Chapter : 33. LINEAR PROGRAMMING

Exercise : 33A

Question: 1

Graph the solutio

Solution:

Given $x + y \ge 4$

 \Rightarrow y \geq 4 - x

Consider the equation y = 4 - x.

Finding points on the coordinate axes:

If x = 0, the y value is 4 i.e, y = 4

 \Rightarrow the point on the Y axis is A(0,4)

If y = 0, 0 = 4 - x

 $\Rightarrow x = 4$

The point on the X axis is B(4,0)

Plotting the points on the graph: fig. 1a

Now consider the inequality y \geq 4 - x

Here we need the y value greater than or equal to 4 - \boldsymbol{x}

 \Rightarrow the required region is above point A.

Therefore the graph of the inequation $x + y \ge 4$ is fig. 1b

Question: 2

Graph the solutio

Solution:

Given x - $y \le 3$

 \Rightarrow - y \leq 3 - x

Multiplying by minus on both the sides, we'll get

 $y \ge -3 + x$

 $y \ge x - 3$

Consider the equation y = x - 3.

Finding points on the coordinate axes:

If x = 0, the y value is - 3 i.e, y = -3

 \Rightarrow the point on the Y axis is A(0, - 3)

If y = 0, 0 = x - 3

The point on the X axis is B(3,0)

Plotting the points on the graph: fig. 2a

Now consider the inequality $y \ge x - 3$

Here we need the y value greater than or equal to $x\mbox{ - }3$

 \Rightarrow the required region is above point A.

Therefore the graph of the inequation $x + y \ge 4$ is fig. 2b

Question: 3

Graph the solutio

Solution:

Given x + 2y > 1 $\Rightarrow 2y > 1 - x$

 $\Rightarrow y > \frac{1}{2} - \frac{x}{2}$

Consider the equation $y = \frac{1}{2} - \frac{x}{2}$ Finding points on the coordinate axes: If x = 0, the y value is $\frac{1}{2}$ i.e., y = 4= the point on the Y axis is $A(0, \frac{1}{2})$ If y = 0, x = 1The point on the X axis is B(1,0)Plotting the points on the graph: fig. 3a Now consider the inequality $y > \frac{1}{2} - \frac{x}{2}$ Here we need the y value greater than $\frac{1}{2} - \frac{x}{2}$ = the required region is above point A. Also , the line AB is represented in dotted line. This is s done because $y \neq \frac{1}{2} - \frac{x}{2}$

Question: 4

Graph the solutio

Solution:

Given 2x - 3y < 4

 $\Rightarrow 2x - 4 < 3y$

$$\Rightarrow y > \frac{2}{3}x - \frac{4}{3}x$$

Consider the equation $y = \frac{2}{3}x - \frac{4}{3}$

Finding points on the coordinate axes:

If x = 0, the y value is $\frac{1}{2}$ i.e., y = $-\frac{4}{3}$

⇒ the point on the Y axis is $A(0, -\frac{4}{3})$

If
$$y = 0$$
, $x = 2$

The point on the X axis is B(2,0)

Plotting the points on the graph: fig. 4a

Now consider the inequality $y > \frac{2}{3}x - \frac{4}{3}$

Here we need the y value greater than $\frac{2}{3}\chi - \frac{4}{3}$

 \Rightarrow the required region is above point A.

Also , the line AB is represented in dotted line. This is s done because $y \neq \frac{2}{3}x - \frac{4}{3}$ Therefore the graph of the inequation $y > \frac{2}{3}x - \frac{4}{3}$ is fig. 4b

 \Rightarrow the point on the Y axis is A(0,2)

If y = 0, 0 = x + 2

The point on the X axis is B(- 2,0)

Plotting the points on the graph: fig. 5a

Now consider the inequality $y \le x + 2$

Here we need the y value less than or equal to $x\,+\,2$

 \Rightarrow the required region is below point A.

Therefore the graph of the inequation $x \ge y - 2$ is fig. 5b

Question: 6

Graph the solutio

Solution:

Given y - 2≤3x

 \Rightarrow y \leq 3x + 2

Consider the equation y = 3x + 2

Finding points on the coordinate axes:

If x = 0, the y value is 2 i.e, y = 2

⇒ the point on Y axis is A(0,2)

If
$$y = 0$$
, $0 = 3x + 2$

$$\Rightarrow x = -\frac{3}{2}$$

The point on the X axis is B($-\frac{3}{2},0$)

Plotting the points on the graph: fig. 6a

Now consider the inequality $y \le 3x + 2$

Here we need the y value less than or equal to 3x + 2

 \Rightarrow the required region is below point A.

Therefore the graph of the inequation $y \le 3x + 2$ is fig. 5b

Question: 7

Solve each of the

Solution:

Consider the inequation 2x + y > 1:

 \Rightarrow y>1 - 2x

Consider the equation y = 1 - 2x

Finding points on the coordinate axes:

If x = 0, the y value is 1 i.e, y = 1

 \Rightarrow the point on Y axis is A(0,1)

If y = 0, 0 = x + 2

$$\Rightarrow x = \frac{1}{2}$$

The point on the X axis is $B(\frac{1}{2},0)$

Plotting the points on the graph: fig. 7a

Now consider the inequality y>1 - 2x

Here we need the y value greater than x + 2

 \Rightarrow the required region is below point A.

Therefore the graph of the inequation y>1 - 2x is fig. 7b

 \Rightarrow y \leq 2x - 3

Consider the equation y = 2x - 3

Finding points on the coordinate axes:

If x = 0, the y value is - 3 i.e, y = -3

 \Rightarrow the point on the Y axis is C(0, - 3)

If
$$y = 0$$
, $0 = 2x + 3$

$$\Rightarrow x = \frac{3}{2}$$

The point on the X axis is $D(\frac{3}{2},0)$

Plotting the points on the graph: fig. 7c

Now consider the inequality y≤2x - 3

Here we need the y value less than or equal to $2x\mathchar`-3$

 \Rightarrow the required region is below point C.

Therefore the graph of the inequation $y{\leq}2x$ - 3 is fig. 7d

Combining the graphs 7c and 7d, we'll get,

Question: 8

Solve each of the

Solution:

Consider the inequation x - $2y \ge 0$:

 $\Rightarrow x \ge 2y$

 $\Rightarrow y \leq \frac{x}{2}$

consider the equation $y = \frac{x}{2}$. This equation's graph is a straight line passing through origin.

Here we need the y value less than or equal to $\frac{x}{2}$

 \Rightarrow the required region is below the origin.

Therefore the graph of the inequation $y \leq \frac{x}{2}$ is fig.8a

Fig 8a

Consider the inequation $2x - y \le -2$:

 $\Rightarrow y \ge 2x + 2$

Consider the equation y = 2x + 2

Finding points on the coordinate axes:

If x = 0, the y value is 2 i.e, y = 2

 \Rightarrow the point on the Y axis is A(0,2)

If
$$y = 0$$
, $0 = 2x + 2$

The point on the X axis is B(- 1,0)

Plotting the points on the graph: fig. 8b.

Now consider the inequality $y \ge 2x + 2$

Here we need the y value greater than or equal to 2x + 2

 \Rightarrow the required region is above point A.

Therefore the graph of the inequation $y \ge 2x + 2$ is fig. 8c

Fig 8c

The solution of the system of simultaneous inequations is the intersection region of the solutions of the two given inequations.

Question: 9

Solve each of the

Solution:

Consider the inequation $3x + 4y \ge 12$:

$$\Rightarrow 4y \ge 12 - 3x$$

 $\Rightarrow y \ge 3 - \frac{3}{4}x$

Consider the equation $y = 3 - \frac{3}{4}x$

Finding points on the coordinate axes:

If x = 0, the y value is 3 i.e, y = 3

 \Rightarrow the point on the Y axis is A(0,3)

If y = 0, 0 =
$$3 - \frac{3}{4}x$$

 $\Rightarrow x = 4$

The point on the X axis is B(4,0)

Now consider the inequality $y \ge 3 - \frac{3}{4}x$

Here we need the y value greater than or equal to $y \ge 3 - \frac{3}{4}x$

 \Rightarrow the required region is above point A.

Therefore the graph of the inequation y ≥ 3 - $\frac{3}{4}x$ is fig. 9a

Consider the inequation $4x + 7y \le 28$

 $\Rightarrow 7y \le 28 - 4x$

 \Rightarrow y \leq 4 - $\frac{4}{7}x$

Consider the equation $y = 4 - \frac{4}{7}x$

Finding points on the coordinate axes:

If x = 0, the y value is 4 i.e, y = 4

⇒ the point on the Y axis is C(0,4)

If y = 0, 0 =
$$4 - \frac{4}{7}x$$

 $\Rightarrow x = 7$

The point on the X axis is D(7,0)

Now consider the inequality $y \le 4 - \frac{4}{7}x$

Here we need the y value less than or equal to $4 - \frac{4}{7}x$

 \Rightarrow the required region is below point C.

Therefore the graph of the inequation $y \le 4 - \frac{4}{7}x$ is fig. 9b

 $x \ge 0$ is the region right side of Y - axis.

 $y \geq 1$ is the region above the line y=1

Combining all the above results in a single graph , we'll get

The solution of the system of simultaneous inequations is the intersection region of the solutions of the two given inequations.

Question: 10

Show that the sol

Solution:

Consider the inequation x - $2y \ge 0$:

 $\Rightarrow x \ge 2y$

 $\Rightarrow y \leq \frac{x}{2}$

consider the equation $y = \frac{x}{2}$. This equation's graph is a straight line passing through origin.

Now consider the inequality $y \leq \frac{x}{2}$

Here we need the y value less than or equal to $\frac{x}{2}$

 \Rightarrow the required region is below origin.

Therefore the graph of the inequation $y \leq \frac{x}{2}$ is fig.10a

As they is no common area of intersection , there is no solution for the given set of simultaneous inequations.

