = 20
          \frac{h}{f}\left(\frac{3N}{10}-c.f\right)
D3 = L +
                \frac{500}{25}(30-(a+7)
1100 = 1000 +
∴ 100
        -a - 7
      = 20[30]
                ]
 100
        a
÷ 20
     = 23 -
∴ a = 23 - 5
\therefore a = 18
             а
Substituting = 18 in eqn. (1), e get
∴18 b
     + = 38
:. b
   = 38 - 18
:. b
   = 20
Missing frequencies are 18 and 20.
```

9) The weekly profit (in rupees) of 100 shops are distributed as follows:

	No. of shops
Profit per shop	-
0-1000	10
1000-2000	16
2000-3000	26
3000-4000	20

4000-5000	20
5000-6000	5
6000-7000	3

Find the limits of the profit of middle 60% of the shops.

SOL: To find limits of the profit of middle 60% of shops means to find D2 and D8 or equivalently to find P20 and P80 as shown in the figure below:

We shall find D2 and D8 by preparing the l.c.f. column for the given data as follows:

Profit per shop	No. of person	Cumulative frequency (less than type)
0-1000	10	10
1000-2000	16	26
2000-3000	26	52
3000-4000	20	72
4000-5000	20	92
5000-6000	5	97
6000-7000	3	100
	N = 100	

Here, N = 100

For D2, $\frac{2N}{10} = \frac{2 \times 100}{10} = 20$

^{..} D2 lies in the class 1000-2000

 $\begin{array}{l} \stackrel{\text{``}}{} L=1000, f=16, c.f.=10, h=1000 \\ D2=L+\frac{h}{f} \left(\frac{2N}{10}-c.f\right) \\ =1000+\frac{1000}{16} (20-10) \\ =1000+625 \\ \stackrel{\text{``}}{} D2=1625 \end{array}$

For D8, $\frac{8N}{10} = \frac{8 \times 100}{10} = 80$ \therefore D8 lies in the class 4000-5000 \therefore L=4000, f = 20, c.f. = 72, h = 1000 D8 = L + $\frac{h}{f} \left(\frac{8N}{10} - c.f \right)$ = 4000 + $\frac{1000}{20} (80 - 72)$ = 4000 + 400 \therefore D8 = Rs. 4400

[•] Limits of the profit for middle 60% of the Shops is Rs. 1625 to Rs. 4400.

Note: (Students can find P20 and P80 and verify the above answer. - same step as D2 and D8)

10) In a particular factory, workers produce various types of output units. The following distribution was obtained.

	No. of workers
Output units	
70-74	40
75-79	45
80-84	50
85-89	60
90-94	70
95-99	80
100-104	100

Find the percentage of workers who have produced less than 82 output units.

SOL: Here, since the given classes are discontinuous we change them to continuous classes and also prepare the l.c.f f. column as follows:

	No. of workers	Cumulative
Output units		frequency (less than
		type)

69.5-74.5	40	40
74.5 -79.5	45	85
79.5-84.5	50	135
84.5-89.5	60	195
89.5-99.5	70	265
94.5-99.5	80	345
99.5-104.5	100	445
	N = 445	

Here, N = 445

Now let a = no. of workers who produced less than 83 output units. Now 82 lies in the class 79.5-84.5

I.e. there are 110 workers who produced less than 82 output units

 \therefore Percentage of workers who produced less than 82 output units = $\frac{110}{445} \times 100$

= 24.72%

EXERCISE 1.3

1) The following table gives frequency distribution of marks of 100 students in an examination.

	15-20	20-25	25-30	30-35	35-40	40-45	45-50
Marks							
No. of students	9	12	23	31	10	8	7

Determine D6, Q1 and P85 graphically.

Sol: Preparing the less than cumulative frequency table.

Marks	No. of students (f)	Cumulative Frequency (less than
		type)

15-20	9	9
20-25	1	21
25-30	23	44
30-35	31	75
35-40	10	85
40-45	8	93
45-50	7	100
	N = 100	

The 'less than ogive curve' is plotted using the upper limit of the class interval (x) against c.f.(y).

For D6, $\frac{6N}{10} = \frac{6(100)}{10} = 60$

Locate 60 on the Y-axis and draw line parallel to X-axis to cut the curve at P. Draw PM perpendicular to X-axis.

$$\dot{D} = 0M = 33$$

Similarly, For $Q_1, \frac{N}{4} = \frac{100}{4} = 25$

Line drawn parallel to X-axis from frequency 25, intersects the ogive at Q. Draw QN

Perpendicular to X-axis

 $\therefore Q_1 = 0N = 26$

85N 85 Also, for P85, $\frac{100}{100} = \frac{100}{100}(100) = 85$ Draw line parallel to X-axis from frequency 85 to intersect the ogive at R. Draw RS perpendicular to X-axis.

