Class-X Session 2022-23 Subject - Mathematics (Standard) Sample Question Paper - 35 With Solution

		n		11	ì	Z			
5	Chapter Name	Per Unit	Section-A (1 Mark)	on-A ark)	Section-B (2 Marks)	Section-C (3 Marks)	Section-D (5 Marks)	Section-E (4 Marks)	Total
ó		Marks	MCQ	A/R	VSA	SA	P	Case-Study	Marks
-	Real Number	9	2(Q1,5)	1 (Q19)		1(026)			9
2	Polynomials		1(Q4)			1(027)			4
6	Pair of Linear Equations in Two Variables	8	1(Q3)		1(021)	1(028)			9
4	Quadratic Equations		1(02)				1(034)		9
S	Arithmetic Progression							1(Q36)	4
9	Triangles	L.	2(Q6,8)		1(Q22)		1(032)		6
4	Circles	2	1(Q13)		1(Q24)	1(030)			9
8	Coordinate Geometry	9	2(09,11)					1(Q38)	9
6	Introduction to Trigonometry		2(07,10)	1(020)	1(Q23)	1(029)			8
9	Some Applications of Trigonometry	12						1(Q37)	4
Ŧ	Areas Related to Circles		2(Q12,14)		1(Q25)				4
12	Surface Areas and Volumes	9	1(Q16)				1(033)		9
13	Statistics	T.	2(Q15,17)				1(Q35)		7
14	Probability	=	1(Q18)			1(031)			4
ota	Total Marks (Total Questions)	80	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

Time : 3 Hours

			General	Instru	ctions		
1,		stion paper contains n some questions.	- five sections A, B, C,	D and E.	Each section is co	ompulsory. l	However, there are interna
2.	Section A	has 18 MCQ's and	02 Assertion-Reason b	based que	stions of 1 mark e	ach.	
3.	Section E	has 5 Very Short A	nswer (VSA)-type ques	tions of 2	marks each.		
4.		1.00	r (SA)-type questions of				
5.			(LA)-type questions of				
6.				3.		wh narts of	values of 1, 1 and 2 mark
u.	each resp		legrated annis of asses	smeni (+	marks eachy with s	<i>uo puris oj</i>	variates by 1, 1 and 2 mark
			SECTION-A (Multip	ole Cho	ice Questions)		
	h question car	ries I mark. .M. of x and 18 is 36.					
ι.		.F. of x and 18 is 2.					
	What is the n						
	(a) 1	(b)	2	(c)	3	(d)	4
			tic equation is 6 and th				3
	(a) $x^2 - 6x +$		the equation is o and it		$x^2 + 6x - 6 = 0$	011 13	
	(c) $x^2 - 6x -$				$x^2 + 6x + 6 = 0$		
			wing pair of linear equ			solutions?	
	kx + 3y - (k -		unspan or mear equ			portunoing.	
	12x + ky - k =						
	(a) $k=4$		k = 3	(c)	k=6	(d)	k=2
	If the zeroes of	of the polynomial f($k) = k^2 x^2 - 17x + k + 2, (k + 2)$	(k > 0) are	reciprocal of eacl	h other than	value of k is
	(a) 2	(b)		(c)	· · · · · · · · · · · · · · · · · · ·	(d)	
	Given that L.C	C.M. (91, 26) = 182, t	hen H.C.F. (91, 26) is				
	(a) 13	(b)	26	(c)	17	(d)	9
	Two triangles	are similar if					
		responding angles a					
		responding sides ar	equal.				
		right triangle.					
12	(d) None of			- 23			
	2.07.0 000 0.000	a ² , then the value of	fsec θ + tan ³ θ cosec θ i		(2 2)10		
	(a) $(2-a^2)$ (c) $(2-a^2)^2$	3		(b)	$(2-a^2)^{1/2}$ $(2-a^2)^{3/2}$		
			$\angle Q$ and $\angle R = \angle E$, then			Course 1	
•	IT IN two ADE	r and druk, 2D=	zQ and $zR = zE$, then	which of	the following is no	statue?	
	(a) $\frac{EF}{PR} = \frac{E}{P}$	0F (b)	$\frac{DE}{PO} = \frac{EF}{RP}$	(2)	$\frac{DE}{OR} = \frac{DF}{PO}$	(1)	EF_DE
	(a) PR P	Q (0)	PQ RP	(c)	QR PQ	(d)	RP QR
	IfP = (2, 5), 0	=(x, -7) and PO =	13, what is the value of	'x'?			
	(a) 5	(b)		(c)	-3	(d)	-5
	an each of the second	- ni - O	Lang O	1. 1. 1.			
0.	If $b \tan \theta = a$,	the value of $\frac{a\sin\theta}{a\sin\theta}$	$\frac{-b\cos\theta}{+b\cos\theta}$ is				
	a-b		$\frac{a+b}{a^2+b^2}$		$\frac{a^2+b^2}{a^2-b^2}$	1.5	$\frac{a^2 - b^2}{a^2 + b^2}$
	(a) $\frac{a-b}{a^2+b^2}$	(b)	$a^2 + b^2$	(c)	$a^2 - b^2$	(d)	$a^2 + b^2$
1.	In what ratio	does the point (_2 1) divide the line-segme	nt ioinin	the points (_3 5)	and (4 _ 0)	12
	(a) 2:3	and the second sec	1:6		6:1		2:1
	101 2.3	(0)	1.0	(0)	W. I	(0)	