Question: 11

Find the linear c

Solution:

Consider A:

Given line x - y = 1

 \Rightarrow y = x - 1

As the region given in the figure is above the y - intercept's coordinates (0, - 1),

 $\Rightarrow y \ge x - 1$

⇒x - y≤1

Consider B:

Given line 2x + y = 2

 \Rightarrow y = 2 - 2x

As the region given in the figure is above the y - intercept's coordinates (0,2),

 \Rightarrow y \ge 2 - 2x

 $\Rightarrow 2x + y \ge 2$

Consider C:

Given line x + 2y = 8

⇒2y = 8 - x

As the region given in the figure is below the y - intercept's coordinates (0,4),

 $=y \le 4 - \frac{x}{2}$ $= 2y \le 8 - x$ $= x + 2y \le 8$ <u>Consider D:</u> It is the region right side of the Y - axis. It is x ≥ 0. <u>All the results derived:</u>

x - y≤1

 $2\mathbf{x}+\mathbf{y}\geq 2$

 $x + 2y \le 8$

 $x \ge 0$

Exercise : 33B

Question: 1

Find the maximum

Solution:

The feasible region determined by the constraints $x\geq 0$, $y\,\geq\,0$,

The corner points of the feasible region is A(0,2),B(2,0),C(3,0).

The values of Z at the following points is

Corner point	Z = 7x + 7y	
A(0,2)	14	
B(2,0)	14	
C(3,0)	21	Maximum

The maximum value of Z is 21 at point C(3,0) .

Question: 1

Find the maximum

Solution:

The feasible region determined by the constraints $x\geq 0$, $y\,\geq\,0$,

 $x+y \geq~\mathbf{2}$, $2x+3y~\leq~6$ is given by

The corner points of the feasible region is A(0,2),B(2,0),C(3,0).

The values of Z at the following points is

Corner point	Z = 7x + 7y	
A(0,2)	14	
B(2,0)	14	
C(3,0)	21	Maximum

The maximum value of Z is 21 at point C(3,0) .

Question: 2

Maximize Z = 4x +

Solution:

The feasible region determined by the constraints x≥0, y≥0, x + 5y \leq 200, 2x + 3y \leq 134 is given by

The corner points of feasible region are A(10,38) , B(0,40) ,C(0,0), D(67,0) . The values of Z at the following points is

Corner Point	Z = 4x + 9y	
A(10,38)	382	Maximum
B(0,40)	360	
C(0,0)	0	
D(67,0)	268	

The maximum value of Z is 382 at point A(10,38) .

Question: 2

Maximize Z = 4x +

Solution:

The feasible region determined by the constraints x≥0, y≥0, x + 5y $_{\leq}$ 200, 2x + 3y $_{\leq}$ 134 is given by

The corner points of feasible region are A(10,38) , B(0,40) ,C(0,0), D(67,0) . The values of Z at the following points is

Corner Point	Z = 4x + 9y	
A(10,38)	382	Maximum
B(0,40)	360	
C(0,0)	0	
D(67,0)	268	

The maximum value of Z is 382 at point A(10,38) .

Question: 3

Find the minimum

Solution:

The feasible region determined by the - 2x + y \leq 4, x + y \geq 3, x - 2y \leq 2, x \geq 0 and y \geq 0 is given by

Here the feasible region is unbounded. The vertices of the region are A(0,4) ,B(0,3) ,C($\frac{8}{3},\frac{1}{3}$). The values of Z at the following points is

Corner Point	Z = 3x + 5y	
A(0,4)	20	
B(0,3)	15	
$C(\frac{8}{3},\frac{1}{3})$	$\frac{29}{3}$	Minimum

The minimum value of Z is $\frac{29}{3}$ at point C($\frac{8}{3}, \frac{1}{3}$).

Question: 3

Find the minimum

Solution:

The feasible region determined by the - 2x + y \leq 4, x + y \geq 3, x - 2y \leq 2, x \geq 0 and y \geq 0 is given by

Here the feasible region is unbounded. The vertices of the region are A(0,4) ,B(0,3) ,C($\frac{8}{3},\frac{1}{3}$). The values of Z at the following points is

Corner Point	Z = 3x + 5y	
A(0,4)	20	
B(0,3)	15	
$C(\frac{8}{3},\frac{1}{3})$	$\frac{29}{3}$	Minimum

The minimum value of Z is $\frac{29}{3}$ at point $C(\frac{8}{3}, \frac{1}{3})$.

Question: 4

Minimize Z = 2x +

Solution:

The feasible region determined by the x $_{\geq}$ 0, y $_{\geq}$ 0, x + 2y $_{\geq}$ 1 and x + 2y $_{\leq}$ 10 is given by

The corner points of the feasible region is A(0, $\frac{1}{2}$), B(0,5), C(10,0), D(1,0).The value of Z at corner points are

Corner Points	Z = 2x + 3y	
$A(0,\frac{1}{2})$	$\frac{3}{2}$	Minimum
B(0,5)	15	
C(10,0)	20	
D(1,0)	2	

The minimum value of Z is $\frac{3}{2}$ at point A(0, $\frac{1}{2}$).

Question: 4

Minimize Z = 2x +

Solution:

The feasible region determined by the x $_{\geq}$ 0, y $_{\geq}$ 0, x + 2y $_{\geq}$ 1 and x + 2y $_{\leq}$ 10 is given by

The corner points of the feasible region is $A(0,\frac{1}{2})$, B(0,5), C(10,0), D(1,0). The value of Z at corner points are

Corner Points	Z = 2x + 3y	
$A(0,\frac{1}{2})$	$\frac{3}{2}$	Minimum
B(0,5)	15	
C(10,0)	20	
D(1,0)	2	

The minimum value of Z is $\frac{3}{2}$ at point A(0, $\frac{1}{2}$).

Question: 5

Maximize Z = 3x +

Solution:

The feasible region determined by the X + 2y $_{\leq}$ 2000, x + y $_{\leq}$ 1500, y $_{\leq}$ 600, x $_{\geq}$ 0 and y $_{\geq}$ 0 is given by

The corner points of the feasible region are A(0,0), B(0,600), C(800,600), D(1000,500), E(1500,0). The value of Z at the corner points are

Corner Point	Z = 3x + 5y	
A(0,0)	0	
B(0,600)	3000	
C(800,600)	5400	
D(1000,500)	5500	Maximum
E(1500,0)	4500	

The maximum value of Z is 5500 at point D(1000,500).

Question: 5

Maximize Z = 3x +

Solution:

The feasible region determined by the X + 2y $_{\leq}$ 2000, x + y $_{\leq}$ 1500, y $_{\leq}$ 600, x $_{\geq}$ 0 and y $_{\geq}$ 0 is given by

The corner points of the feasible region are A(0,0), B(0,600), C(800,600), D(1000,500), E(1500,0). The value of Z at the corner points are

Corner Point	Z = 3x + 5y	
A(0,0)	0	
B(0,600)	3000	
C(800,600)	5400	
D(1000,500)	5500	Maximum
E(1500,0)	4500	

The maximum value of Z is 5500 at point D(1000,500).

Question: 6

Find the maximum

Solution:

The feasible region determined by X + 3y $_{\geq}$ 6, x - 3y $_{\leq}$ 3, 3x + 4y $_{\leq}$ 24,

- $3x + 2y \le 6$, $5x + y \ge 5$, $x \ge 0$ and $y \ge 0$ is given by

The corner points of the feasible region are A(4/3,5) , $B(4/13,45/13),\,C(9/14,25/14)$, D(9/2,1/2) , E(84/13,15/13). The value of Z at corner points are

Corner Point	Z = 2x + y	
A(4/3,5)	23/3	
B(4/13,45/13)	53/13	
C(9/14,25/14)	43/14	Minimum
D(9/2,1/2)	19/2	
E(84/13,15/13)	183/13	Maximum

The maximum and minimum value of Z is 183/13 and 43/14 at points E(84/13, 15/13) and C(9/14, 25/14).

Question: 6

Find the maximum

Solution:

The feasible region determined by X + 3y $_{\geq}$ 6, x - 3y $_{\leq}$ 3, 3x + 4y $_{\leq}$ 24,

- $3x + 2y \le 6$, $5x + y \ge 5$, $x \ge 0$ and $y \ge 0$ is given by

The corner points of the feasible region are A(4/3,5) , $B(4/13,45/13),\,C(9/14,25/14)$, D(9/2,1/2) , E(84/13,15/13).The value of Z at corner points are

Corner Point	Z = 2x + y	
A(4/3,5)	23/3	
B(4/13,45/13)	53/13	
C(9/14,25/14)	43/14	Minimum
D(9/2,1/2)	19/2	
E(84/13,15/13)	183/13	Maximum

The maximum and minimum value of Z is 183/13 and 43/14 at points E(84/13, 15/13) and C(9/14, 25/14).

Question: 7

Mr.Dass wants to

Solution:

Let the invested money in PPF be x and in national bonds be y.

 \therefore According to the question,

 $X + y \le 12000$

 $x \geq$ 1000 , $y \geq$ 2000

Maximize Z = 0.12x + 0.15y

The feasible region determined by X + y \leq 12000 , X \geq 1000 ,

 $y \ge 2000$ is given by

The corner points of the feasible region are A(1000,11000) , B(1000,2000) and C(10000,2000) . The value of Z at the corner point are

Corner Point	Z = 0.12x + 0.15y	
A(1000,11000)	1770	Maximum
B(1000,2000)	420	
C(10000,2000)	1500	

The maximum value of Z is 1770 at point A(1000, 11000).

So, he must invest Rs.1000 in PPF and Rs.11000 in national bonds.

The maximum annual income is $\ensuremath{\mathsf{Rs.1770}}$.

Question: 7

Mr.Dass wants to

Solution:

Let the invested money in PPF be x and in national bonds be y.

 \therefore According to the question,

 $X+y \le \ 12000$

 $x \geq \, 1000$, $y \geq \, 2000$

Maximize Z = 0.12x + 0.15y

The feasible region determined by X + y \leq 12000 , x \geq 1000 ,

 $y \ge 2000$ is given by

The corner points of the feasible region are A(1000,11000) , B(1000,2000) and C(10000,2000) . The value of Z at the corner point are

Corner Point	Z = 0.12x + 0.15y	
A(1000,11000)	1770	Maximum
B(1000,2000)	420	
C(10000,2000)	1500	

The maximum value of Z is 1770 at point A(1000,11000).

