CBSE Sample Paper-03 SUMMATIVE ASSESSMENT –I Class – IX MATHEMATICS

Time allowed: 3 hours **General Instructions:**

Maximum Marks: 90

- a) All questions are compulsory.
- b) The question paper comprises of 31 questions divided into four sections A, B, C and D. You are to attempt all the four sections.
- c) Questions 1 to 4 in section A are one mark questions.
- d) Questions 5 to 10 in section B are two marks questions.
- e) Questions 11 to 20 in section C are three marks questions.
- f) Questions 21 to 31 in section D are four marks questions.
- g) There is no overall choice in the question paper. Use of calculators is not permitted.

Section A

- 1. $16\sqrt{13} \div 9\sqrt{52}$ is equal to
- 2. If a + b + c = 0, then what is the value of $a^3 + b^3 + c^3$?
- 3. In a $\triangle ABC$, if $\angle A = 45^{\circ}$ and $\angle B = 70^{\circ}$. Determine the shortest sides of the triangles.
- 4. The point (3,0) lies on

Section **B**

- 5. Simplify: $\sqrt[3]{2} \times \sqrt[4]{3}$
- 6. If $x^2 1$ is a factor of $ax^2 + bx^2 + cx + d$, show that a + c = 0.
- 7. In given figure, OD is the bisector of \angle AOC, OE is the bisector of \angle BOC and OD \perp OE. Show that the points A, O and B are collinear.

8. In the given figure, if $AB \parallel CD$, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.

9. In the given figure, $AB \parallel CD$. Find the value of x.

10. In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Prove that AD < BC.

Section C

11. If $4^{2x-1} - 16^{x-1} = 384$, find the value of x. 12. Find the value of: $\frac{4}{(216)^{\frac{-2}{3}}} + \frac{1}{(256)^{\frac{-3}{4}}} + \frac{2}{(243)^{\frac{-1}{5}}}$.

13. If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$.

14. Factories: $\left(5r + \frac{2}{3}\right)^2 - \left(2r - \frac{1}{3}\right)^2$

15. In given figure, if $OP \parallel RS$, $\angle OPQ = 110^{\circ}$ and $\angle QRS = 130^{\circ}$, then determine $\angle PQR$.

- 16. Prove that if a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.
- 17. A triangle ABC is right-angled at A. AL is drawn perpendicular to BC. Prove that $\angle BAL = \angle ACB$.
- 18. If the altitudes from two vertices of a triangle to the opposite sides are equal, prove that the triangle is isosceles.
- 19. Plot the points in the Cartesian Plane (3, 4), (-3, -4), (0, -5), (2, -5), (2, 0).

20. Area of a given triangle is a_1 sq. units. If the sides of this triangle be doubled, then the area of the new triangle becomes a_2 sq. units. Prove that $a_1 : a_2 = 1 : 4$. Also find the percentage increase in area.

Section D

21. If $x = 2 + \sqrt{3}$, then find the value of $x^2 + \frac{1}{x^2}$.

- 22. Ram has two rectangles in which their areas are given:
 - (a) $25a^2 35a + 12$ (b) $35y^2 + 13y 12$
 - (i) Give possible expressions for the length and breadth of each of the rectangles.
 - (ii) Which mathematical concept is used in this problem?
 - (iii) Which value is depicted in this problem?

- 23. Find the value of $\frac{1}{27}r^3 s^3 + 125t^3 + 5rst$ when $s = \frac{r}{3} + 5t$.
- 24. Without actual division, prove that $(2x^4 6x^3 + 3x^2 + 3x 2)$ is exactly divisible by $(x^2 3x + 2)$.
- 25. The volume of a cuboid is given by the expression $3x^3-12x$ find the possible expressions for its dimensions.
- 26. In the figure, AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$.

- 27. If two lines intersect, then the vertically opposite angles are equal.
- 28. Prove that the angle bisectors of a triangle pass through the same point, i.e., they are concurrent.
- 29. If two parallel lines are intersected by a transversal, then prove that the bisectors of the two pairs of interior angles enclose a rectangle.
- 30. Draw the graph of linear equation 4x + y + 1 = 0.
- 31. Find the percentage increase in the area of a triangle and s be its perimeter.

