Polygons Ex 14A

Q1.

Exterior angle of an *n*-sided polygon = $\left(\frac{360}{n}\right)^o$

(i) For a pentagon:
$$n=5$$

$$\therefore \left(\frac{360}{n}\right) = \left(\frac{360}{5}\right) = 72^o$$

(ii) For a hexagon: ${\it n}=6$

$$\therefore \left(\frac{360}{n}\right) = \left(\frac{360}{6}\right) = 60^{\circ}$$

(iii) For a heptagon: n=7

$$\therefore \left(\frac{360}{n}\right) = \left(\frac{360}{7}\right) = 51.43^{\circ}$$

(iv) For a decagon:
$$n=10$$

$$\therefore \, \left(\frac{360}{n}\right) = \left(\frac{360}{10}\right) = 36^o$$

(v) For a polygon of 15 sides:
$$n=15$$

$$\therefore \left(\frac{360}{n}\right) = \left(\frac{360}{15}\right) = 24^o$$

Q2.

Answer:

Each exterior angle of an n-sided polygon = $\left(\frac{360}{n}\right)^o$

If the exterior angle is 50°, then:

$$\frac{\frac{360}{n} = 50}{\Rightarrow n = 7.2}$$

Since n is not an integer, we cannot have a polygon with each exterior angle equal to 50°.

Q3.

Answer:

For a regular polygon with n sides:

Each interior angle = $180 - \{\text{Each exterior angle}\} = 180 - \left(\frac{360}{n}\right)$

(i) For a polygon with 10 sides:

Each exterior angle
$$=\frac{360}{10}=36^{\circ}$$

 \Rightarrow Each interior angle $=180-36=144^{\circ}$

(ii) For a polygon with 15 sides:

Each exterior angle
$$=\frac{360}{15}=24^{\circ}$$

 \Rightarrow Each interior angle $=180-24=156^{\circ}$

Q4.

Answer:

Each interior angle of a regular polygon having n sides = $180 - \left(\frac{360}{n}\right) = \frac{180n - 360}{n}$

If each interior angle of the polygon is 100°, then:

$$\begin{array}{l} 100 \ = \frac{180n - 360}{n} \\ \Rightarrow \ 100n \ = \ 180n \ - \ 360 \\ \Rightarrow \ 180n - 100n \ = \ 360 \\ \Rightarrow \ 80n \ = \ 360 \\ \Rightarrow \ n \ = \frac{360}{80} \ = 4.5 \end{array}$$

Since n is not an integer, it is not possible to have a regular polygon with each interior angle equal to 100° .

Q5.

Answer

Sum of the interior angles of an n-sided polygon = $(n-2) imes 180^\circ$

(i) For a pentagon:

$$n = 5$$

$$(n-2) \times 180^{\circ} = (5-2) \times 180^{\circ} = 3 \times 180^{\circ} = 540^{\circ}$$

(ii) For a hexagon:

$$n = 6$$

$$(n-2) \times 180^{\circ} = (6-2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}$$

(iii) For a nonagon:

$$n=9$$

$$(n-2) \times 180^{\circ} = (9-2) \times 180^{\circ} = 7 \times 180^{\circ} = 1260^{\circ}$$

(iv) For a polygon of 12 sides:

$$n = 12$$

$$(n-2) \times 180^{\circ} = (12-2) \times 180^{\circ} = 10 \times 180^{\circ} = 1800^{\circ}$$

Q6.

Answer:

Number of diagonal in an n-sided polygon = $\frac{n(n-3)}{2}$

(i) For a heptagon:

$$n = 7 \Rightarrow \frac{n(n-3)}{2} = \frac{7(7-3)}{2} = \frac{28}{2} = 14$$

(ii) For an octagon:

$$n = 8 \Rightarrow \frac{n(n-3)}{2} = \frac{8(8-3)}{2} = \frac{40}{2} = 20$$

(iii) For a 12-sided polygon:

$$n = 12 \Rightarrow \frac{n(n-3)}{2} = \frac{12(12-3)}{2} = \frac{108}{2} = 54$$

```
Q7.
```

Answer:

Sum of all the exterior angles of a regular polygon is 360° .

(i)

Each exterior angle $=40^{o}$

Number of sides of the regular polygon $=\frac{360}{40}=9$

(ii)

Each exterior angle $= 36^{\circ}$

Number of sides of the regular polygon = $\frac{360}{36} = 10$

(iii)

Each exterior angle = 72°

Number of sides of the regular polygon $=\frac{360}{72}=5$

(iv)

Each exterior angle = 30^{o}

Number of sides of the regular polygon $=\frac{360}{30}=12$

Q8.