So, he must invest Rs.1000 in PPF and Rs.11000 in national bonds.

The maximum annual income is $\ensuremath{\mathsf{Rs.1770}}$.

Question: 8

A small firm manu

Solution:

Let the firm manufacture x number of necklaces and y number of bracelets a day.

 \therefore According to the question,

 $X + y \le 24$, $0.5x + y \le 16$ $x \ge 1$, $y \ge 1$

Maximize Z = 100x + 300y

The feasible region determined by X + y \leq 24 , 0.5x + y \leq 16 , x \geq 1 , y \geq 1 is given by

The corner points of the feasible region are A(1,1), B(1,15.5), C(16,8), D(23,1). The number of bracelets should be whole number. Therefore, considering point (2,15). The value of Z at corner point is

Corner Point	Z = 100x + 300y	
A(1,1)	400	
(2,15)	4700	Maximum
C(16,8)	4000	
D(23,1)	2600	

The maximum value of Z is 4700 at point B(2,15).

 \therefore The firm should make 2 necklaces and 15 bracelets.

Question: 8

A small firm manu

Solution:

Let the firm manufacture x number of necklaces and y number of bracelets a day.

 \therefore According to the question,

 $\mathrm{X}+\mathrm{y} \leq$ 24 , 0.5x + y \leq 16 x \geq 1 , y \geq 1

Maximize Z = 100x + 300y

The feasible region determined by X + y \leq 24 , 0.5x + y \leq 16 , x \geq 1 , y \geq 1 is given by

The corner points of the feasible region are A(1,1), B(1,15.5), C(16,8), D(23,1). The number of bracelets should be whole number. Therefore, considering point (2,15). The value of Z at corner point is

Corner Point	Z = 100x + 300y	
A(1,1)	400	
(2,15)	4700	Maximum
C(16,8)	4000	
D(23,1)	2600	

The maximum value of Z is 4700 at point B(2,15).

 \therefore The firm should make 2 necklaces and 15 bracelets.

Question: 9

A man has ₹

Solution:

Let the number of wheat and rice bags be x and y.

 \therefore According to the question,

 $120x + 180y \le 1500, x + y \le 10, x \ge 0, y \ge 0$

Maximize Z = 8x + 11y

The feasible region determined by $120x + 180y \le 1500$, $x + y \le 10$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,8), B(0,0), C(10,0), D(5,5) .

The value of Z at corner point is
Corner Point	Z = 8x + 11y	
A(0,8)	88	
B(0,0)	0	
C(10,0)	80	
D(5,5)	95	Maximum

The maximum value of Z is 95 at point (5,5).

Hence, the man should 5 bags each of wheat and rice to earn maximum profit.

Question: 9

A man has ₹

Solution:

Let the number of wheat and rice bags be x and y.

 \therefore According to the question,

 $120x + 180y \le 1500, x + y \le 10, x \ge 0, y \ge 0$

Maximize Z = 8x + 11y

The feasible region determined by $120x + 180y \le 1500$, $x + y \le 10$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,8), B(0,0), C(10,0), D(5,5) .

The value of Z at corner point is

Corner Point	Z = 8x + 11y	
A(0,8)	88	
B(0,0)	0	
C(10,0)	80	
D(5,5)	95	Maximum

The maximum value of Z is 95 at point (5,5).

Hence, the man should 5 bags each of wheat and rice to earn maximum profit.

Question: 10

A manufacture pro

Solution:

Let the number of packets of nuts and bolts be x and y respectively.

 \therefore According to the question,

 $X + 3y \le 12, 3x + y \le 12, x \ge 0, y \ge 0$

Maximize Z = 17.50x + 7y

The feasible region determined by X + 3y \leq 12, 3x + y \leq 12, x \geq 0, y \geq 0 is given by

The corner points of the feasible region are A(0,0), B(0,4), C(3,3)), D(4,0). The value of Z at the corner point is

Corner Point	Z = 17.50x + 7y	
A(0,0)	0	
B(0,4)	28	
C(3,3)	73.50	Maximum
D(4,0)	70	

The maximum value of Z is 73.50 at (3,3).

The manufacturer should make 3 packets each of nuts and bolts to make maximum profit of Rs.73.50.

Question: 10

A manufacture pro

Solution:

Let the number of packets of nuts and bolts be x and y respectively.

 \therefore According to the question,

 $X + 3y \le 12, 3x + y \le 12, x \ge 0, y \ge 0$

Maximize Z = 17.50x + 7y

The feasible region determined by $X + 3y \le 12$, $3x + y \le 12$, $x \ge 0$, $y \ge 0$ is given by

The corner points of the feasible region are A(0,0), B(0,4), C(3,3)), D(4,0). The value of Z at the corner point is

Corner Point	Z = 17.50x + 7y	
A(0,0)	0	
B(0,4)	28	
C(3,3)	73.50	Maximum
D(4,0)	70	

The maximum value of Z is 73.50 at (3,3).

The manufacturer should make 3 packets each of nuts and bolts to make maximum profit of Rs.73.50.

Question: 11

Two tailors, A an

Solution:

Let the total number of days tailor A work be x and tailor B be y.

∴According to the question,

 $6x + 10 y \ge 60, 4x + 4y \ge 32, x \ge 0, y \ge 0$

Minimize Z = 300x + 400y

The feasible region determined by $6x + 10 y \ge 60$, $4x + 4y \ge 32$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8), B(5,3), C(10,0). The value of Z at corner point is

Corner Point	Z = 300x + 400y	
A(0,8)	3200	
B(5,3)	2700	Minimum
C(10,0)	3000	

The minimum value of Z is 2700 at point (5,3).

 \therefore Tailor A must work for 5 days and tailor B must work for 3 days for minimum expenses.

Question: 11

Two tailors, A an

Solution:

Let the total number of days tailor A work be x and tailor B be y.

 \therefore According to the question,

 $6x + 10 y \ge 60, 4x + 4y \ge 32, x \ge 0, y \ge 0$

Minimize Z = 300x + 400y

The feasible region determined by $6x + 10 y \ge 60$, $4x + 4y \ge 32$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8), B(5,3), C(10,0). The value of Z at corner point is

Corner Point	Z = 300x + 400y	
A(0,8)	3200	
B(5,3)	2700	Minimum
C(10,0)	3000	

The minimum value of Z is 2700 at point (5,3).

 \therefore Tailor A must work for 5 days and tailor B must work for 3 days for minimum expenses.

Question: 12

A dealer wi

Solution:

Let the number of fans bought be x and sewing machines bought be y.

 \therefore According to the question,

 $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$

Maximize Z = 22x + 18y

The feasible region determined by $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$ is given by

The corner points of the feasible region are A(0,0) , B(0,20), C(8,12) , D(16,0). The value of Z at corner points is

Corner Point	Z = 22x + 18y	
A(0,0)	0	
B(0,20)	360	
C(8,12)	392	Maximum
D(16,0)	352	

The maximum value of Z is 392 at point (8,12).

The dealer must buy 8 fans and 12 sewing machines to make the maximum profit.

Question: 12

A dealer wi

Solution:

Let the number of fans bought be x and sewing machines bought be y.

 \therefore According to the question,

 $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$

Maximize Z = 22x + 18y

The feasible region determined by $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$ is given by

The corner points of the feasible region are A(0,0) , B(0,20), C(8,12) , D(16,0). The value of Z at corner points is

Corner Point	Z = 22x + 18y	
A(0,0)	0	
B(0,20)	360	
C(8,12)	392	Maximum
D(16,0)	352	

The maximum value of Z is 392 at point (8,12).

The dealer must buy 8 fans and 12 sewing machines to make the maximum profit.

Question: 13

A firm manufactur

Solution:

Let the firm manufacture x number of Aand y number of B products.

 \therefore According to the question,

 $X + y \le 400, 2x + y \le 600, x \ge 0, y \ge 0$

Maximize Z = 2x + 2y

The feasible region determined by X + y \leq 400, 2x + y \leq 600, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,400) , C(200,200) , D(300,0). The value of <math display="inline">Z at corner point is

Corner Point	Z = 2x + 2y	
A(0,0)	0	
B(0,400)	800	Maximum
C(200,200)	800	Maximum
D(300,0)	600	

The maximum value of Z is 800 and occurs at two points. Hence the line BC is a feasible solution. The firm should produce 200 number of Aproducts and 200 number of B products.

Question: 13

A firm manufactur

Solution:

Let the firm manufacture x number of Aand y number of B products.

 \therefore According to the question,

 $X + y \le 400, 2x + y \le 600, x \ge 0, y \ge 0$

Maximize Z = 2x + 2y

The feasible region determined by $X + y \le 400$, $2x + y \le 600$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,400) , C(200,200) , D(300,0). The value of Z at corner point is

Corner Point	Z = 2x + 2y	
A(0,0)	0	
B(0,400)	800	Maximum
C(200,200)	800	Maximum
D(300,0)	600	

The maximum value of Z is 800 and occurs at two points. Hence the line BC is a feasible solution. The firm should produce 200 number of Aproducts and 200 number of B products.

Question: 14

A manufactures pr

Solution:

Let x and y be number of soaps be manufactured of 1^{st} and 2^{nd} type.

 \therefore According to the question,

2x + $3y \leq 480$, 3x + $5y \leq 480,$ $x \geq$ 0 , $y \geq$ 0

Maximize Z = 0.25x + 0.50y

The feasible region determined by 2x + $3y \leq 480$, 3x + $5y \leq 480,$ $x \geq$ 0 , $y \geq$ 0 is given by

The corner points of feasible region are A(0,96), B(0,0), C(160,0).

The value of Z at corner points are

Corner Point	Z = 0.25x + 0.50y	
A(0,96)	48	Maximum
B(0,0)	0	
C(160,0)	40	

The maximum value of Z is 48 at point (0,96).

Hence, the manufacturer should make 96 soaps of the 2^{nd} type to make maximum profit.

Question: 14

A manufactures pr

Solution:

Let x and y be number of soaps be manufactured of $1^{\mbox{st}}$ and $2^{\mbox{nd}}$ type.