CBSE Sample Paper-03 SUMMATIVE ASSESSMENT –I Class – IX MATHEMATICS

ANSWER KEY

 $16\sqrt{13} \div 9\sqrt{52}$ 1. $\frac{16\sqrt{13}}{9\sqrt{52}} = \frac{16}{9} \times \sqrt{\frac{12}{52_4}} = \frac{16}{9} \times \frac{1}{2}$ $=\frac{8}{9}$ We have $a^3 + b^3 + c^3 - 3ab = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ 2. As a + b + c = 0 : $a^3 + b^3 + c^3 - 3abc = 0$ $\Rightarrow a^3 + b^3 + c^3 = 3abc$ 3. BC 4. +ve x axis $\sqrt[3]{2} \times \sqrt[4]{3}$ 5. $2^{\frac{1}{3}}, 3^{\frac{1}{4}}$ The LCM of 3 and 4 is 12 $\therefore 2^{\frac{1}{3}} = 2^{\frac{4}{12}} = (2^4)^{\frac{1}{12}} = 16^{\frac{1}{12}}$ $3^{\frac{1}{4}} = 3^{\frac{3}{12}} = (3^3)^{\frac{1}{12}} = 27^{\frac{1}{12}}$ $2^{\frac{1}{3}} \times 3^{\frac{1}{4}} = 16^{\frac{1}{12}} \times 27^{\frac{1}{12}} = (16 \times 27)^{\frac{1}{12}}$ $=(432)^{\frac{1}{12}}$ Since $x^2 - 1 = (x+1)(x-1)$ is a factor of $p(x) = ax^3 + bx^2 + cx + d$ 6. $\therefore p(1) = p(-1) = 0$ \Rightarrow a + b + c + d = -a + b - c + d = 0 \Rightarrow 2a + 2c = 0 \Rightarrow 2(a + c) = 0 \Rightarrow a + c = 0 7. Since OD and OE are the bisectors of angles ZAOC and ∠ BOC respectively $\therefore \angle AOD = \angle COD$ and $\angle BOE = \angle COE$ Also, $\angle DOE = 90^{\circ}$ Now, $\angle AOC + \angle BOC = \angle AOD + \angle COD + \angle BOE + \angle COE$ $= \angle COD + \angle COD + \angle COE + \angle COE$

 $\Rightarrow \angle AOC + \angle BOC = 2 \angle COD + 2 \angle COE = 2 (\angle COD) + \angle COE$ $= 2 \angle DOE = 2 \times 90^\circ = 180^\circ$ Hence, points A, O and B are collinear. 8. $AB \parallel CD$ and PQ is a transversal. $\Rightarrow x = 50^{\circ}$ (alternate angles) *AB* || *CD* and *PR* is a transversal. $\therefore \angle APR = \angle PRD$ (alternate angles) $50^{\circ} + y = 127^{\circ}$ $y = 127^{\circ} - 50^{\circ}$ $y = 77^{\circ}$ 9. From E, draw $EF \parallel AB \parallel CD$ Now, *EF* || *CD* and *CE* is the transversal. $\therefore \angle DCE + \angle CEF = 180^{\circ}$ (co-interior angles) $\Rightarrow x + \angle CEF = 180^{\circ}$ $\Rightarrow \angle CEF = 180^{\circ} - x$ Again, $EF \parallel AB$ and AE is the transversal. $\therefore \angle BAE + \angle AEF = 180^{\circ}$ (co-interior angles) \Rightarrow 105° + $\angle AEC$ + $\angle CEF$ = 180° \Rightarrow 105° + 25° + (180° - x) = 180° $\Rightarrow x = 130^{\circ}$ Hence, $x = 130^{\circ}$ 10. In $\triangle AOB, \angle B < \angle A$ $\Rightarrow OA < OB$ (smaller angle has shorter side opposite to it)(1) In $\triangle OCD, \angle C < \angle D$ \Rightarrow OD < OC (smaller angle has shorter side opposite to it)(2) Adding (1) and (2), we get OA + OD < OB + OCAD < BCHence proved $4^{2x-1} - 16^{x-1} = 384$ 11.