(ASSERTION-REASON BASED QUESTIONS)

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

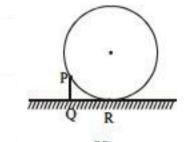
- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 19. Assertion : $n^2 n$ is divisible by 2 for every positive integer.

Reason : $\sqrt{2}$ is not a rational number.

20. Assertion: In a right angled triangle, if $\tan \theta = \frac{3}{4}$, the greatest side of the triangle is 5 units.

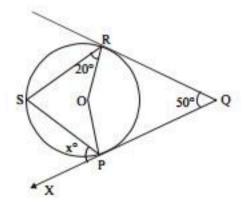
Reason: (greatest side)² = (hypotenuse)² = (perpendicular)² + (base)².

SECTION-B

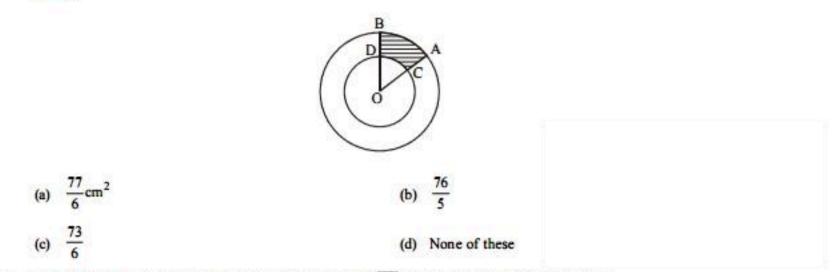

This section comprises of very short answer type-questions (VSA) of 2 marks each.

21. Which type of equations x + 2y = 4 and 2x + y = 5 will be?

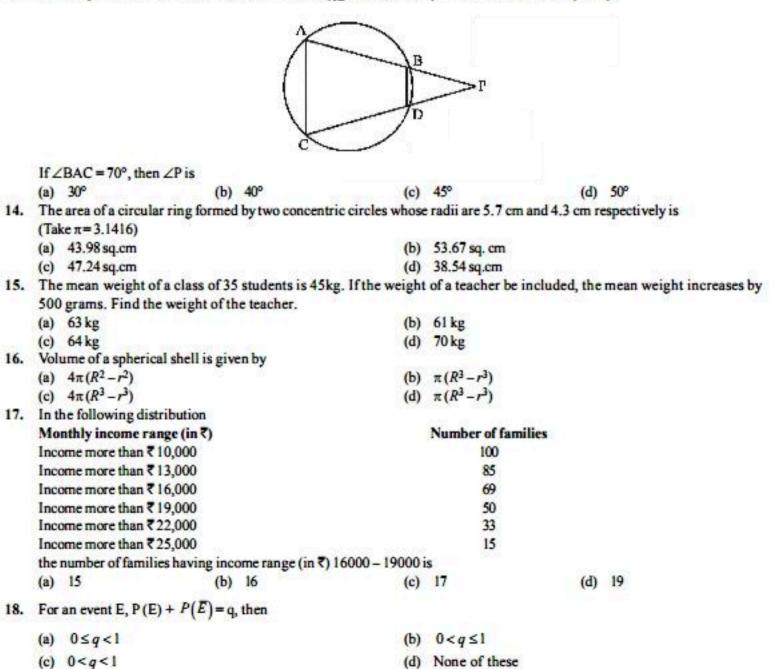
OR


For what value of k, the equations 3x - y + 8 = 0 and 6x - ky = -16 represent coincident lines?

- Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of triangle PQR. Prove that ΔABC ~ ΔPQR.
- 23. Prove that $\frac{\tan^2 \theta}{\tan^2 \theta 1} + \frac{\csc^2 \theta}{\sec^2 \theta \csc^2 \theta} = \frac{1}{\sin^2 \theta \cos^2 \theta}$
- 24. A ball is in the rest position against a step PQ. If PQ = 10 cm and QR = 15 cm, then the diameter of the ball is _____.



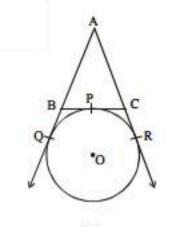
OR


In the diagram, PQ and QR are tangents to the circle centre O, at P and R respectively. Find the value of x.

The figure shows two concentric circles with centre O and radii 3.5 m and 7 m. If ∠BOA = 40°, find the area of the shaded region.