 $P_{85} = 0S = 40$

2) The following table gives the distribution of daily wages of 500 families in a certain city.

	No. of families
Daily Wages	
Below 100	50
100-200	150
200-300	180
300-400	50
400-500	40
500-600	20
600 above	10

Draw a 'less than' ogive for the above data. Determine the median income and obtain the limits of income of central 50% of the families

SOL: To find the limits of income of central 50% of families, we have to find Q1 and Q3.

The less than cumulative frequency table is:

Daily income	No. of families (^f)	Less than cumulative frequency
Below 100	50	50
100-200	150	200
200-300	180	380
300-400	50	430
400-500	40	470
500-600	20	490
600 above	10	500

The 'less than ogive curve' is plotted using the Upper limit of the class interval (*) against c.f.^y),

For Median, $\frac{N}{2} = \frac{500}{2} = 200$

Locate 250 on the Y-axis land draw line Parallel to X-axis to cut the curve at Q. Draw QM perpendicular to X-axis.

 \therefore Median = OM = 225.

For Q_1 and Q_3 draw lines parallel to X-axis

from frequencies $\frac{N}{4} = \frac{500}{4} = 125$

and $\frac{3N}{2} = \frac{3 \times 500}{4} = 375$

Then $Q_1 = QL = 165 Rs._{and} Q_3 = ON = 295 Rs.$ i.e. limits of central 5000 of families is (165, 295)

3) From the following distribution, determine median graphically.

	No. of employees
Daily Wages (in Rs.)	
Above 300	520
Above 400	470
Above 500	399
Above 600	210
Above 700	105
Above 800	45
Above 900	7

SOL: The given 'more than cumulative frequency' table is,

	No. of employee (m.c.f)
Daily Wages (in Rs.)	
Above 300	520
Above 400	470
Above 500	399
Above 600	210
Above 700	105
Above 800	45
Above 900	7

The 'more than ogive curve' is plotted using the given lower limit of the class interval () $\frac{N}{2}$ aga $\frac{520}{2}$ st c.f. () For median draw a line parallel to X-axis at Frequency = = 260

4) The following frequency distribution shows the profit (in Rs.) of shops in a particular area of city.

Drafit nor shan (in (000)	No. of shops
Profit per shop (in 000)	
0-10	12
10-20	18
20-30	27
30-40	20
40-50	17
50-60	6

Find graphically

(I) The limits of middle 40% shops.

(II) The number of shops having profile less than 35,000 rupees.

SOL: The less than cumulative frequency table is

Profit per shop (in '000)	No. of shops (f)	Cumulative Frequency (less than type)
0-10	12	12
10-20	18	30
20-30	27	57
30-40	20	77
40-50	17	94
50-60	6	100
	N = 100	

The 'less than ogive curve' is plotted using the upper limit of the class interval 31 (*) against c f (*).

parallel to the X-axis to cut the curve at P and Q respectively. Draw PM and QN perpendicular to the X-axis. ... D3 = 0M = 20

 \therefore D7 = ON = 36.5

•• (20 36. 5) constitute the limit for middle 40%.

(II) For shops having profit less than 35000, locate 35 on the axis and draw a line parallel

to the Y-axis to cut the curve at R. Draw RS perpendicular to the Y-axis.

[.]• OR= 67

 \therefore No. of shops having profit less than Rs. 35000 = 67

5) The following is frequency distribution of over time (per week) performed by various workers from a certain company. Determine the values of D2, Q2 and P61 graphically.

	Below	8-12	12-16	16-20	20-24	24 and
Overtime	8					above
(in hours)						
No. of	4	8	16	18	20	14
workers						

SOL: The 'less than cumulative frequency' table is

Overtime (in hours)	No. of workers (f)	Cumulative frequency (less than type)
Below 8	4	4
8-12	8	12
12-16	16	28
16-20	18	46
20-24	20	66
24 and above	14	80
	N = 80	

The 'less than ogive curve' is plotted using the upper limit of the class interval (*) against c.f. (y).

Locate 16, 40 and 48.8 ($^{\sim}$ 49) on the y-axis and draw the lines parallel to the x-axis to cut the curve at P, Q and R respectively. Draw PM, QN and RS perpendicular to x-axis.

$$D2 = 0M = 13$$

$$Q2 = ON = 19$$

P61 = OS = 20.5

6) Drew ogive for the following data and hence find the values of D1, Q1, P40.