Answer:

Sum of all the interior angles of an n-sided polygon = $(n-2) imes 180^\circ$

$$\begin{array}{l} m \angle ADC = 180 - 50 = 130^{o} \\ m \angle DAB = 180 - 115 = 65^{o} \\ m \angle BCD = 180 - 90 = 90^{o} \\ m \angle ADC + m \angle DAB + m \angle BCD + m \angle ABC = (n-2) \times 180^{\circ} = (4-2) \times 180^{\circ} = 2 \\ \times 180^{\circ} = 360^{\circ} \\ \Rightarrow m \angle ADC + m \angle DAB + m \angle BCD + m \angle ABC = 360^{\circ} \\ \Rightarrow 130^{o} + 65^{o} + 90^{o} + m \angle ABC = 360^{\circ} \\ \Rightarrow 285^{o} + m \angle ABC = 360^{o} \\ \Rightarrow m \angle ABC = 75^{o} \\ \Rightarrow m \angle CBF = 180 - 75 = 105^{o} \\ \therefore \text{ x = 105} \end{array}$$

Q9.

Answer:

For a regular n-sided polygon:

Each interior angle =
$$180 - \left(\frac{360}{n}\right)$$

In the given figure:

$$n = 5$$
 $x^{\circ} = 180 - \frac{360}{5}$
 $= 180 - 72$
 $= 108^{o}$
 $\therefore x = 108$

Polygons Ex 14B

Q1.

Answer:

(a) 5

For a pentagon:

$$n=5$$

Number of diagonals =
$$\frac{n(n-3)}{2} = \frac{5(5-3)}{2} = 5$$

Q2.

Answer:

Number of diagonals in an n-sided polygon = $\frac{n(n-3)}{2}$ For a hexagon:

$$n = 0$$

$$\therefore \frac{n(n-3)}{2} = \frac{6(6-3)}{2}$$

$$= \frac{18}{2} = 9$$

Q3.

Answer:

(d) 20

For a regular n-sided polygon: Number of diagonals =: $\frac{n(n-3)}{2}$

For an octagon:

$$\frac{n=8}{\frac{8(8-3)}{2}} = \frac{40}{2} = 20$$

Q4.

Answer: (d) 54 For an n-sided polygon: Number of diagonals = $\frac{n(n-3)}{2}$ $\therefore n = 12$ $\Rightarrow \frac{12(12-3)}{2} = 54$

Q5.

Answer:

(c) 9

$$\frac{n(n-3)}{2} = 27
\Rightarrow n(n-3) = 54
\Rightarrow n^2 - 3n - 54 = 0
\Rightarrow n^2 - 9n + 6n - 54 = 0
\Rightarrow n(n-9) + 6(n-9) = 0
\Rightarrow n = -6 \text{ or } n = 9$$

Number of sides cannot be negative.

$$\therefore \mathbf{n} = 9$$

Q6.

Answer:

(b) 68°

Sum of all the interior angles of a polygon with n sides = $(n-2) imes 180^\circ$

∴
$$(5-2) \times 180^{o} = x + x + 20 + x + 40 + x + 60 + x + 80$$

⇒ $540 = 5x + 200$
⇒ $5x = 340$
⇒ $x = 68^{o}$

Q7.

Answer:

(b) 9

Each exterior angle of a regular n – sided polygon =
$$\frac{360}{n} = 40$$

 $\Rightarrow n = \frac{360}{40} = 9$

Q8.

Answer:

(c) 5

Each interior angle for a regular n-sided polygon = $180 - \left(\frac{360}{n}\right)$

$$180 - \left(\frac{360}{n}\right) = 108$$

$$\Rightarrow \left(\frac{360}{n}\right) = 72$$

$$\Rightarrow n = \frac{360}{72} = 5$$

Q9.

Answer:

(a) 8

Each interior angle of a regular polygon with n sides $= 180 - \left(\frac{360}{n}\right)$

$$\Rightarrow 180 - \left(\frac{360}{n}\right) = 135$$

$$\Rightarrow \frac{360}{n} = 45$$

$$\Rightarrow n = 8$$

Q10.

Answer:

(b) 8

For a regular polygon with n sides:

Each exterior angle = $\frac{360}{n}$ Each interior angle = $180 - \frac{360}{n}$

$$\therefore 180 - \frac{360}{n} = 3\left(\frac{360}{n}\right)$$

$$\Rightarrow 180 = 4\left(\frac{360}{n}\right)$$
$$\Rightarrow n = \frac{4 \times 360}{180} = 8$$

$$\Rightarrow n = \frac{4 \times 360}{180} = 8$$

Q11.

Answer:

Each interior angle of a regular decagon = $180 - \frac{360}{10} = 180 - 36 = 144^{o}$

Q12.

Answer:

(b) $8\ right\ \angle s$

Sum of all the interior angles of a hexagon is (2n-4) right angles.

$$n = 6$$

$$\Rightarrow$$
 (2n-4) right \angle s = (12-4) right \angle s = 8 right \angle s

Q13.

Answer:

(a) 135°

$$(2n-4)\times 90=1080$$

$$(2n-4)=12$$

$$2n=16$$

or
$$n=8$$

Each interior angle =
$$180 - \frac{360}{n} = 180 - \frac{360}{8} = 180 - 45 = 135^{o}$$