13. In the figure below (not to scale), AB = CD and \overline{AB} and \overline{CD} are produced to meet at the point p.

- 25. In figure, two concentric circles with centre O, have radii 21 cm and 42 cm. If ∠AOB = 60°, find the area of the shaded region.
 - [Use $\pi = \frac{22}{7}$].


SECTION-C

This section comprises of short answer type questions (SA) of 3 marks each.

- 26. Prove that $\sqrt{2} + \sqrt{5}$ is irrational.
- 27. Quadratic polynomial $2x^2 3x + 1$ has zeroes as α and β . Now form a quadratic polynomial whose zeroes are 3α and 3β .
- 28. Solve the following system of equations :

$$\frac{4}{x} + 5y = 7$$
; $\frac{3}{x} + 4y = 5$

- 29. If $\tan(A+B) = \sqrt{3}$ and $\tan(A-B) = \frac{1}{\sqrt{3}}$; $0^{\circ} < A+B \le 90^{\circ}$; A > B, find A and B.
- In fig. a circle touches the side BC of ΔABC at P and touches AB and AC produced at Q and R respectively. If AQ = 5 cm, find the perimeter of ΔABC.

OR

In the given figure, $\triangle ABC$ and $\triangle DBC$ are on the same base BC. AD and BC intersect at O. Prove that $\frac{AE}{DF} = \frac{AO}{DO}$.

31. In a single throw of a pair of different dice, what is the probability of getting (i) a prime number on each dice? (ii) a total of 9 or 11?

OR

Three different coins are tossed together. Find the probability of getting (i) exactly two heads (ii) at least two heads (iii) at least two tails.

SECTION-D

This section comprises of long answer-type questions (LA) of 5 marks each.

X P Z Q

32.

 ΔPQR is right angled at Q. $QX \perp PR$, $XY \perp RQ$ and $XZ \perp PQ$ are drawn. Prove that $XZ^2 = PZ \times ZQ$.

33. A solid metallic right circular cone 20 cm high and whose vertical angle is 60°, is cut into two parts at the middle of its height by a plane parallel to its base. Find volume of small cone.

OR

From a solid cylinder of height 2.8 cm and diameter 4.2 cm, a conical cavity of the same height and same diameter is hollowed

out. Find the total surface area of the remaining solid. [Take $\pi = \frac{22}{7}$].

34. Roots of the quadratic equation $36x^2 - 12ax + (a^2 - b^2) = 0$ are $\frac{a+b}{c}$ and $\frac{a-b}{c}$. Then, find the value of c.

OR

Find the real roots of the equation $x^{2/3} + x^{1/3} - 2 = 0$.

35. Find the median of the following data :

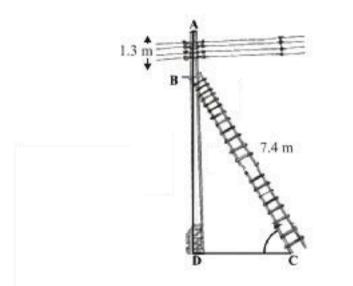
Height (in cm)	Less than 120	Less than 140	Less than 160	Less than 180	Less than 200
Number of students	12	26	34	40	50

SECTION-E

This section comprises of 3 case study/passage - based questions of 4 marks each with three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively.

36. Case - Study 1: Read the following passage and answer the questions given below.

India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.


Based on the above information, answer the following questions:

- (i) Find the production during first year.
- (ii) Find the production during 8th year.
- (iii) Find the production during first 3 years.

OR

In which year, the production is Rs 29,200.

37. Case - Study 2: Read the following passage and answer the questions given below. An electrician has to repair an electric fault on a pole of height 5m. He needs to reach a point 1.3 m below the top of the pole to under take the repair work. He place the ladder of length 7.4 m at that position.

Then answer the following questions.

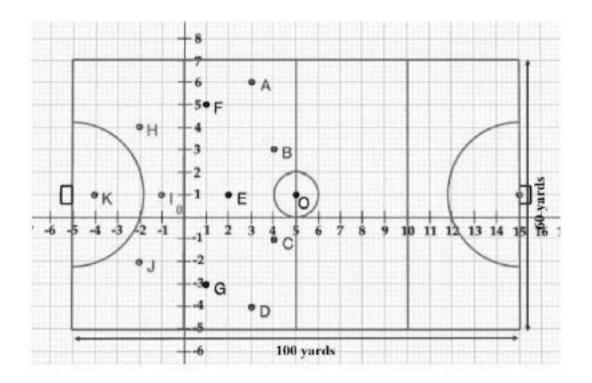
- (i) Find measure of ∠C.
- (ii) Find measure of ∠ B.
- (iii) Find distance between foot of ladder and pole.

OR

The value of sin² B + sin² C is

38. Case - Study 3: Read the following passage and answer the questions given below.

A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.


It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Positions you might play include-

- Forward : As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.