 \therefore According to the question,

2x + $3y \leq 480$, 3x + $5y \leq 480,$ $x \geq$ 0 , $y \geq$ 0

Maximize Z = 0.25x + 0.50y

The feasible region determined by 2x + $3y \leq 480$, 3x + $5y \leq 480,$ $x \geq$ 0 , $y \geq$ 0 is given by

The corner points of feasible region are A(0,96), B(0,0), C(160,0).

The value of Z at corner points are

Corner Point	Z = 0.25x + 0.50y	
A(0,96)	48	Maximum
B(0,0)	0	
C(160,0)	40	

The maximum value of Z is 48 at point (0,96).

Hence, the manufacturer should make 96 soaps of the 2^{nd} type to make maximum profit.

Question: 15

A manufactu

Solution:

Let x and y be number of bottles of medicines A and B be prepared.

 \therefore According to the question,

x + y ≤ 45000 , 3x + y $\leq 66000,$ x $\leq \ 20000$, y $\leq \ 40000,$ x $\geq \ 0,$ y $\geq \ 0$

Maximize Z = 8x + 7y

The feasible region determined by $x + y \le 45000$, $3x + y \le 66000$, $x \le 20000$, $y \le 40000$, $x \ge 0, y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,40000) , C(5000,40000), D(10500,34500), E(20000,6000), F(20000,0).

The value of Z at corner points are

Corner Point	Z = 8x + 7y	
A(0,0)	0	
B(0,40000)	280000	
C(5000,40000)	320000	
D(10500,34500)	325500	Maximum
E(20000,6000)	202000	
F(20000,0)	160000	

The maximum value of Z is 325500 at point (10500,34500).

Hence, the manufacturer should produce 10500 bottles of medicine A and 34500 bottles of medicine B. $\,$

Question: 15

A manufactu

Solution:

Let x and y be number of bottles of medicines A and B be prepared.

 \therefore According to the question,

 $\mathbf{x}+\mathbf{y} \leq 45000$, $3\mathbf{x}+\mathbf{y} \leq 66000, \, \mathbf{x} \leq \, \mathbf{20000}$, $\mathbf{y} \leq \, \mathbf{40000}, \, x \, \geq \, \mathbf{0}, y \, \geq \, \mathbf{0}$

Maximize Z = 8x + 7y

The feasible region determined by x + y \leq 45000 , 3x + y \leq 66000, x \leq 20000 , y \leq 40000, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,40000) , C(5000,40000), D(10500,34500), E(20000,6000), F(20000,0).

The value of \boldsymbol{Z} at corner points are

Corner Point	Z = 8x + 7y	
A(0,0)	0	
B(0,40000)	280000	
C(5000,40000)	320000	
D(10500,34500)	325500	Maximum
E(20000,6000)	202000	
F(20000,0)	160000	

The maximum value of Z is 325500 at point (10500,34500).

Hence, the manufacturer should produce 10500 bottles of medicine A and 34500 bottles of medicine B. $\,$

Question: 16

A toy compa

Solution:

Let x and y be number of doll A manufactured and doll B manufactured.

 \therefore According to the question,

 $x + y \le 1500, x + 2y \le 2000, y \le 600, x \ge 0, y \ge 0$

Maximize Z = 3x + 5y

The feasible region determined by $x + y \le 1500$, $x + 2y \le 2000$, $y \le 600$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0), B(0,600), C(800,600), D(1000,500), E(1500,0). The value of Z at corner points are

Corner Point	Z = 3x + 5y	
A(0,0)	0	
B(0,600)	3000	
C(800,600)	5400	
D(1000,500)	5500	Maximum
E(1500,0)	4500	

The maximum value of Z is 5500 at point (1000,500).

Hence, the manufacturer should produce 1000 types of doll A and 500 types of doll B to make maximum profit of Rs.5500.

Question: 16

A toy compa

Solution:

Let x and y be number of doll A manufactured and doll B manufactured.

 \therefore According to the question,

 $x + y \le 1500, x + 2y \le 2000, y \le 600, x \ge 0, y \ge 0$

Maximize Z = 3x + 5y

The feasible region determined by $x + y \le 1500$, $x + 2y \le 2000$, $y \le 600$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0), B(0,600), C(800,600), D(1000,500), E(1500,0).

The value of Z at corner points are

Corner Point	Z = 3x + 5y	
A(0,0)	0	
B(0,600)	3000	
C(800,600)	5400	
D(1000,500)	5500	Maximum
E(1500,0)	4500	

The maximum value of Z is 5500 at point (1000,500).

Hence, the manufacturer should produce 1000 types of doll A and 500 types of doll B to make maximum profit of Rs.5500.

Question: 17

A small manufactu

Solution:

Let x and y be number of deluxe article manufactured and ordinary article manufactured.

 \therefore According to the question,

 $2x + y \le 40, 2x + 3y \le 80, x \ge 0, y \ge 0$

Maximize Z = 15x + 10y

The feasible region determined by $2x + y \le 40$, $2x + 3y \le 80$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0), B(0,80/3), C(10,20), D(20,0).

The value of Z at corner points are

Corner Point	Z = 15x + 10y	
A(0,0)	0	
B(0,80/3)	266.67	
C(10,20)	350	Maximum
D(20,0)	300	

The maximum value of Z is 350 at point (10,20).

Hence, the manufacturer should produce 10 types of deluxe article and 20 types of ordinary article to make maximum profit of Rs.350.

Question: 17

A small manufactu

Solution:

Let x and y be number of deluxe article manufactured and ordinary article manufactured.

 \therefore According to the question,

 $2x + y \le 40, 2x + 3y \le 80, x \ge 0, y \ge 0$

Maximize Z = 15x + 10y

The feasible region determined by $2x + y \le 40$, $2x + 3y \le 80$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0), B(0,80/3), C(10,20), D(20,0).

The value of Z at corner points are

Corner Point	Z = 15x + 10y	
A(0,0)	0	
B(0,80/3)	266.67	
C(10,20)	350	Maximum
D(20,0)	300	

The maximum value of Z is 350 at point (10,20).

Hence, the manufacturer should produce 10 types of deluxe article and 20 types of ordinary article to make maximum profit of Rs.350.

Question: 18

A company p

Solution:

Let \boldsymbol{x} and \boldsymbol{y} be number of mixes from suppliers \boldsymbol{X} and $\boldsymbol{Y}.$

 \therefore According to the question,

 $4x + y \ge 80, 2x + y \ge 60, x \ge 0, y \ge 0$

Minimize Z = 10x + 4y

The feasible region determined by $4x + y \ge 80$, $2x + y \ge 60$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded . The corner points of feasible region are A(0,80) , B(10,40) , C(30,0).

The value of Z at corner points are

Corner Point	Z = 10x + 4y	
A(0,80)	320	
B(10,40)	260	Minimum
C(30,0)	300	

The minimum value of Z is 260 at point (10,40).

Hence, the company should buy 10 mixes from supplier X and 40 mixes from supplier Y to minimize the cost.

Question: 18

A company p

Solution:

Let x and y be number of mixes from suppliers X and Y.

 \therefore According to the question,

 $4x + y \ge 80, 2x + y \ge 60, x \ge 0, y \ge 0$

Minimize Z = 10x + 4y

The feasible region determined by $4x + y \ge 80$, $2x + y \ge 60$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded . The corner points of feasible region are A(0,80) , B(10,40) , C(30,0).

The value of Z at corner points are

Corner Point	Z = 10x + 4y	
A(0,80)	320	
B(10,40)	260	Minimum
C(30,0)	300	

The minimum value of Z is 260 at point (10,40).

Hence, the company should buy 10 mixes from supplier X and 40 mixes from supplier Y to minimize the cost.

Question: 19

A small fir

Solution:

Let \boldsymbol{x} and \boldsymbol{y} be number of gold rings and chains.

 \therefore According to the question,

 $x + y \le 24$, $x + 0.5y \le 16$, $x \ge 0$, $y \ge 0$

Maximize Z = 300x + 190y

The feasible region determined by $x + y \le 24$, $x + 0.5y \le 16$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,24) , $C(8,16),\,D(16,0). The value of Z at corner points are$

Corner Point	Z = 300x + 190y	
A(0,0)	0	
B(0,24)	4560	
C(8,16)	5440	Maximum
D(16,0)	4800	

The maximum value of Z is 5440 at point (8,16).

Hence, the firm should manufacture 8 gold rings and 16 gold chains to maximize their profit.

Question: 19

A small fir

Solution:

Let x and y be number of gold rings and chains.

 \therefore According to the question,

 $x + y \le 24$, $x + 0.5y \le 16$, $x \ge 0$, $y \ge 0$

Maximize Z = 300x + 190y

The feasible region determined by $x + y \le 24$, $x + 0.5y \le 16$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,24) , $C(8,16),\,D(16,0). The value of Z at corner points are$

Corner Point	Z = 300x + 190y	
A(0,0)	0	
B(0,24)	4560	
C(8,16)	5440	Maximum
D(16,0)	4800	

The maximum value of Z is 5440 at point (8,16).

Hence, the firm should manufacture 8 gold rings and 16 gold chains to maximize their profit.

Question: 20

A manufactu

Solution:

Let \boldsymbol{x} teapots of type A and \boldsymbol{y} teapots of type B manufactured.

Then,

 $x \ge 0, y \ge 0$ Also, $12x + 6y \le 6 \times 60$ $12x + 6y \le 360$

 $2x + y \le 60....(1)$

And,

 $18x + 0y \le 6 \times 60$ X \le 20.....(2) Also, $6x + 9y \le 6 \times 60$

 $2x+3y\leq 120....(3)$

The profit will be given by: $Z = \frac{75}{100}x + \frac{50}{100}y \Rightarrow Z = \frac{3}{4}x + \frac{1}{2}y$

On plotting the constraints, we get,

Profit will be maximum when x = 30 and y = 15

Hence, Proved.

Question: 20

A manufactu

Solution:

Let x teapots of type A and y teapots of type B manufactured.

