VELOCITY TRIANGLE # 1. At Inlet - θ < 90° - Forward vanes - Common case of - Francis Turbine $$\bullet \quad \tan \theta = \frac{V_{f_1}}{V_{w_1} - U_1}$$ 2. At Outlet - - $\theta = 90^{\circ}$ - Radial vanes - $V_1 = V_{w_1}$ $V_{F_1} = V_{r_1}$ $$\bullet \quad \tan \theta = \frac{V_{f_1}}{V_{W_1}}$$ - $\theta > 90$ - Backward vanes - $tan (180^{\circ} \theta) = \frac{\dot{\eta}}{U_1 V_{W_1}}$ - $\beta = 90^{\circ}$ - V_{W2} is in the direction of U₂. - Common case of Francies turbine - Use fuel for maximum efficiency. (c) - β > 90° - Common case of Pelton wheel turbine Here, - α = guide vane angle between V_1 and U_2 at Inlet. - β = guide vane angle between V_2 and U_2 at outlet. - θ = Runner vane angle between V_{r_1} and U_1 at Inlet. - ϕ = Runner vane angle between V_{r_2} and U_2 at outlet. - V_1 = Absolute velocity of water at Inlet. - V₂ = Absolute velocity of water of outlet. u₁ and u₂ are relative velocities at inlet and outlet respectively. V₁ and V₂ are tangential also called cir rential velocity at inlet and outlet respectively. # **FRANCIS TURBINE** ## 1. Powers (i) H.P = w' = Hydraulic power, also called water power w = Specific weight = pg enoted by 'y γ = unit wt or specific wt 1 H.P = 746 walt (British H.P) 1 H.P = 736 walt (Metric H.P) ρ = density, Q = Discharge, $H = Head = H_a - H_F$ H_a = Gross Head, H_E = Fricloss. (ii) $R.P = \rho Q[V_{w_1}U_1 - V_{w_2}U_2]$ $$= \frac{wQ}{g} [V_{W_1U_1} - V_{W_2U_2}] \qquad R.P = Runner power$$ For maximum efficiency $V_{W_2} = 0$. (a) For maximum efficiency $$R.P = \frac{wQ}{g}(V_{W_1U_1})$$ V_{w_1} = Whirl velocity at Inlet. V_{w_2} = Whirl velocity at outlet. (iii) $S.P = \tau \omega$ S.P = R.P - Mechanical friction losses Where. τ = Torque produced by shaft ω = Angular velocity of shaft S.P = Shaft power. In Francies Turbine H.P > R.P > S.P # 2. Efficiency (i) $$\eta_h = \frac{R \cdot P}{H \cdot P}$$ $$\Rightarrow \eta_h = \frac{(V_{w_1u_1} - V_{w_2u_2})}{gH}$$ η_h = Hydraulic efficiency $$\eta_{m} = \frac{S \cdot P}{R \cdot P}$$ $$=1-\frac{loss}{R \cdot P}$$ $\eta_{\rm m}$ = Mechanical efficiency. (iii) $$\eta_0 = \frac{S \cdot P}{H \cdot P}$$ $$\eta_o = \eta_m \cdot \eta_h$$. $\eta_{o} = Overall efficiency.$ (iv) $$\eta_{\text{vol}} = \frac{Q - \Delta Q}{Q}$$ η_{vol} = Volumetric efficiency $Q = Discharge (m^3/s)$ and ΔQ = Charge in discharge (m³/s). (v) $$\eta_b = \frac{v_1^2 - v_2^2}{v_1^2}$$ η_b = Blade efficiency. $\rm V_1$ and $\rm V_2$ are absolute velocity of water at inlet and outlet respectively. - (vi) $\eta_o = \eta_h.\eta_m.\eta_v.