Goalie: As shown by players H, I and J. Using the picture of a hockey field below, answer the questions that follow:

- (i) Find the coordinates of the centroid of AEHJ.
- (ii) If a player P needs to be at equal distances from A and G, such that A, P and G are in straight line, then find the position of P.
- (iii) Find the point on x axis equidistant from I and E.

OR

What are the coordinates of the position of a player Q such that his distance from K is twice his distance from E and K, Q and E are collinear?

SOLUTIONS

SAMPLE PAPER-1

9.

1. (d) L.C.M × H.C.F = First number × second number

Hence, required number = $\frac{36 \times 2}{18} = 4$.

- 2. (a) Required equation is $x^2 - 6x + 6 = 0$.
- (c) Here, $\frac{a_1}{a_2} = \frac{k}{12}$, $\frac{b_1}{b_2} = \frac{3}{k}$, $\frac{c_1}{c_2} = \frac{k-3}{k}$ 3.

For a pair of linear equations to have infinitely many solutions:

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

So, we have $\frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$ or $\frac{k}{12} = \frac{3}{k}$ which gives $k^2 = 36$ i.e., $k = \pm 6$

Also, $\frac{3}{k} = \frac{k-3}{k}$ gives $3k = k^2 - 3k$, i.e., $6k = k^2$, which

means k = 0 or k = 6.

Therefore, the value of k that satisfies both the conditions, is k = 6. For this value, the pair of linear equations has infinitely many solutions.

4. (a) Since zeroes are reciprocal of each other, so product of the roots will be 1, so, $k^{2}-k-2=0 \Rightarrow (k-2)(k+1)=0$ k=2, k=-1, Since k>0 \therefore k=2

5. (a) H.C.F. (91, 126) =
$$\frac{91 \times 126}{\text{L.C.M.(91, 126)}}$$

$$=\frac{91\times126}{182}=13$$

8.

(a) (By definition of similar triangles). 6. 7.

(d)
$$\sec \theta + \tan^3 \theta \csc \theta$$

$$= \sec \theta + \frac{\sin \theta}{\cos \theta} \tan^2 \theta \csc \theta = \sec \theta (1 + \tan^2 \theta)$$

=
$$(1 + \tan^2 \theta)^{g_2} = [1 + (1 - a^2)]^{g_2}$$

(b) Now, in ΔDEF and ΔPQR ,
 $\angle D = \angle Q$, $\angle R = \angle E$

::	$\Delta DEF \sim \Delta QRP$	[by AAA similarity criterion]
⇒	$\angle F = \angle P$	[corresponding angles]
	$\frac{DF}{OP} = \frac{ED}{RO} = \frac{FE}{PR}$	[corresponding sides]

 $PQ = 13 \Longrightarrow PQ^2 = 169$

$$\Rightarrow (x-2)^{r}+(-)^{r}=10$$

$$\Rightarrow x^2 - 4x - 21 = 0 \Rightarrow x^2 - 7x + 3x - 21 = 0$$

$$\Rightarrow$$
 $(x-7)(x+3)=0 \Rightarrow x=7,-3$

10. (d) Given,
$$\tan \theta = \frac{a}{b}$$

$$\therefore \quad \frac{a\sin\theta - b\cos\theta}{a\sin\theta + b\cos\theta} = \frac{a\tan\theta - b}{a\tan\theta + b} = \frac{a^2 - b^2}{a^2 + b^2}$$

11. (b) Suppose the required ratio is m, : m, Then, using the section formula, we get

$$-2 = \frac{m_1(4) + m_2(-3)}{m_1 + m_2}$$

$$\Rightarrow - 2m_1 - 2m_2 = 4m_1 - 3m_2$$

- $\Rightarrow m_2 = 6m_1 \Rightarrow m_1:m_2 = 1:6$
- 12. (a) Area of the shaded region

$$= \frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (7)^{2} - \frac{40^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (3.5)^{2}$$
$$= \frac{1}{9} \times \frac{22}{7} \times (7^{2} - 3.5^{2}) = \frac{1}{9} \times \frac{22}{7} \times \left(49 - \frac{49}{4}\right)$$
$$= \frac{1}{9} \times \frac{22}{7} \times \frac{49}{4} \times 3 = \frac{77}{6} \text{ cm}^{2}$$