Then,

 $x \ge 0, y \ge 0$

Also,

```
12x + 6y \le 6 \times 60
```

```
12x + 6y \le 360
```

```
2x + y \le 60....(1)
```

And,

 $18x + 0y \le 6 \times 60$

 $X \leq 20....(2)$

Also,

 $6x + 9y \le 6 \times 60$

$$2x + 3y \le 120....(3)$$

The profit will be given by: $Z = \frac{75}{100}x + \frac{50}{100}y \Rightarrow Z = \frac{3}{4}x + \frac{1}{2}y$

On plotting the constraints, we get,

Profit will be maximum when x = 30 and y = 15

Hence, Proved.

Question: 21

A manufactu

Solution:

Let x and y be number of A and B products.

 \therefore According to the question,

 $0.5x + y \le 40$, $200x + 300y \ge 10000$, $x \ge 14$, $y \ge 16$

Maximize Z = 20x + 30y

The feasible region determined by 0.5x + y \leq 40 , 200x + 300y \geq 10000, x \geq 14, y \geq 16 is given by

The corner points of feasible region are A(14,33) , B(14,24) , $C(26,16),\,D(48,16). The value of Z at corner points are$

Corner Point	Z = 20x + 30y	
A(14,33)	1270	
B(14,24)	1000	
C(26,16)	1000	
D(48,16)	1440	Maximum

The maximum value of Z is 1440 at point (48,16).

Hence, the manufacturer should manufacture 48 A products and 16 B products to maximize their profit of Rs.1440.

Question: 21

A manufactu

Solution:

Let x and y be number of A and B products.

 \therefore According to the question,

 $0.5x + y \le 40$, $200x + 300y \ge 10000$, $x \ge 14$, $y \ge 16$

Maximize Z = 20x + 30y

The feasible region determined by 0.5x + y \leq 40 , 200x + 300y \geq 10000, x \geq 14, y \geq 16 is given by

The corner points of feasible region are A(14,33) , B(14,24) , $C(26,16),\,D(48,16). The value of Z at corner points are$

Corner Point	Z = 20x + 30y	
A(14,33)	1270	
B(14,24)	1000	
C(26,16)	1000	
D(48,16)	1440	Maximum

The maximum value of Z is 1440 at point (48,16).

Hence, the manufacturer should manufacture 48 A products and 16 B products to maximize their profit of Rs.1440.

Question: 22

A man owns a fiel

Solution:

Let x and y be number of A and B trees.

 \therefore According to the question,

 $20x + 25y \le 1400$, $10x + 20y \le 1000$, $x \ge 0$, $y \ge 0$

Maximize Z = 40x + 60y

The feasible region determined by 20x + 25y ≤ 1400 , 10x + 20y $\leq 1000, x \geq 0, y \geq 0$ is given by

The corner points of feasible region are A(0,0) , B(0,50) , $C(20,40),\,D(70,0). The value of Z at corner points are$

Corner Point	Z = 40x + 60y	
A(0,0)	0	
B(0,50)	3000	
C(20,40)	3200	Maximum
D(70,0)	2800	

The maximum value of Z is 3200 at point (20,40).

Hence, the man should plant 20 A trees and 40 B trees to make maximum profit of Rs.3200.

Question: 22

A man owns a fiel

Solution:

Let x and y be number of A and B trees.

 \therefore According to the question,

 $20x + 25y \le 1400$, $10x + 20y \le 1000$, $x \ge 0$, $y \ge 0$

Maximize Z = 40x + 60y

The feasible region determined by 20x + 25y ≤ 1400 , 10x + 20y $\leq 1000, x \geq 0, y \geq 0$ is given by

The corner points of feasible region are A(0,0) , B(0,50) , $C(20,40),\,D(70,0). The value of Z at corner points are$

Corner Point	Z = 40x + 60y	
A(0,0)	0	
B(0,50)	3000	
C(20,40)	3200	Maximum
D(70,0)	2800	

The maximum value of Z is 3200 at point (20,40).

Hence, the man should plant 20 A trees and 40 B trees to make maximum profit of Rs.3200.

Question: 23

A publisher

Solution:

Let x and y be number of hardcover and paperback edition of the book.

 \therefore According to the question,

 $5x + 5y \le 4800$, $10x + 2y \le 4800$, $x \ge 0, y \ge 0$

Maximize Z = (72x + 40y) - (56x + 28y + 9600)

= 16x + 12y - 9600

The feasible region determined by $5x + 5y \le 4800$, $10x + 2y \le 4800$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,960) , $C(360,600),\,D(480,0).The value of Z at corner points are$

Corner Point	Z = 16x + 12y - 9600	
A(0,0)	0	
B(0,960)	1920	
C(360,600)	3360	Maximum
D(480,0)	- 1920	

The maximum value of Z is 3360 at point (360,600).

Hence, the publisher should publish 360 hardcover edition and 600 and paperback edition of the book to earn maximum profit of Rs.3360.

Question: 23

A publisher

Solution:

Let x and y be number of hardcover and paperback edition of the book.

 \therefore According to the question,

 $5x + 5y \le 4800$, $10x + 2y \le 4800$, $x \ge 0, y \ge 0$

Maximize Z = (72x + 40y) - (56x + 28y + 9600)

= 16x + 12y - 9600

The feasible region determined by $5x + 5y \le 4800$, $10x + 2y \le 4800$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,960) , $C(360,600),\,D(480,0).The value of Z at corner points are$

Corner Point	Z = 16x + 12y - 9600	
A(0,0)	0	
B(0,960)	1920	
C(360,600)	3360	Maximum
D(480,0)	- 1920	

The maximum value of Z is 3360 at point (360,600).

Hence, the publisher should publish 360 hardcover edition and 600 and paperback edition of the book to earn maximum profit of Rs.3360.

Question: 24

A gardener

Solution:

Let x and y be number of kilograms of fertilizer I and II

 \therefore According to the question,

 $0.10x + 0.05y \ge 14$, $0.06x + 0.10y \ge 14$, $x \ge 0$, $y \ge 0$

Minimize Z = 0.60x + 0.40y

The feasible region determined by $0.10x+0.05y\geq 14$, $0.06x+0.10y\geq 14, x\geq 0, y\geq 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,280), B(100,80), C(700/3,0). The value of Z at corner points are

Corner Point	Z = 0.60x + 0.40y	
A(0,280)	112	
B(100,80)	92	Minimum
C(700/3,0)	140	

The minimum value of Z is 92 at point (100,80).

Hence, the gardener should by 100 kilograms o fertilizer I and 80 kg of fertilizer II to minimize the cost which is Rs.92.

Question: 24

A gardener

Solution:

Let x and y be number of kilograms of fertilizer I and II

 \therefore According to the question,

 $0.10x + 0.05y \ge 14$, $0.06x + 0.10y \ge 14$, $x \ge 0$, $y \ge 0$

Minimize Z = 0.60x + 0.40y

The feasible region determined by $0.10x+0.05y\geq 14$, $0.06x+0.10y\geq 14, x\geq 0, y\geq 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,280) , B(100,80) , C(700/3,0). The value of Z at corner points are

Corner Point	Z = 0.60x + 0.40y	
A(0,280)	112	
B(100,80)	92	Minimum
C(700/3,0)	140	

The minimum value of Z is 92 at point (100,80).

Hence, the gardener should by 100 kilograms o fertilizer I and 80 kg of fertilizer II to minimize the cost which is Rs.92.

Question: 25

Two godowns

Solution:

Let x quintals of supplies be transported from A to D and y quintals be transported from A to E.

Therefore, 100 - (x + y) will be transported to F.

Also, (60 - x) quintals, (50 - y) quintals and (40 - (100 - (x + y))) quintals will be transported to D, E, F by godown B.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 100, x \le 60, y \le 50, x + y \ge 60$

Minimize Z = 6x + 4(60 - x) + 3y + 2(50 - y) + 2.50(100 - (x + y)) + 3((x + y) - 60)

Z = 6x + 240 - 4x + 3y + 100 - 2y + 250 - 2.5x - 2.5y + 3x + 3y - 180

Z = 2.5x + 1.5y + 210

The feasible region represented by x \geq 0, y \geq 0, x + y \leq 100, x \leq 60, y \leq 50, x + y \geq 60 is given by

Corner Point	Z = 2.5x + 1.5y + 210	
A(10,50)	310	Minimum
B(50,50)	410	
C(60,40)	420	
D(60,0)	360	

The minimum value of Z is 310 at point (10,50).

Hence, 10, 50, 40 quintals of supplies should be transported from A to D, E, F and 50, 0, 0 quintals of supplies should be transported from B to D, E, F.

Question: 25

Two godowns

Solution:

Let x quintals of supplies be transported from A to D and y quintals be transported from A to E.

Therefore, 100 - (x + y) will be transported to F.

Also, (60 - x) quintals, (50 - y) quintals and (40 - (100 - (x + y))) quintals will be transported to D, E, F by godown B.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 100, x \le 60, y \le 50, x + y \ge 60$

Minimize Z = 6x + 4(60 - x) + 3y + 2(50 - y) + 2.50(100 - (x + y)) + 3((x + y) - 60)

Z = 6x + 240 - 4x + 3y + 100 - 2y + 250 - 2.5x - 2.5y + 3x + 3y - 180

Z = 2.5x + 1.5y + 210

The feasible region represented by $x \ge 0, y \ge 0, x + y \le 100, x \le 60, y \le 50, x + y \ge 60$ is given by

The corner points of feasible region are A(10,50), B(50,50), C(60,40), D(60,0)

Corner Point	Z = 2.5x + 1.5y + 210	
A(10,50)	310	Minimum
B(50,50)	410	
C(60,40)	420	
D(60,0)	360	

The minimum value of Z is 310 at point (10,50).

Hence, 10, 50, 40 quintals of supplies should be transported from A to D, E, F and 50, 0, 0 quintals of supplies should be transported from B to D, E, F.

Question: 26

A brick man

Solution:

Let x bricks be transported from P to A and y bricks be transported from P to B.

Therefore, 30000 - (x + y) will be transported to C.

Also, (15000 - x) bricks, (20000 - y) bricks and (15000 - (30000 - (x + y))) bricks will be transported to A, B, C from Q.