$$\Rightarrow 4^{2x-1} - 4^{2(x-1)} = 384$$

$$4^{2x-1} - \frac{4^{2x-2+x}}{4} = 384$$

$$\Rightarrow 4^{2x-1} - \frac{4^{2x-2+x}}{4} = 2^7 \times 3$$

$$\Rightarrow 2^{2(2x-1)} \times \frac{3}{4} = 2^7 \times 3$$

$$\Rightarrow 2^{4x-2} = 2^7 \times 3 \times \frac{2^2}{3} = 2^9$$

Equating the exponents, we get

$$4x - 2 = 9 \text{ or } x = \frac{11}{4}$$
12.
$$\frac{4}{(216)^{\frac{-2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$$

$$= (216)^{\frac{-2}{3}} + (256)^{-\frac{3}{4}} + (243)^{-\frac{1}{5}} = 4(6^3)^{\frac{2}{3}} + (4^4)^{\frac{3}{4}} + 2(3^5)^{\frac{1}{5}}$$

$$= 4 \times 6^2 + 4^3 + 2 \times 3$$

$$= 4 \times 36 + 64 + 6$$

$$= 144 + 64 + 6$$

$$= 214$$

0000000

13. We have,
$$\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$$

 $L.H.S. = \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = \frac{a^3 + b^3 + c^3}{abc}$
 $= \frac{3abc}{abc} = 3(if a + b + c = 0, then a^3 + b^3 + c^3 = 3abc)$
 $= R.H.S$
14. $\left(5r + \frac{2}{3}\right)^2 - \left(2r - \frac{1}{3}\right)^2$
 $= \left(5r + \frac{2}{3} + 2r - \frac{1}{3}\right) \left[5r + \frac{2}{3} - \left(2r - \frac{1}{3}\right)\right]$
 $= \left(7r + \frac{2}{3} - \frac{1}{3}\right) \left(5r - 2r + \frac{2}{3} + \frac{1}{3}\right)$
 $= \left(7r + \frac{1}{3}\right) (3r + 1).$

15. Produce OP to intersect RQ at point N.

Now, OP||RS and transversal RN intersects them at N and R respectively

 $\therefore \angle RNP = \angle SRN \qquad \text{(Alternate interior angles)}$ $\Rightarrow \angle RNP = 130^{\circ}$ $\angle PNQ = 180^{\circ} - 130^{\circ} = 50^{\circ} \text{ (Linear pair)}$ $\angle OPQ = \angle PNQ + \angle PQN \quad \text{(Exterior angle property)}$ $\Rightarrow 110^{\circ} = 50^{\circ} + \angle PQN$ $\Rightarrow \angle PQN = 110^{\circ} - 50^{\circ} = 60^{\circ} = \angle PQR$

16. **Given**: $AB \square CD$ and a transversal *t* intersects *AB* at *E* and *CD* at *F* forming two pairs of consecutive interior angles i.e $\angle 3$, $\angle 6$ and $\angle 4$, $\angle 5$.

To prove: $\angle 3 + \angle 6 = 180^{\circ}, \angle 4 + \angle 5 = 180^{\circ}$

Proof: Since ray *EF* stands on line *AB*, we have $\angle 3 + \angle 4 = 180^{\circ}$ (linear pair)

But $\angle 4 = \angle 6$ (alt. int angles)

$$\therefore \angle 3 + \angle 6 = 180^{\circ}$$

Similarly, $\angle 4 + \angle 5 = 180^\circ$.

Hence proved.

17. In $\triangle ABC$, we have

 $\Rightarrow \angle BAL + \angle B = 90^{\circ}$ $\angle BAL = 90^{\circ} - \angle B \qquad \dots \text{ (ii)}$ From (i) and (ii), we get $\angle BAL = \angle ACB$

18. **Given**: A $\triangle ABC$ in which altitudes *BE* and *CF* from *B* and *C* resp. on *AC* and *AB* are equal.