- 13. (b) Exterior angle of a cyclic quadrilateral is equal to its interior opposite angle. ∠BAC = ∠DCA and proceed.
- 14. (a) Let the radii of the outer and inner circles be r, and r, respectively; we have Area = $\pi r_1^2 - \pi r_2^2 = \pi (r_1^2 - r_2^2)$ $=\pi(r_1-r_2)(r_1+r_2)$ $= \pi(5.7 - 4.3)(5.7 + 4.3) = \pi \times 1.4 \times 10$ sq. cm = 3.1416 × 14sq. cm. = 43.98 sq. cms.
- 15. (a) Let the mean weight of a class of 35 students be x1

and that of both students and a teacher be x,

Then
$$x_1 = 45 \text{ kg and}$$

$$\overline{x}_2 = 45 + \frac{500}{1000} = 45 + 0.5 = 45.5 \text{ kg}$$

$$\overline{x}_1 = \frac{\Sigma x_1}{n_1}, \quad \overline{x}_2 = \frac{\Sigma x_2}{n_1}$$

$$\Rightarrow 45 = \frac{\Sigma x_1}{35}, \quad 45.5 = \frac{\Sigma x_2}{36}$$

$$\Rightarrow \quad \Sigma x_1 = 1575 \text{ kg}, \quad \Sigma x_2 = 1638 \text{ kg}$$

$$\Rightarrow \quad \text{Total weight = weight of student}$$

- ts + weight of teacher
- ... Weight of teacher = Total weight - weight of students
- Weight of the teacher = Σx_{1} Σx_{2} ... = 1638 - 1575 = 63 kg
- 16. (d) Volume of spherical shell

$$=\frac{4}{3}\pi R^{3}-\frac{4}{3}\pi r^{3}=\frac{4}{3}\pi (R^{3}-r^{3})$$

17. (d) Clearly, the number of families having income range (in 7)

16000 - 19000 = 69 - 50 = 19.

- 18. (d) :: $P(E) + P(\overline{E}) = 1$
- 19. (b) Put n = 1 and n = 2.
- 20. (a) Both Assertion and Reason are correct and Reason is the correct explanation of the assertion.

greatest side =
$$\sqrt{(3)^2 + (4)^2} = 5$$
 units.

21. Comparing the given equations with $a_1x_1 + b_1y = c_1$ and $a_2 x + b_2 y = c_2$ we have

$$\therefore \quad \frac{a_1}{a_2} = \frac{1}{2}; \frac{b_1}{b_2} = \frac{2}{1}; \frac{c_1}{c_2} = \frac{4}{5}$$
 [1 Mark]

Here,
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 [½ Mark]

. The equations have consistent and unique olution. [1/2 Mark]

OR

Pair of lines are coincident if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \qquad ...(i) \qquad [1/2 Mark]$$

Given lines,

$$3x - y + 8 = 0$$

Here,
$$a_1 = 3$$
, $b_1 = -1$, $c_1 = 8$
 $a_2 = 6$, $b_2 = -k$, $c_2 = 16$ [½ Mark
Using equation (i) we have

$$\frac{3}{6} = \frac{-1}{-k} = \frac{8}{16}$$
 [½ Mark]

$$\Rightarrow \frac{1}{k} = \frac{1}{2}$$

$$\therefore k = 2 \qquad [1/2 Mark]$$

22. Given : ΔABC and ΔPQR, in which,

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$

To Prove : $\triangle ABC \sim \triangle PQR$

[1/2 Mark]

Proof:
$$\frac{AB}{PQ} = \frac{BC}{QR}$$
 (Given)

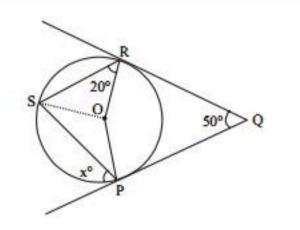
$$BD = BC = AB = BD = AD$$

$$\frac{2BD}{2QM} = \frac{BC}{QR} \therefore \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

Now, In
$$\triangle ABC$$
 and $\triangle PQR$, $\frac{AB}{PQ} = \frac{BC}{QR}$ and $\angle B = \angle Q$
 $\therefore \ \triangle ABC \sim \triangle PQR$ (By SAS) [½ Mark]

23. LHS =
$$\frac{\tan^2 \theta}{\tan^2 \theta - 1} + \frac{\csc^2 \theta}{\sec^2 \theta - \csc^2 \theta}$$

sin² 0 cos²0 [1/2 Mark] sin² 0 cos²0 $\cos^2 \theta \sin^2 \theta$


$$=\frac{\sin^2\theta}{\cos^2\theta}\times\frac{\cos^2\theta}{\sin^2\theta-\cos^2\theta}+\frac{1}{\sin^2\theta}\times\frac{\sin^2\theta\cos^2\theta}{\sin^2\theta-\cos^2\theta}$$
 [½ Mark]

$$\frac{\sin^2 \theta}{\sin^2 \theta - \cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} \qquad [1/2 \text{ Mark}]$$

$$=\frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta - \cos^2\theta} = \frac{1}{\sin^2\theta - \cos^2\theta} = RHS \quad [\frac{1}{2}Mark]$$