∴According to the question,

 $x \ge 0, y \ge 0, x + y \le 30000, x \le 15000, y \le 20000, x + y \ge 15000$

Minimize Z = 0.04x + 0.02(15000 - x) + 0.02y + 0.06(20000 - y) + 0.03(30000 - (x + y)) + 0.04((x + y) - 15000)

Z = 0.03x - 0.03y + 1800

The feasible region represented by x $\geq 0, y \geq 0, x + y \leq 30000, x \leq 15000, y \leq 20000, x + y \geq 15000$ is given by

The corner points of feasible region are A(0,15000) , B(0,20000) , C(10000,20000) , $D(15000,15000), \, E(15000,0).$

Corner Point	Z = 0.03x - 0.03y + 1800	
A(0,15000)	1350	
B(0,20000)	1200	Minimum
C(10000,20000)	1500	
D(15000,15000)	1800	
E(15000,0)	2250	

The minimum value of Z is 1200 at point (0,20000).

Hence, 0, 20000, 10000 bricks should be transported from P to A, B, C and 15000, 0, 5000 bricks should be transported from Q to A, B, C.

Question: 26

A brick man

Solution:

Let x bricks be transported from P to A and y bricks be transported from P to B.

Therefore, 30000 - (x + y) will be transported to C.

Also, (15000 - x) bricks, (20000 - y) bricks and (15000 - (30000 - (x + y))) bricks will be transported to A, B, C from Q.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 30000, x \le 15000, y \le 20000, x + y \ge 15000$

Minimize Z = 0.04x + 0.02(15000 - x) + 0.02y + 0.06(20000 - y) + 0.03(30000 - (x + y)) + 0.04((x + y) - 15000)

Z = 0.03x - 0.03y + 1800

The feasible region represented by x $\ge 0, y \ge 0, x + y \le 30000, x \le 15000, y \le 20000, x + y \ge 15000$ is given by

The corner points of feasible region are A(0,15000) , B(0,20000) , C(10000,20000) , $D(15000,15000), \, E(15000,0).$

Corner Point	Z = 0.03x - 0.03y + 1800	
A(0,15000)	1350	
B(0,20000)	1200	Minimum
C(10000,20000)	1500	
D(15000,15000)	1800	
E(15000,0)	2250	

The minimum value of Z is 1200 at point (0,20000).

Hence, 0, 20000, 10000 bricks should be transported from P to A, B, C and 15000, 0, 5000 bricks should be transported from Q to A, B, C.

Question: 27

A medicine

Solution:

Let x packets of medicines be transported from X to P and y packets of medicines be transported
from X to Q.

Therefore, 60 - (x + y) will be transported to R.

Also, (40 - x) packets, (40 - y) packets and (50 - (60 - (x + y))) packets will be transported to P, Q, R from Y.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 60, x \le 40, y \le 40, x + y \ge 10$

Minimize Z = 5x + 4(40 - x) + 4y + 2(40 - y) + 3(60 - (x + y)) + 5((x + y) - 10)

Z = 3x + 4y + 370

The feasible region represented by x \geq 0, y \geq 0, x + y \leq 60, x \leq 40, y \leq 40, x + y \geq 10 is given by

The corner points of feasible region are A(0,10), B(0,40), C(20,40), D(40,20), E(10,0).

Corner Point	Z = 3x + 4y + 370	
A(0,10)	410	
B(0,40)	530	
C(20,40)	590	
D(40,20)	570	
E(10,0)	400	Minimum

The minimum value of Z is 40 at point (10,0).

Hence, 10, 0, 50 packets of medicines should be transported from X to P, Q, R and 30, 40, 0 packets of medicines should be transported from Y to P, Q, R.

Question: 27

A medicine

Solution:

Let \boldsymbol{x} packets of medicines be transported from \boldsymbol{X} to \boldsymbol{P} and \boldsymbol{y} packets of medicines be transported from \boldsymbol{X} to $\boldsymbol{Q}.$

Therefore, 60 - (x + y) will be transported to R.

Also, (40 - x) packets, (40 - y) packets and (50 - (60 - (x + y))) packets will be transported to P, Q, R from Y.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 60, x \le 40, y \le 40, x + y \ge 10$

Minimize Z = 5x + 4(40 - x) + 4y + 2(40 - y) + 3(60 - (x + y)) + 5((x + y) - 10)

Z = 3x + 4y + 370

The feasible region represented by x \geq 0, y \geq 0, x + y \leq 60, x \leq 40, y \leq 40, x + y \geq 10 is given by

The corner points of feasible region are A(0,10), B(0,40), C(20,40), D(40,20), E(10,0).

Corner Point	Z = 3x + 4y + 370	
A(0,10)	410	
B(0,40)	530	
C(20,40)	590	
D(40,20)	570	
E(10,0)	400	Minimum

The minimum value of Z is 40 at point (10,0).

Hence, 10, 0, 50 packets of medicines should be transported from X to P, Q, R and 30, 40, 0 packets of medicines should be transported from Y to P, Q, R.

Question: 28

An oil comp

Solution:

Let x liters of petrol be transported from A to D and y liters of petrol be transported from A to E.

Therefore, 7000 - (x + y) will be transported to F.

Also, (4500 - x) liters of petrol, (3000 - y) liters of petrol and (3500 - (7000 - (x + y))) liters of petrol will be transported to D, E, F by B.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 7000, x \le 4500, y \le 3000, x + y \ge 3500$

Minimize Z = 7x + 3(4500 - x) + 6y + 4(3000 - y) + 3(7000 - (x + y)) + 2((x + y) - 3500)

Z = 3x + y + 39500

The feasible region represented by x

 $\geq 0, y \geq 0, x + y \leq 7000, x \leq 4500, y \leq 3000, x + y \geq 3500$ is given by

The corner points of feasible region are A(500,3000) , B(4000,3000) , C(4500,2500) , D(4500,0) , E(3500,0)

Corner Point	Z = 3x + y + 39500	
A(500,3000)	44000	Minimum
B(4000,3000)	54500	
C(4500,2500)	55500	
D(4500,0)	53000	
E(3500,0)	50000	

The minimum value of Z is 44000 at point (500,3000).

Hence, 500,3000,3500 liters of petrol should be transported from A to D, E, F and 4000, 0, 0 liters of petrol should be transported from B to D, E, F.

Question: 28

An oil comp

Solution:

Let x liters of petrol be transported from A to D and y liters of petrol be transported from A to E.

Therefore, 7000 - (x + y) will be transported to F.

Also, (4500 - x) liters of petrol, (3000 - y) liters of petrol and (3500 - (7000 - (x + y))) liters of petrol will be transported to D, E, F by B.

 \therefore According to the question,

 $x \ge 0, y \ge 0, x + y \le 7000, x \le 4500, y \le 3000, x + y \ge 3500$

Minimize Z = 7x + 3(4500 - x) + 6y + 4(3000 - y) + 3(7000 - (x + y)) + 2 ((x + y) - 3500)

Z = 3x + y + 39500

The feasible region represented by x $\ge 0, y \ge 0, x + y \le 7000, x \le 4500, y \le 3000, x + y \ge 3500$ is given by

The corner points of feasible region are A(500,3000) , B(4000,3000) , C(4500,2500) , D(4500,0) , E(3500,0)

Corner Point	Z = 3x + y + 39500	
A(500,3000)	44000	Minimum
B(4000,3000)	54500	
C(4500,2500)	55500	
D(4500,0)	53000	
E(3500,0)	50000	

The minimum value of Z is 44000 at point (500,3000).

Hence, 500,3000,3500 liters of petrol should be transported from A to D, E, F and 4000, 0, 0 liters of petrol should be transported from B to D, E, F.

Question: 29

A firm is e

Solution:

Let x and y be number of units of products of A and B.

 \therefore According to the question,

 $36x + 6y \ge 108$, $3x + 12y \ge 36$, $20x + 10y \ge 100$, $x \ge 0$, $y \ge 0$

Minimize Z = 20x + 40y

The feasible region determined $36x + 6y \ge 108$, $3x + 12y \ge 36, 20x + 10y \ge 100, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,18) , B(2,6) , C(4,2) , D(12,0). The value of Z at corner points are

Corner Point	Z = 20x + 40y	
A(0,18)	720	
B(2,6)	280	
C(4,2)	160	Minimum
D(12,0)	240	

The minimum value of Z is 160 at point (4,2).

Hence, the firm should buy 4 units of fertilizer A and 2 units of fertilizer B to achieve minimum expense of Rs.160.

Question: 29

A firm is e

Solution:

Let x and y be number of units of products of A and B.

 \therefore According to the question,

 $36x + 6y \ge 108$, $3x + 12y \ge 36$, $20x + 10y \ge 100$, $x \ge 0$, $y \ge 0$

Minimize Z = 20x + 40y

The feasible region determined $36x + 6y \ge 108$, $3x + 12y \ge 36, 20x + 10y \ge 100, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,18) , B(2,6) , C(4,2) , D(12,0). The value of Z at corner points are

Corner Point	Z = 20x + 40y	
A(0,18)	720	
B(2,6)	280	
C(4,2)	160	Minimum
D(12,0)	240	

The minimum value of Z is 160 at point (4,2).

Hence, the firm should buy 4 units of fertilizer A and 2 units of fertilizer B to achieve minimum expense of Rs.160.

Question: 30

A dietician

Solution:

Let x and y be number of units of X and Y.

 \therefore According to the question,

 $2x + y \ge 8$, $x + 2y \ge 10$, $x \ge 0$, $y \ge 0$

Minimize Z = 5x + 7y

The feasible region determined $2x + y \ge 8$, $x + 2y \ge 10$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8) , B(2,4) , C(10,0). The value of Z at corner points are

Corner Point	Z = 5x + 7y	
A(0,8)	56	
B(2,4)	38	Minimum
C(10,0)	50	

The minimum value of Z is 160 at point (4,2).

Hence, the dietician should mix 2 units of X and 4 units of Y to meet the requirements at minimum cost of Rs.38.

Question: 30

A dietician

Solution:

Let x and y be number of units of X and Y.