\eta_b$ - η_o = Overall efficiency. - 3. Design Parameter of Francis Turbine -) $\frac{D_1}{D_2} \sim 2$ D_1 and D_2 are dia of inlet and outlet respectively. - (ii) For maximum efficiency, $V_{w_2} = 0$. (iii) $$\phi = \frac{u_1}{\sqrt{2gH}} \simeq 0.6 + 0.9$$ φ= Speed ratio U, = Tangential also called circumferential velocity of inlet. $H = Head = H_a - H_f$ 2aH = Spout velocity. (iv) $$\psi = \frac{V_{f_1}}{\sqrt{2gH}} \simeq 0.15 \text{ to } 0.30$$ $\Psi = Flow ratio$ V_F = Flow velocity of inlet. (v) $$\eta = \frac{B_1}{D_1} \simeq 0.1 \text{ to } 0.45$$ $\eta =$ width ratio (vi) $$A_{f_1} = (1-k)\pi D_1 B_1$$ $A_{f_2} = (1-k)\pi D_2 B_2$ A_{f1} and A_{f2} are area of flow at inlet and outlet respectively. K = Vane thickness coefficiency ~ 5% D₁ and D₂ are diameter at inlet and outlet respectively. B₁ and B₂ are width of plate at inlet and outlet respectively. (vii) $$R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{W_1} u_1 - V_{W_2} u_2}{g}\right)}$$ $$R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{w_1}u_1 - V_{w_2}u_2}{g}\right)} R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{w_1}u_1}{g}\right)} \rightarrow \text{For maximum efficiency}$$ R = Degree of reaction Here. γ = Unit weight or specific wt = rg $\rho = Density$ Also, $$R = 1 - \left(\frac{v_1^2 - v_2^2}{2v_{w_1} \cdot u_1}\right)$$ (viii) $$H = \frac{V_2^2}{2g} + \frac{V_{w_1} U_1}{g}$$ $H = \frac{V_2^2}{2\alpha} + \frac{V_{w_1} U_1}{\alpha}$ (Master Formula) where, H = Head Assumption, $V_{w_2} = 0$, $\frac{P_2}{\rho Q} = 0$, # 4. Model Relationship for Turbine Dimensional Parameter Diamensionless Parameter 1. $$N_S = \frac{N_F}{(H)^{5/4}}$$ 1. $$N_S = \frac{\omega \sqrt{\frac{P}{\rho}}}{(gH)^{5/4}}$$ **2.** $$C_H = \frac{H}{N^2 D^2}$$ **2.** $$C_H = \frac{gH}{\omega^2 D^2}$$ 3. $$C_Q = \frac{Q}{ND^3}$$ $$3. C_Q = \frac{Q}{\omega D^3}$$ 4. $$C_P = \frac{P}{N^3 D^5}$$ 4. $$C_P = \frac{P}{\rho \omega^3 D^5}$$ Here, N_s = Specific speed C_H = Head coefficient Co = Discharge coefficient Cp = Power coefficient $g \rightarrow Acln.$ due to gravity = 9.81 m/s². $$w \rightarrow Angular speed = \frac{2\pi N}{60}$$ N → No. of revolution/minute $H \rightarrow Head (m)$ $P \rightarrow Pressure (N/m^2)$ p→ Density (kg/m³) Q → Discharge (m³/sec) D → Diameter (m) #### **PELTON WHEEL TURBINE** # 1. Velocity Triangle (i) At Inlet (ii) At outlet $$V_1 = V_{w_1}$$ • $$V_{r_2} = kV_{r_1}$$ k = Friction factor $\beta > 90^{\circ}$ $$|V_{r_2}\cos\phi|$$ $$=|U_2|+|V_{w_2}|$$ H.P = Hydraulic power. (ii) Jet power or k.E/sec of Jet = $$\frac{1}{2}\rho Q v_1^2 = \frac{1}{2} \cdot \frac{wQ}{g} \cdot v_1^2$$ (iii) $$R.P = \frac{wQ}{g}[V_{w_1} + V_{w_2}]u$$ R.P = Runner power H.P > K.E/sec. of Jet > R.P > S.P #### 3. Efficiencies (i) $$\eta_{\text{nozzle}} = \frac{k \cdot E / \text{sec of jet}}{H \cdot P \text{ available of base of nozzle}}$$ $$=\frac{V_1^2}{2gH}=C_V^2$$ $$\left[\because v_1 = C_v \sqrt{2gH}\right]$$ where, $\eta_{\text{nozzle}} = \text{nozzle efficiency}$ (ii) $$\eta_h = \frac{R \cdot P}{k \cdot E / \sec \text{ of Jet}}$$ $$\eta_{h} = \frac{2[V_{W_{1}} + V_{W_{2}}]u}{V_{1}^{2}} = \frac{2(V_{1} - u)(1 + k\cos\phi)u}{V_{1}^{2}}$$ $$\eta_h \big|_{max} = \frac{(1 + k \cos \phi)}{2}$$ where, $\eta_h = \text{Hydraulic efficiency}$. $\eta_h|_{max} = Maximum hydraulic efficiency.$ (iii) $$\eta_{m} = \frac{S \cdot P}{H \cdot P}$$ where, $\eta_{m} =$ Mechanical efficiency. (iv) $$| \eta_o = \frac{S \cdot P}{H \cdot P} = \eta_{\text{nozzle}} \cdot \eta_h \cdot \eta_{\text{mechanical}}$$ where, $\eta_o = \text{overall efficiency}$ ## 4. Design Criteria (i) $$\phi = \frac{u_1}{\sqrt{2gH}} = 0.45 \text{ to } 0.47$$ where, $\phi = \text{Speed ratio.}$ (ii) $$\psi = \frac{V_{f_1}}{\sqrt{2gH}} = \text{zero}$$ where, $\psi = \text{Flow ratio}$ (iii) $$m = \frac{D}{d} = 11 \text{ to } 15$$ where, m = Jet ratio D = Dia of pitch circle d = Dia of jet. (iv) $$n = \left(15 + \frac{m}{2}\right)$$ this is Tygon formula. = 18 to 25 where, η = Number of vanes (v) No. of jet= Total discharge through penstock Discharge through each jet 6 # KEPLAN AND PROPELLER TURBINE (AXIAL FLOW REACTION TURBINE) 1. $$Q = A_{F_1}.V_{F_1} = A_{F_2}.V_{F_2}$$ where, Q = Discharge $$A_{F_1} = \frac{\pi}{4} (D_0^2 - D_b^2)$$ 2. $$U_1 = U_2 = \frac{\pi DN}{60}$$ where, $D = D_0$ at expressed edge $D = D_b$ at inner edge and $$D = \frac{D_o + D_b}{2}$$ at mid point $D_o = Outer dia of runner$ $D_b = Dia of hub or boss.$ The analysis of velocity triangle, powers. Are Similar to that of francies turbines. In this case generally $\theta > 90^{\circ}$ and $V_{w_2} = 0$. Master formular (Beronoulies principle) can be applied. ### 3. Design Parameter (i) $$\phi = \frac{U_1}{\sqrt{2gH}}$$ is of the order of 2.0 (ii) $$\Psi = \frac{V_{f_1}}{\sqrt{2gH}} = 0.5 \text{ to } 0.7$$ (iii) Number of vanes on the runner are generally 3 to 8. Impulse turbine (Pelton): High head and low discharge. Francis turbine: Medium head and medium discharge. Kaplan and Propeler turbine: Low head and high discharge. | Turbine | Specific speed, N _s ,(MKS) | |--|---------------------------------------| | 1.Pelton wheel turbine (single jet) | 10-35 | | 2. Pelton wheel turbine (multiple jet) | 35 - 60 | | 3. Francis turbine | 60 - 300 | | 4. Kaplan turbine | > 300 |