24. In right
$$\triangle$$
 OSP,
OP² = PS² + OS² [1 Mark]
 \Rightarrow r² = 225 + (r-10)²
 \Rightarrow r² = 225 + r² - 20r + 100
 \Rightarrow 20 r = 325
 \Rightarrow 2r = 32.5
Hence, diameter = 32.5 cm.
[1 Mark]
Answer : 32.5 cm
OR

$$\angle POR + \angle PQR = 180^{\circ}$$

$$\therefore \angle POR = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

$$\angle PSR = \frac{1}{2} \angle POR \qquad [1/2 Mark]$$

$$\therefore \angle PSR = \frac{1}{2} \times 130^{\circ} = 65^{\circ} \qquad [V_2 \text{ Mark}]$$

$$\Rightarrow \angle PSR = \angle OSP + \angle OSR$$

$$\Rightarrow \angle PSR = \angle OSP + 20^{\circ} \qquad [\because \angle OSP = \angle OSR]$$

$$\Rightarrow 65^{\circ} = \angle OSP = 20^{\circ}$$

$$\Rightarrow \angle OSP = 45^{\circ}$$

$$\Rightarrow \angle OPX = 90^{\circ} \qquad [\because PX \text{ is a tangent}]$$

$$\Rightarrow \angle SPX + \angle OPS = 90^{\circ}$$

$$x^{\circ} + \angle OSP = 90^{\circ} \qquad [\because \angle OPS = \angle OSP]$$

$$x^{\circ} = 90^{\circ} - 45^{\circ} = 45^{\circ}$$
Answer : 45° [1 Mark]

CO D D

25.

Radius of inner circle, r = 21 cm Radius of outer circle, R = 42 cm Area of (ABCD) = Area of sector (OAB) – Area of sector (OCD)

$$=\frac{60}{360} \times \pi (42^2 - 21^2)$$
 [1 Mark]

$$= \frac{1}{6} \times \frac{22}{7} \times (42 + 21)(42 - 21) = \frac{1}{6} \times \frac{22}{7} \times 63 \times 21$$

= 11 × 21 × 3 = 693 cm² [1 Mark]
Area of shaded region = Area of outer circle - Area of
inner circle - Area (ABCD)

$$= \pi (42)^2 - \pi (21)^2 - 693 = \frac{22}{7} \times 63 \times 21 - 693 = 4158 - 693$$

= 3465 cm² [1 Mark]

26. Let us assume on the contrary that $\sqrt{2} + \sqrt{5}$ is rational number. Then, there exist co-prime positive integers *a* and *b* such that

$$\sqrt{2} + \sqrt{5} = \frac{a}{b} \Rightarrow \frac{a}{b} - \sqrt{2} = \sqrt{5}$$
 [½ Mark]

$$\Rightarrow \left(\frac{a}{b} - \sqrt{2}\right)^2 = (\sqrt{5})^2 \text{ [Squaring both sides] [½ Mark]}$$
$$\Rightarrow (a - \sqrt{2b})^2 = 5b^2 \Rightarrow a^2 + 2b^2 - 2ab\sqrt{2} = 5b^2$$

$$\Rightarrow a^2 + 2b^2 - 3b^2 = 2ab\sqrt{2} \Rightarrow \frac{a^2 - 3b^2}{2ab} = \sqrt{2}$$

$$\Rightarrow \sqrt{2}$$
 is a rational number

$$\left[\because a, b \text{ are integers} \Rightarrow \frac{a^2 - 3b^2}{2ab} \text{ is rational}\right] [\frac{1}{2} \text{ Mark}]$$

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is wrong.

Hence,
$$\sqrt{2} + \sqrt{5}$$
 is irrational. [½ Mark]

27. If α and β are the zeroes of $2x^2 - 3x + 1$,

then
$$\alpha + \beta = \frac{-b}{a} = \frac{3}{2}$$
 and $\alpha\beta = \frac{c}{a} = \frac{1}{2}$ [1 Mark]

New quadratic polynomial whose zeroes are 3α and 3β is given by $x^2 - (Sum of the roots)x + Product of the roots$

 $=x^{2}-(3\alpha+3\beta)x+3\alpha\times3\beta$ [1 Mark]

$$=x^{2} - 3(\alpha + \beta)x + 9\alpha\beta = x^{2} - 3\left(\frac{3}{2}\right)x + 9\left(\frac{1}{2}\right)$$
$$=x^{2} - \frac{9}{2}x + \frac{9}{2} = \frac{1}{2}(2x^{2} - 9x + 9)$$
[1 Mark]

Hence, required quadratic polynomial is $\frac{1}{2}(2x^2 - 9x + 9)$.