∴According to the question,

 $2x + y \ge 8$, $x + 2y \ge 10$, $x \ge 0$, $y \ge 0$

Minimize Z = 5x + 7y

The feasible region determined $2x + y \ge 8$, $x + 2y \ge 10$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8) , B(2,4) , C(10,0). The value of Z at corner points are

Corner Point	Z = 5x + 7y	
A(0,8)	56	
B(2,4)	38	Minimum
C(10,0)	50	

The minimum value of Z is 160 at point (4,2).

Hence, the dietician should mix 2 units of X and 4 units of Y to meet the requirements at minimum cost of Rs.38.

Question: 31

A diet for

Solution:

Let x and y be number of units of food A and B.

 \therefore According to the question,

 $200x + 100y \ge 4000$, $x + 2y \ge 50,40x + 40y \ge 1400, x \ge 0, y \ge 0$

Minimize Z = 4x + 3y

The feasible region determined $200x + 100y \ge 4000$, $x + 2y \ge 50,40x + 40y \ge 1400, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,40) , B(5,30) , C(20,15) , D(50,0).The value of Z at corner points are

Corner Point	Z = 4x + 3y	
A(0,40)	120	
B(5,30)	110	Minimum
C(20,15)	125	
D(50,0)	200	

The minimum value of Z is 110 at point (5,30).

Hence, the diet should contain 5 units of food A and 30 units of food B for the least cost.

Question: 31

A diet for

Solution:

Let x and y be number of units of food A and B.

 \therefore According to the question,

 $200x + 100y \ge 4000$, $x + 2y \ge 50,40x + 40y \ge 1400$, $x \ge 0, y \ge 0$

Minimize Z = 4x + 3y

The feasible region determined $200x + 100y \ge 4000$, $x + 2y \ge 50,40x + 40y \ge 1400, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,40) , B(5,30) , C(20,15) , D(50,0).The value of Z at corner points are

Corner Point	Z = 4x + 3y	
A(0,40)	120	
B(5,30)	110	Minimum
C(20,15)	125	
D(50,0)	200	

The minimum value of Z is 110 at point (5,30).

Hence, the diet should contain 5 units of food A and 30 units of food B for the least cost.

Question: 32

A housewife

Solution:

Let x and y be number of kilograms of food X and Y.

 \therefore According to the question,

 $x + 2y \ge 10$, $2x + 2y \ge 12, 3x + y \ge 8, x \ge 0, y \ge 0$

Minimize Z = 6x + 10y

The feasible region determined $x + 2y \ge 10$, $2x + 2y \ge 12, 3x + y \ge 8, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8) , B(1,5) , C(2,4) , D(10,0).The value of Z at corner points are

Corner Point	Z = 6x + 10y	
A(0,8)	80	
B(1,5)	56	
C(2,4)	52	Minimum
D(10,0)	60	

The minimum value of Z is 52 at point (2,4).

Hence, the diet should contain 2 kgs of food X and 4 kgs of food Y for the least cost of Rs. 52.

Question: 32

A housewife

Solution:

Let x and y be number of kilograms of food X and Y.

 \therefore According to the question,

 $x + 2y \ge 10$, $2x + 2y \ge 12, 3x + y \ge 8, x \ge 0, y \ge 0$

Minimize Z = 6x + 10y

The feasible region determined $x + 2y \ge 10$, $2x + 2y \ge 12, 3x + y \ge 8, x \ge 0, y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,8) , B(1,5) , C(2,4) , D(10,0).The value of Z at corner points are

Corner Point	Z = 6x + 10y	
A(0,8)	80	
B(1,5)	56	
C(2,4)	52	Minimum
D(10,0)	60	

The minimum value of Z is 52 at point (2,4).

Hence, the diet should contain 2 kgs of food X and 4 kgs of food Y for the least cost of Rs. 52.

Question: 33

A firm manu

Solution:

Let the firm manufacture x number of Aand y number of B products.

 \therefore According to the question,

 $X + y \le 300, 2x + y \le 360, x \ge 0, y \ge 0$

Maximize Z = 5x + 3y

The feasible region determined X + y \leq 300, 2x + y \leq 360, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,300) , C(60,240) , D(180,0). The value of Z at corner point is

Corner Point	Z = 5x + 3y	
A(0,0)	0	
B(0,300)	900	
C(60,240)	1020	Maximum
D(180,0)	900	

The maximum value of Z is 1020 and occurs at point (60, 240).

The firm should produce 60 Aproducts and 240 B products to earn maximum profit of Rs.1020.

Question: 33

A firm manu

Solution:

Let the firm manufacture x number of Aand y number of B products.

 \therefore According to the question,

 $X + y \le 300, 2x + y \le 360, x \ge 0, y \ge 0$

Maximize Z = 5x + 3y

The feasible region determined X + y \leq 300, 2x + y \leq 360, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,300) , C(60,240) , D(180,0). The value of Z at corner point is

Corner Point	Z = 5x + 3y	
A(0,0)	0	
B(0,300)	900	
C(60,240)	1020	Maximum
D(180,0)	900	

The maximum value of Z is 1020 and occurs at point (60, 240).

The firm should produce 60 Aproducts and 240 B products to earn maximum profit of Rs.1020.

Question: 34

A small fir

Solution:

Let the firm manufacture x number of A and y number of B products.

 \therefore According to the question,

 $X + y \le 24, x + 0.5y \le 16, x \ge 0, y \ge 0$

Maximize Z = 300x + 160y

The feasible region determined X + y ≤ 24 , x + 0.5y ≤ 16 , x ≥ 0 , y ≥ 0 is given by

The corner points of feasible region are A(0,0) , B(0,24) , C(8,16) , D(16,0).The value of Z at corner point is

Corner Point	Z = 300x + 160y	
A(0,0)	0	
B(0,24)	3840	
C(8,16)	4960	Maximum
D(16,0)	4800	

The maximum value of Z is 4960 and occurs at point (8,16).

The firm should produce 8 Aproducts and 16 B products to earn maximum profit of Rs.4960.

Question: 34

A small fir

Solution:

Let the firm manufacture x number of A and y number of B products.

 \therefore According to the question,

 $X + y \le 24, x + 0.5y \le 16, x \ge 0, y \ge 0$

Maximize Z = 300x + 160y

The feasible region determined X + y ≤ 24 , x + 0.5y ≤ 16 , x ≥ 0 , y ≥ 0 is given by

The corner points of feasible region are A(0,0) , B(0,24) , C(8,16) , D(16,0).The value of Z at corner point is

Corner Point	Z = 300x + 160y	
A(0,0)	0	
B(0,24)	3840	
C(8,16)	4960	Maximum
D(16,0)	4800	

The maximum value of Z is 4960 and occurs at point (8,16).

The firm should produce 8 Aproducts and 16 B products to earn maximum profit of Rs.4960.

Question: 35

A manufactu

Solution:

Let the manufacturer manufacture \boldsymbol{x} and \boldsymbol{y} numbers of type 1 and type 2trunks.

 \therefore According to the question,

 $3X + 3y \le 18, 3x + 2y \le 15, x \ge 0, y \ge 0$

Maximize Z = 30x + 25y

The feasible region determined $3X + 3y \le 18$, $3x + 2y \le 15$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,6) , C(3,3) , D(5,0). The value of <math display="inline">Z at corner point is

Corner Point	Z = 30x + 25y	
A(0,0)	0	
B(0,6)	150	
C(3,3)	165	Maximum
D(5,0)	150	

The maximum value of Z is 165 and occurs at point (3,3).

The manufacturer should manufacture 3 trunks of each type to earn maximum profit of Rs.165.

Question: 35

A manufactu

Solution:

Let the manufacturer manufacture \boldsymbol{x} and \boldsymbol{y} numbers of type 1 and type 2trunks.

 \therefore According to the question,

 $3X + 3y \le 18, 3x + 2y \le 15, x \ge 0, y \ge 0$

Maximize Z = 30x + 25y

The feasible region determined $3X + 3y \le 18$, $3x + 2y \le 15$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,6) , C(3,3) , D(5,0). The value of <math display="inline">Z at corner point is

Corner Point	Z = 30x + 25y	
A(0,0)	0	
B(0,6)	150	
C(3,3)	165	Maximum
D(5,0)	150	

The maximum value of Z is 165 and occurs at point (3,3).

The manufacturer should manufacture 3 trunks of each type to earn maximum profit of Rs.165.

Question: 36

A company m

Solution:

Let the company manufacture x and y numbers of toys A and B.

 \therefore According to the question,

 $5X + 8y \le 180, 10x + 8y \le 240, x \ge 0, y \ge 0$

Maximize Z = 50x + 60y

The feasible region determined 5X + 8y \leq 180,10 x + 8y \leq 240, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,22.5) , C(12,15) , D(24,0). The value of Z at corner point is

Corner Point	Z = 50x + 60y	
A(0,0)	0	
B(0,22.5)	1350	
C(12,15)	1500	Maximum
D(24,0)	1200	

The maximum value of Z is1500 and occurs at point (12,15).

The company should manufacture 12 A toys and 15 B toys to earn profit of rupees 1500.

Question: 36

A company m

Solution:

Let the company manufacture x and y numbers of toys A and B.

 \therefore According to the question,

 $5X + 8y \le 180, 10x + 8y \le 240, x \ge 0, y \ge 0$

Maximize Z = 50x + 60y

The feasible region determined 5X + 8y \leq 180,10 x + 8y \leq 240, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,22.5) , C(12,15) , D(24,0). The value of Z at corner point is

Corner Point	Z = 50x + 60y	
A(0,0)	0	
B(0,22.5)	1350	
C(12,15)	1500	Maximum
D(24,0)	1200	

The maximum value of Z is1500 and occurs at point (12,15).

The company should manufacture 12 A toys and 15 B toys to earn profit of rupees 1500.

Question: 37

Kellogg is

Solution:

Let x and y be number of kilograms of bran and rice.

 \therefore According to the question,

 $80x + 100y \ge 88$, $40x + 30y \ge 36$, $x \ge 0$, $y \ge 0$

Minimize Z = 5x + 4y

The feasible region determined $80x + 100y \ge 88$, $40x + 30y \ge 36$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,1.2) , B(0.6,0.4) , C(1.1,0). The value of Z at corner points are

Corner Point	Z = 5x + 4y	
A(0,1.2)	4.8	
B(0.6,0.4)	4.6	Minimum
C(1.1,0)	5.5	

The minimum value of Z is 4.6 at point (0.6, 0.4).