Marks less than	0	20	30	40	50	60	70	80	90
No. of students	4	6	24	46	67	86	96	99	100

SOL: The given table is of 'less than cumulative frequency':

	No. of students
Marks (less than)	
10	4
20	6
30	24
40	46
50	67
60	86
70	96
80	99
90	100

The 'less than ogive curve' is plotted using the upper limit of the class interval (x) against c.f. (y).

 $Q1, \frac{N}{4} = \frac{100}{4} = 25$

And p40, $\frac{40N}{100} = \frac{100}{100} = 40$

Locate 10, 25 and 40 on the y-axis and draw the lines parallel to the x-axis to cut the

curve at P, Q and R respectively.

Draw PM, QN and RS perpendicular to x-axis.

... D1 = OM = 22

Q1 = ON = 30.5

P40 = OS = 37

7) The following table shows the age distribution of head of the families in a certain country. Determine the third, fifth and eighth decile of the distribution graphically.

	Numbers (million)
Age of head of family (in years)	
Under 35	46
35-45	85
45-55	64
55-65	75
65-75	90
75 & Above	40

SOL: The less than cumulative frequency table is

Age of head of family (in vears)	Numbers (million)	Cumulative frequency (less than type)
Under 35	46	46
35-45	85	131
45-55	64	195
55-65	75	270
65-75	90	360
75 & Above	40	400
	N = 400	

The 'less than ogive curve' is plotted using the upper limit of the class interval $\binom{x}{y}$ against c.f. $\binom{y}{y}$.

Locate 120, 200 and 320 on the y-axis and draw the lines parallel to the x-axis to cut the curve at P, and R respectively.

Draw PM, QN and RS perpendicular to x-axis.

D3 = OM = 44D5 = ON = 56

D8 = OS = 70.5

8) The following tale gives the distribution of females in an Indian village. Determine the median age graphically.

	No. of females (in '000)			
Age group				
0-10	175			
10-20	100			
20-30	68			
30-40	48			
40-50	25			

50-60	50
60-70	23
70-80	8
80-90	2
90-100	1

SOL: The less than cumulative frequency table is

Age group	No. of females (in '000)	Cumulative frequency(less than type
0-10	175	175
10-20	100	275
20-30	68	343
30-40	48	391
40-50	25	416
50-60	50	466
60-70	23	489
70-80	8	497
80-90	2	499
90-100	1	500
	N = 500	

The 'less than ogive curve' is plotted using the upper limit of the class interval (*) against c.f. (\mathcal{Y}).

Located 250 on the y-axis and draw the lines parallel to the x-axis to cut the curve at P.

Draw PM perpendicular to x-axis.

 \therefore Median, = OM = 17.5

9) Draw ogive for the Following distribution and hence find graphically the limits of weight of middle 50% fishes.

	800-	900-	1000-	1100-	1200-	1300-	1400-
Weight of	890	990	1090	1190	1290	1390	1490
fishes (in gms)							
No. of fishes	8	16	20	25	40	6	5

SOL: The less than cumulative frequency table is

Weight of fishes (in gms)	No. of fishes	No. of fishes(^f)	Cumulative frequency (less than type)
800-890	795-895	8	8
900-990	895-995	16	24
1000-1090	995-1095	20	44
1100-1190	1095-1195	25	69
1200-1290	1195-1295	40	109
1300-1390	1295-1395	6	115
1400-1490	1395-1496	5	120
		N =120	

The 'less than ogive curve' is plotted using the upper limit of the class interval (x) against c.f. (y).

Locate 30 and 90 'on the y-axis and draw lines parallel to the x-axis to cut the curve $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$

at P and Q respectively. Draw PM and QN perpendicular to the x-axis.

P25, OM =1025

P75, ON = 1247.5

... (1025, 1247.5) constitute the limit for middle 50%

(10) Find graphically the values of D3 and P65 for the data given below:

	60-69	70-79	80-89	90-99	100-	110-	120-
I.Q of					109	119	129
students							

No. of	20	40	50	50	20	10	10
students							

I.Q of students	Continuous classes	No. of students(^f)	Cumulative frequency (less than type)
60-69	59.5-69.5	20	20
70-79	69.5-79.5	40	60
80-89	79.5-89.5	50	110
90-99	89.5-99.5	50	160
100-109	99.5-109.5	20	180
110-119	109.5-119.5	10	190
120-129	119.5-129.5	10	200
		N =200	

The 'less than ogive curve' is plotted using the upper limit of the class interval (x) against c.f. (y).

Locate 60 and 130 on the y-axis and draw lines parallel to the x-axis to cut the

curve at P and Q respectively. Draw PM and QN perpendicular to the x-axis.D3, OM = 79.5 P65, ON = 935