To prove: $\triangle ABC$ is isosceles i.e AB = AC.

Proof: In $\triangle ABC$ and $\triangle ACF$, we have

$$\angle AEB = \angle AFC = 90^{\circ}$$

$$\angle BAE = \angle CAF(common)$$

BE = CF(given)

 $\therefore \Delta ABE \cong \Delta ACF \text{ (by AAS)}$

 $\therefore AB = AC$ (by CPCT)

Hence, $\triangle ABC$ is isosceles.

20. Let *a*₁ be the original area of triangle and *a*₂ be the new areaLet *b* be the base and *h* be the height.

$$a_1 = \frac{bh}{2}$$

$$a_{2} = \frac{1}{2} \times 2b \times 2h = 2bh$$

Increase in area = $2bh - \frac{bh}{2} = \frac{3bh}{2}$
Ratio: $\frac{a_{1}}{a_{2}} = \frac{\frac{bh}{2}}{2bh} = \frac{bh}{4bh} = \frac{1}{4}$
 $\therefore a_{1} : a_{2} = 1:4$
Percentage increase: $\frac{3bh}{2} \times 100 = 300\%$
21. $x = 2 + \sqrt{3}$ and $\frac{1}{x} = \frac{1}{2 + \sqrt{3}} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = 2 - \sqrt{3}$
 $\therefore \qquad x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$
Now, $x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2$
 $= (4)^{2} - 2 = 16 - 2 = 14$
22. (i) (a) Area = $25a^{2} - 35a + 12 = 25a^{2} - 15a - 20a + 12$
 $= 5a(5a - 3) - 4(5a - 3) = (5a - 3)(5a - 4)$

So possible length and breadth are
$$(5a-3)$$
 and $(5a-4)$ units respectively.

(b) Area =
$$35y^2 + 13y - 12 = 35y^2 + 28y - 15y - 12$$

= $7y(5y+4) - 3(5y+4) = (7y-3)(5y+4)$

So possible length and breadth are (7y-3) and (5y+4).

- (ii) Factorization of Polynomials.
- (iii) Expression of one's desires and news is very necessary.

23.
$$\frac{1}{27}r^3 - s^3 + 125t^3 + 5rst$$

$$= \frac{1}{3^3}r^3 + (-s)^3 + 5^3t^3 + 5rst = \frac{r^3}{3} + (-s)^3 + (5t)^3 - 3\left(\frac{r}{3}\right)(-s)(5t)$$

$$= \left(\frac{r}{3} + (-s) + 5t\right) \left[\left(\frac{r}{3}\right)^2 + (-s)^2 + (5t)^2 - \frac{R}{3} \cdot (-s) - (-s)(5t) - \frac{r}{3}(5t) \right]$$

$$= \left(\frac{r}{3} - s + 5t\right) \left(\frac{r^2}{9} + s^2 + 25t^2 + \frac{rs}{3} + 5st - \frac{5rt}{3} \right)$$