Hence, the diet should contain 0.6 kgs of bran and 0.4 kgs of rice for achieving minimum cost of Rs.4.6.

Question: 37

Kellogg is

Solution:

Let x and y be number of kilograms of bran and rice.

 \therefore According to the question,

 $80x + 100y \ge 88$, $40x + 30y \ge 36$, $x \ge 0$, $y \ge 0$

Minimize Z = 5x + 4y

The feasible region determined $80x + 100y \ge 88$, $40x + 30y \ge 36$, $x \ge 0$, $y \ge 0$ is given by

The feasible region is unbounded. The corner points of feasible region are A(0,1.2) , B(0.6,0.4) , C(1.1,0). The value of Z at corner points are

Corner Point	Z = 5x + 4y	
A(0,1.2)	4.8	
B(0.6,0.4)	4.6	Minimum
C(1.1,0)	5.5	

The minimum value of Z is 4.6 at point (0.6, 0.4).

Hence, the diet should contain 0.6 kgs of bran and 0.4 kgs of rice for achieving minimum cost of Rs.4.6.

Question: 38

A dealer wi

Solution:

Let the number of fans bought be x and sewing machines bought be y.

 \therefore According to the question,

 $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$

Maximize Z = 22x + 18y

The feasible region determined by $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$ is given by

The corner points of the feasible region are A(0,0) , B(0,20), C(8,12) , D(16,0). The value of Z at corner points is

Corner Point	Z = 22x + 18y	
A(0,0)	0	
B(0,20)	360	
C(8,12)	392	Maximum
D(16,0)	352	

The maximum value of Z is 392 at point (8,12).

The dealer must buy 8 fans and 12 sewing machines to make the maximum profit.

Question: 38

A dealer wi

Solution:

Let the number of fans bought be x and sewing machines bought be y.

 \therefore According to the question,

 $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$

Maximize Z = 22x + 18y

The feasible region determined by $360x + 240y \le 5760, x + y \le 20, x \ge 0, y \ge 0$ is given by

The corner points of the feasible region are A(0,0) , B(0,20), C(8,12) , D(16,0). The value of Z at corner points is

Corner Point	Z = 22x + 18y	
A(0,0)	0	
B(0,20)	360	
C(8,12)	392	Maximum
D(16,0)	352	

The maximum value of Z is 392 at point (8,12).

The dealer must buy 8 fans and 12 sewing machines to make the maximum profit.

Question: 39

Anil wants

Solution:

Let the invested money in bond A be x and in bond B be y.

 \therefore According to the question,

 $X+y \leq \, 12000$, $x \geq \, 2000$, $y \geq \, 4000$

Maximize Z = 0.08x + 0.10y

The feasible region determined by X + y \leq 12000 , x \geq 2000 , y \geq 4000 is given by

The corner points of the feasible region are A(2000,4000) , B(2000,10000) and C(8000,4000) . The value of Z at the corner point are

Corner Point	Z = 0.08x + 0.10y	
A(2000,4000)	560	
B(2000,10000)	1160	Maximum
C(8000,4000)	1040	

The maximum value of Z is 116770 at point (2000,10000)

So, he must invest Rs.2000 in bond A and Rs.10000 in bond B.

The maximum annual income is $\ensuremath{\mathsf{Rs.1160}}$.

Question: 39

Anil wants

Solution:

Let the invested money in bond A be x and in bond B be y.

 \therefore According to the question,

 $X+y \leq$ 12000 , $x \geq$ 2000 , $y \geq$ 4000

Maximize Z = 0.08x + 0.10y

The feasible region determined by X + y \leq 12000 , x \geq 2000 , y \geq 4000 is given by

The corner points of the feasible region are A(2000,4000) , B(2000,10000) and C(8000,4000) . The value of Z at the corner point are

Corner Point	Z = 0.08x + 0.10y	
A(2000,4000)	560	
B(2000,10000)	1160	Maximum
C(8000,4000)	1040	

The maximum value of Z is 116770 at point (2000,10000)

So, he must invest Rs.2000 in bond A and Rs.10000 in bond B.

The maximum annual income is $\ensuremath{\mathsf{Rs.1160}}$.

Question: 40

Maximize =

Solution:

The feasible region determined by the constraints x + y \leq 50, 3x + y \leq 90, x, y \geq 0. is given by

The corner points of feasible region are A(0,0) ,B(0,50) ,C(20,30), D(30,0) . The values of Z at the following points is

Corner Point	Z = 60x + 15y	
A(0,0)	0	
B(0,50)	750	
C(20,30)	1650	
D(30,0)	1800	Maximum

The maximum value of Z is 1800 at point A(30,0) .

Question: 40

Maximize =

Solution:

The feasible region determined by the constraints x + y $_{\leq}$ 50, 3x + y $_{\leq}$ 90, x, y $_{\geq}$ 0. is given by

The corner points of feasible region are A(0,0) ,B(0,50) ,C(20,30), D(30,0) . The values of Z at the following points is

Corner Point	Z = 60x + 15y	
A(0,0)	0	
B(0,50)	750	
C(20,30)	1650	
D(30,0)	1800	Maximum

The maximum value of Z is 1800 at point A(30,0) .

Question: 41

A company m

Solution:

Let the company manufacture x and y numbers of toys A and B.

 \therefore According to the question,

 $5X + 8y \le 180, 10x + 8y \le 240, x \ge 0, y \ge 0$

Maximize Z = 50x + 60y

The feasible region determined 5X + 8y \leq 180,10 x + 8y \leq 240, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,22.5) , C(12,15) , D(24,0). The value of Z at corner point is

Corner Point	Z = 50x + 60y	
A(0,0)	0	
B(0,22.5)	1350	
C(12,15)	1500	Maximum
D(24,0)	1200	

The maximum value of Z is 1500 and occurs at point (12, 15).

The company should manufacture 12 A toys and 15 B toys to earn profit of rupees 1500.

Question: 41

A company m

Solution:

Let the company manufacture x and y numbers of toys A and B.

 \therefore According to the question,

 $5X + 8y \le 180, 10x + 8y \le 240, x \ge 0, y \ge 0$

Maximize Z = 50x + 60y

The feasible region determined 5X + 8y \leq 180,10 x + 8y \leq 240, x \geq 0, y \geq 0 is given by

The corner points of feasible region are A(0,0) , B(0,22.5) , C(12,15) , D(24,0). The value of Z at corner point is

Corner Point	Z = 50x + 60y	
A(0,0)	0	
B(0,22.5)	1350	
C(12,15)	1500	Maximum
D(24,0)	1200	

The maximum value of Z is1500 and occurs at point (12,15).

The company should manufacture 12 A toys and 15 B toys to earn profit of rupees 1500.

Question: 42

One kind of

Solution:

Let the company make x no of 1^{st} kind and y no of 2^{nd} cakes.

 \therefore According to the question,

 $200x + 100y \le 5000, 25x + 50y \le 1000, x \ge 0, y \ge 0$

Maximize Z = x + y

The feasible region determined by 200x + 100y ≤ 5000 , 25x + 50y ≤ 1000 , x ≥ 0 , y ≥ 0 is given by

The corner points of feasible region are A(0,0) , B(0,20) , C(20,10) , D(25,0).The value of Z at corner point is

Corner Point	Z = x + y	
A(0,0)	0	
B(0,20)	20	
C(20,10)	30	Maximum
D(25,0)	25	

The maximum value of Z is 30 and occurs at point (20,10).

The company should make 20 of 1^{st} type and 10 of 2^{nd} type.

Question: 42

One kind of

Solution:

Let the company make x no of 1^{st} kind and y no of 2^{nd} cakes.

 \therefore According to the question,

 $200x + 100y \le 5000, 25x + 50y \le 1000, x \ge 0, y \ge 0$

Maximize Z = x + y

The feasible region determined by 200x + 100y ≤ 5000 , 25x + 50y ≤ 1000 , x ≥ 0 , y ≥ 0 is given by

The corner points of feasible region are A(0,0) , B(0,20) , C(20,10) , D(25,0). The value of Z at corner point is

Corner Point	Z = x + y	
A(0,0)	0	
B(0,20)	20	
C(20,10)	30	Maximum
D(25,0)	25	

The maximum value of Z is 30 and occurs at point (20,10).

The company should make 20 of 1^{st} type and 10 of 2^{nd} type.

Question: 43

A manufactu

Solution:

Let the company make x no of 1^{st} type of teaching aid and y no of 2^{nd} type of teaching aid.

 \therefore According to the question,

 $9x + 12y \le 180, x + 3y \le 30, x \ge 0, y \ge 0$

Maximize Z = 80x + 120y

The feasible region determined by $9x + 12y \le 180$, $x + 3y \le 30$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,10) , C(12,6) , D(20,0).The value of Z at corner point is

Corner Point	Z = 80x + 120y	
A(0,0)	0	
B(0,10)	1200	
C(12,6)	1680	Maximum
D(20,0)	1600	

The maximum value of Z is 1680 and occurs at point (12,6).

The company should make 12 of 1^{st} type and 6 of 2^{nd} type of teaching aid. Maximum profit is Rs.1680.

Question: 43

A manufactu

Solution:

Let the company make x no of 1^{st} type of teaching aid and y no of 2^{nd} type of teaching aid.

 \therefore According to the question,

 $9x + 12y \le 180, x + 3y \le 30, x \ge 0, y \ge 0$

Maximize Z = 80x + 120y

The feasible region determined by $9x + 12y \le 180$, $x + 3y \le 30$, $x \ge 0$, $y \ge 0$ is given by

The corner points of feasible region are A(0,0) , B(0,10) , C(12,6) , D(20,0). The value of <math display="inline">Z at corner point is

Corner Point	Z = 80x + 120y	
A(0,0)	0	
B(0,10)	1200	
C(12,6)	1680	Maximum
D(20,0)	1600	

The maximum value of Z is 1680 and occurs at point (12,6).

The company should make 12 of 1^{st} type and 6 of 2^{nd} type of teaching aid. Maximum profit is Rs.1680.