28.
$$\frac{4}{x} + 5y = 7$$
 and $\frac{3}{x} + 4y = 5$
 $\frac{4}{x} + 5y = 7$ (i)

$$\frac{3}{x} + 4y = 5$$
(ii)

[1 Mark]

Multiply equation (i) by (3) and equation (ii) by (4) we get,

$$\frac{12}{x}$$
 + 15y = 21(iii)

$$\frac{12}{x} + 16y = 20$$
(iv)

Subtract (iii) and (iv), we get, $-y=1 \Rightarrow y=-1[1 \text{ Mark}]$ Now, putting the value of y=-1 in equation (i)

$$\frac{4}{x} + 5(-1) = 7 \Rightarrow \frac{4}{x} = 7 + 5 \Rightarrow \frac{4}{x} = \frac{12}{1} \Rightarrow 12x$$

$$=4 \Rightarrow x = \frac{4}{12} \Rightarrow x = \frac{1}{3}$$
 [1 Mark]

Hence $x = \frac{1}{3}$ and y = -1

29.
$$\tan(A + B) = \sqrt{3} \implies \tan(A + B) = \tan 60^{\circ}$$

200

$$(\because \tan 60 = \sqrt{3})$$

 $\Rightarrow A+B=60^{\circ}$
(i)

$$\tan(A - B) = \frac{1}{\sqrt{3}} \Rightarrow \tan(A - B) = \tan 30^{\circ}$$
 [1 Mark]

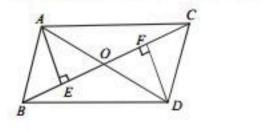
$$\left(\because \tan 30^\circ = \frac{1}{\sqrt{3}}\right)$$

$$\Rightarrow$$
 A - B = 30°(n)

Adding (i) and (ii), we get; [1 Mark] $2A=90^{\circ} \Rightarrow A=45^{\circ}$ Then from (i), $45^{\circ}+B=60^{\circ} \Rightarrow B=15^{\circ}$. [1 Mark]

30. To Find : Perimeter of $\triangle ABC$ Let AQ = 5 cm and AQ = AR(i) BQ = BP(ii) [1 Mark] CP = CR(iii)

(Tangent drawn from an external points are equal)


A

[1/2 Mark]

Since perimeter of $\triangle ABC = AB + BC + CA$ \Rightarrow Perimeter of $\triangle ABC = AB + BP + PC + CA$ [$\because BC = BP + PC$] [1 Mark] =(AB+BQ)+(CR+CA) from (ii) and (iii) = AQ + AR [$\because AQ = AR$ from (i)] =AQ + AQ = 2AQ = 2 × 5 = 10 cm [½ Mark] \therefore Perimeter of $\triangle ABC = 10$ cm. OR

To prove: $\frac{AE}{DF} = \frac{AO}{DO}$

Construction : Draw $AE \perp BC$ and $DF \perp BC$.

Proof: In ΔAOE and ΔDOF , $\angle AOE = \angle DOF$ (Vertically opposite angles) $\angle AEO = \angle DFO = 90^{\circ}$ (Construction) $\Rightarrow \Delta AOE \sim \Delta DOF$ (By AA Similarity) [1 Mark] AO AE [1 Mark] 4 ...(i) DO DF Total number of outcomes on throwing a pair of dice = 6 × 6=36 (i) Let E be the event of getting a prime number on each die. So, favourable outcomes $= \{(2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5), (5, 2),$ (5,3),(5,5)

Number of favourable outcomes = 9

Then,
$$P(E) = \frac{9}{36} = \frac{1}{4}$$

Therefore, the probability of getting a prime number

on each dice is
$$\frac{1}{4}$$
. [1½ Marks]

 (ii) Let F be the event of getting a total of 9 or 11. So, favourable outcomes
 = {(3, 6), (4, 5), (5, 4), (6, 3), (5, 6), (6, 5)}. Number of favourable outcomes = 6

Thus,
$$P(F) = \frac{6}{36} = \frac{1}{6}$$

Hence, the probability of getting a total of 9 or 11 is $\frac{1}{6}$. [1½ Marks]

OR

The possible outcomes of tossing three coins together : {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

- ⇒ Total number of outcomes = 8
- Outcomes of getting exactly two heads
 = {HHT, HTH and THH}
 Favourable number of outcomes = 3

Probability (getting exactly two heads) =

Outcomes of getting at least two heads
 = {HHH, HHT, HTH and THH}
 Favourable number of outcomes = 4

Probability (getting atleast two heads) = $\frac{4}{8} = \frac{1}{2}$ [1 Mark]

(iii) Outcomes of getting at least two tails = {HTT, THT, TTH and TTT} Favourable number of outcomes = 4 Probability (getting atleast two tails) = $\frac{4}{8} = \frac{1}{2}$ [1 Mark]

[1 Mark]

In ΔVO'A and ΔVOC

$$\tan 30^\circ = \frac{OC}{VO} \text{ and } \tan 30^\circ = \frac{O'V}{VO'}$$
$$\frac{1}{\sqrt{3}} = \frac{r_1}{20} \text{ and } \frac{1}{\sqrt{3}} = \frac{r_2}{10}$$
$$r_1 = \frac{20}{\sqrt{3}} \text{ and } r_2 = \frac{10}{\sqrt{3}}$$
Volume of small cone

$$= \pi r_1 h = \frac{22}{7} \times \frac{10}{\sqrt{3}} \times 10$$
$$= \frac{2200}{7\sqrt{3}}$$