Now, $s = \frac{r}{3} + 5t$ (Given) $\Rightarrow \frac{r}{3} - s + 5t = 0$

$$\therefore \frac{1}{27}r^3 - s^3 + 125t^3 + 5rst = 0 \times \left(\frac{r^2}{9} + s^2 + 25t^2 + \frac{rs}{3} + 5st - \frac{5rt}{3}\right) = 0$$
24. Let $f(x) = 2x^4 - 6x^3 + 3x^2 + 3x - 2$ (i)
And $g(x) = x^2 - 3x + 2 = x^2 - 2x - x + 2$
 $= x(x-2) - 1(x-2) = (x-1)(x-2)$
If $(x-2)$ divides eq. (i), then $f(2) = 0$
 $\therefore f(2) = 2(2)^4 - 6(2)^3 + 3(2)^2 + 3(2) - 2$
 $= 32 - 48 + 12 - 6 - 2 = 0$
 \therefore eq. (i) is exactly divisibly by $(x-2)$.
If $(x-1)$ divides eq. (i), then $f(1) = 0$
 $\therefore f(1) = 2(1)^4 - 6(1)^3 + 3(1)^2 + 3(1) - 2$
 $= 2 - 6 + 3 + 3 - 2 = 0$
 \therefore eq. (i) is exactly divisibly by $(x-1)$.
 $\therefore (x^2 - 3x + 2)$ divides eq. (i) exactly.
25. The volume of cuboid is given by
 $3x^3 - 12x = 3x(x^2 - 4) = 3x (x+2) (x-2)$
Dimensions of the cuboid are given by $3x, (x+2)$ and $(x-2)$
 $P(1) = 1^3 - m \times 1^2 - 13 \times 1 + n = 0$
 $= -m + n = 12$ (1)
 $x + 3$ is factor of $P(x)$
 $\therefore P(-3) = 0$
 $P(-3) = (3)^3 - m(-3)^2 - 13 \times (-3) + n = 0$
 $= -27 - 9m + 39 + n = 0$
 $= -27 - 9m + 39 + n = 0$
 $= -9m + n = 12$
Subtracting eq. (2) from (1)
 $8m = 24, m = 3$
Put $m = 3$ in eq (1)
 $m = 3$ and $n = 15$
26. Given: A quadrilateral ABCD.
AB is the smallest and CD is the longest side.

To prove: $\angle A > \angle C$

Construction: Join AC.

To prove: (i) $\angle AOC = \angle BOD$, (ii) $\angle AOD = \angle BOC$ **Proof**: Since a ray OC stands on the line AB. $\therefore \ \angle AOC + \angle COB = 180^{\circ}$ (i) [Linear pair] Since ray OA stands on the line CD, we have $\angle AOC + \angle AOD = 180^{\circ}$ (ii) [Linear pair] From eq. (i) and (ii), we have $\angle AOC + \angle COB = \angle AOC + \angle AOD$ $\Rightarrow \ \angle COB = \angle AOD$

Similarly $\angle AOC = \angle BOD$

28. **Given**: A triangle ABC, Bisectors of $\angle B$ and $\angle C$ intersect at I. AI is joined.

To prove: AI bisects $\angle A$.

Construction: Draw ID \perp BC, IE \perp AC and IF \perp AB. **Proof**: Since, I lies on the bisector of \angle B. (Given)

From eq. (i) and (ii),

IE = IF

 \Rightarrow I is equidistant from AB and AC.

 \therefore AI bisects $\angle A$.

Hence AI, BI and CI are concurrent and the point of concurrency I is the incentre of triangle ABC.

29. Let two parallel lines be AB and CD and a transversal *l* intersects AB and CD at the points E and F respectively.

EG, FG, EH and FH be the bisectors of the interior angles. AB $\|$ CD and l cuts them.

All the angles of GFHE are right angles.

Hence GFHE is a rectangle.

30. We have 4x + y + 1 = 0

 \Rightarrow y = -4x - 1

 \therefore The table of the coordinates of points is as under:

X'

$$A$$

 $(-1, 3)$
 B
 $(2, -9)$
 C
 $(3, -13)$
 D
 $(4, -17)$

Graph of the linear equation is the straight line AD.

Х	-1	2	3	4
у	3	-9	-13	-17
points	А	В	С	D

31. Let *a*,*b*,*c* be the side of the given triangle and *s* be its perimeter.

$$\therefore s = \frac{1}{2}(a+b+c)$$

The sides of the new triangle are: 2a, 2b and 2c

Then
$$s' = \frac{1}{2}(2a+2b+2c) = a+b+c = 2s$$

Now, Area of the given triangle $(\Delta) = \sqrt{s(s-a)(s-b)(s-c)}$
And Area of new triangle $(\Delta') = \sqrt{s'(s'-2a)(s'-2b)(s'2c)}$
 $= \sqrt{2s(2s-2a)(2s-2b)(2s-2c)}$
 $= \sqrt{16s(s-a)(s-b)(s-c)}$
 $\therefore \Delta' = 4\Delta$

:. Increase in the area of the triangle = $4 \Delta - \Delta$ = 3Δ

 \therefore % increase in area = $\frac{3\Delta}{\Delta} \times 100 = 300\%$