Height of cylinder = 2.8 cm =
$$\frac{14}{5}$$
 cm
Radius of cylinder = 2.1 cm = $\frac{21}{10}$ cm
 $l = \sqrt{(2.8)^2 + (2.1)^2} = 3.5$ cm [2 Marks]

OD

According to question a conical cavity of same height and diameter is hollowed out. Now, T.S.A of remaining solid = C.S.A of cone + C.S.A of cylinder + Area of base of cylinder $=2\pi r l + 2\pi r h + \pi r^2$ [1 Mark] $=\pi r [l+2h+r]$ $= \frac{22}{7} \times \frac{21}{10} \left[\frac{7}{2} + \frac{28}{5} + \frac{21}{10} \right] = \frac{22}{10} \times 3 \left[\frac{35 + 56 + 21}{10} \right]$ $=\frac{22}{10}\times 3\times \frac{112}{10}=73.92$ cm² [2 Marks] 34. Given equation is $36x^2 - 12ax + (a^2 - b^2) = 0$ $D = (-12a)^2 - 4(36)(a^2 - b^2) \quad [\because D = b^2 - 4ac][1 \text{ Mark}]$ = 144a² - 144(a² - b²) = 144b² [1 Mark] Now, $=\frac{12a\pm 12b}{72}=\frac{a\pm b}{6}$ [2 Marks] Hence, c = 6[1 Mark] OR The given equation is $x^{2/3} + x^{1/3} - 2 = 0$ Put $x^{1/3} = y$, then $y^2 + y - 2 = 0$ $\Rightarrow y^2 + 2y - y - 2 = 0$ [1 Mark] $\Rightarrow y(y+2)-1(y+2)=0 \Rightarrow (y-1)(y+2)=0$ $\Rightarrow y=1 \text{ or } y=-2$ [1 Mark] $\Rightarrow x^{1/3} = 1$ or $x^{1/3} = -2$ [1 Mark] $\therefore x = (1)^3$ or $x = (-2)^3 = -8$ [1 Mark] Hence, the real roots of the given equations are 1, -8. [1 Mark]

Height	Frequency	c.f.
100-120	12	12
120-140	14	26
140-160	8	34
160-180	6	40
180-200	10	50
Total	50	1

35.

[1 Mark]

[2 Marks]

[2 Marks]

[1 Mark]

Here,
$$N = 50 \Rightarrow \frac{N}{2} = \frac{50}{2} = 25$$
 [1 Mark]

So, Median Class =
$$120 - 140$$

Here, $l = 120$, $h = 20$, $c.f. = 12$, $f = 14$ [1 Mark]

Median =
$$l + \left(\frac{\frac{N}{2} - c.f.}{f}\right) \times h = 120 + \left(\frac{25 - 12}{14}\right) \times 20$$

$$= 120 + \frac{200}{14} = 120 + 18.57$$

Median = 138.57

[2 Marks]

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{3.7}{CD}$$
$$\Rightarrow CD = 3.7\sqrt{3}m$$
 [2 Marks]

 $\sin^2B + \sin^2C = \sin^260^\circ + \sin^230^\circ$

$$=\frac{3}{4}+\frac{1}{4}=1$$
 [2 Marks]

38. (i) Centroid of ∆EHJ with E(2, 1), H(-2, 4) & J(-2, -2) is Coordinates of centroid are

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$
$$\left(\frac{2 + (-2) + (-2)}{3}, \frac{1 + 4 + (-2)}{3}\right) = \left(\frac{-2}{3}, 1\right) \quad [1 \text{ Mark}]$$

(ii) If P needs to be at equal distance from A(3, 6) and G(1, -3), such that A, P and G are collinear, then P will be the mid-point of AG.

So coordinates of P will be
$$\left(\frac{3+1}{2}, \frac{6+(-3)}{2}\right) = \left(2, \frac{3}{2}\right)$$

[1 Mark]

(iii) Let the point on x-axis equidistant from I(-1, 1) and

E(2, 1) be (x, 0) then
$$\sqrt{(x+1)^2 + (0-1)^2}$$

= $\sqrt{(x-2)^2 + (0-1)^2}$
 $x^2 + 1 + 2x + 1 = x^2 + 4 - 4x + 1$
6x = 3
So x = $\frac{1}{2}$
∴ the required point is $\left(\frac{1}{2}, 0\right)$ [2 Marks]
OR

Let the coordinates of the position of a player Q such that his distance from K(-4,1) is twice his distance from E(2,1)be Q(x, y)Then KQ : QE = 2:1

 $Q(x,y) = \left(\frac{2 \times 2 + 1 \times (-4)}{3}, \frac{2 \times 1 + 1 \times 1}{3}\right) = (0,1)[2 \text{ Marks}]$