VELOCITY TRIANGLE

1. At Inlet

- θ < 90°
- Forward vanes
- Common case of
- Francis Turbine

$$\bullet \quad \tan \theta = \frac{V_{f_1}}{V_{w_1} - U_1}$$

2. At Outlet

- - $\theta = 90^{\circ}$
 - Radial vanes

 - $V_1 = V_{w_1}$ $V_{F_1} = V_{r_1}$

$$\bullet \quad \tan \theta = \frac{V_{f_1}}{V_{W_1}}$$

- $\theta > 90$
- Backward vanes
- $tan (180^{\circ} \theta) = \frac{\dot{\eta}}{U_1 V_{W_1}}$

- $\beta = 90^{\circ}$
- V_{W2} is in the direction of U₂.
- Common case of Francies turbine
- Use fuel for maximum efficiency.

(c)

- β > 90°
- Common case of Pelton wheel turbine

Here,

- α = guide vane angle between V_1 and U_2 at Inlet.
- β = guide vane angle between V_2 and U_2 at outlet.
- θ = Runner vane angle between V_{r_1} and U_1 at Inlet.
- ϕ = Runner vane angle between V_{r_2} and U_2 at outlet.
- V_1 = Absolute velocity of water at Inlet.
- V₂ = Absolute velocity of water of outlet.

u₁ and u₂ are relative velocities at inlet and outlet respectively.

V₁ and V₂ are tangential also called cir rential velocity at inlet and outlet respectively.

FRANCIS TURBINE

1. Powers

(i) H.P = w'

= Hydraulic power, also called water power

w = Specific weight = pg

enoted by 'y

 γ = unit wt or specific wt

1 H.P = 746 walt (British H.P)

1 H.P = 736 walt (Metric H.P)

 ρ = density, Q = Discharge,

 $H = Head = H_a - H_F$

H_a = Gross Head, H_E = Fricloss.

(ii) $R.P = \rho Q[V_{w_1}U_1 - V_{w_2}U_2]$

$$= \frac{wQ}{g} [V_{W_1U_1} - V_{W_2U_2}] \qquad R.P = Runner power$$

For maximum efficiency $V_{W_2} = 0$.

(a) For maximum efficiency

$$R.P = \frac{wQ}{g}(V_{W_1U_1})$$

 V_{w_1} = Whirl velocity at Inlet. V_{w_2} = Whirl velocity at outlet.

(iii) $S.P = \tau \omega$

S.P = R.P - Mechanical friction losses

Where.

 τ = Torque produced by shaft

 ω = Angular velocity of shaft

S.P = Shaft power.

In Francies Turbine H.P > R.P > S.P

2. Efficiency

(i)
$$\eta_h = \frac{R \cdot P}{H \cdot P}$$

$$\Rightarrow \eta_h = \frac{(V_{w_1u_1} - V_{w_2u_2})}{gH}$$

 η_h = Hydraulic efficiency

$$\eta_{m} = \frac{S \cdot P}{R \cdot P}$$

$$=1-\frac{loss}{R \cdot P}$$

 $\eta_{\rm m}$ = Mechanical efficiency.

(iii)
$$\eta_0 = \frac{S \cdot P}{H \cdot P}$$

$$\eta_o = \eta_m \cdot \eta_h$$
.

 $\eta_{o} = Overall efficiency.$

(iv)
$$\eta_{\text{vol}} = \frac{Q - \Delta Q}{Q}$$

 η_{vol} = Volumetric efficiency

 $Q = Discharge (m^3/s)$

and ΔQ = Charge in discharge (m³/s).

(v)
$$\eta_b = \frac{v_1^2 - v_2^2}{v_1^2}$$

 η_b = Blade efficiency.

 $\rm V_1$ and $\rm V_2$ are absolute velocity of water at inlet and outlet respectively.

- (vi) $\eta_o = \eta_h.\eta_m.\eta_v.\eta_b$
- η_o = Overall efficiency.
- 3. Design Parameter of Francis Turbine
 -) $\frac{D_1}{D_2} \sim 2$ D_1 and D_2 are dia of inlet and outlet respectively.
 - (ii) For maximum efficiency, $V_{w_2} = 0$.

(iii)
$$\phi = \frac{u_1}{\sqrt{2gH}} \simeq 0.6 + 0.9$$

φ= Speed ratio

U, = Tangential also called circumferential velocity of inlet.

 $H = Head = H_a - H_f$

2aH = Spout velocity.

(iv)
$$\psi = \frac{V_{f_1}}{\sqrt{2gH}} \simeq 0.15 \text{ to } 0.30$$

 $\Psi = Flow ratio$

V_F = Flow velocity of inlet.

(v)
$$\eta = \frac{B_1}{D_1} \simeq 0.1 \text{ to } 0.45$$

 $\eta =$ width ratio

(vi)
$$A_{f_1} = (1-k)\pi D_1 B_1$$
 $A_{f_2} = (1-k)\pi D_2 B_2$

A_{f1} and A_{f2} are area of flow at inlet and outlet respectively.

K = Vane thickness coefficiency ~ 5%

D₁ and D₂ are diameter at inlet and outlet respectively.

B₁ and B₂ are width of plate at inlet and outlet respectively.

(vii)
$$R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{W_1} u_1 - V_{W_2} u_2}{g}\right)}$$

$$R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{w_1}u_1 - V_{w_2}u_2}{g}\right)} R = \frac{\frac{P_1}{\gamma} - \frac{P_2}{\gamma}}{\left(\frac{V_{w_1}u_1}{g}\right)} \rightarrow \text{For maximum efficiency}$$

R = Degree of reaction Here.

 γ = Unit weight or specific wt = rg

 $\rho = Density$

Also,
$$R = 1 - \left(\frac{v_1^2 - v_2^2}{2v_{w_1} \cdot u_1}\right)$$

(viii)
$$H = \frac{V_2^2}{2g} + \frac{V_{w_1} U_1}{g}$$

 $H = \frac{V_2^2}{2\alpha} + \frac{V_{w_1} U_1}{\alpha}$ (Master Formula) where, H = Head

Assumption, $V_{w_2} = 0$, $\frac{P_2}{\rho Q} = 0$,

4. Model Relationship for Turbine

Dimensional Parameter

Diamensionless Parameter

1.
$$N_S = \frac{N_F}{(H)^{5/4}}$$

1.
$$N_S = \frac{\omega \sqrt{\frac{P}{\rho}}}{(gH)^{5/4}}$$

2.
$$C_H = \frac{H}{N^2 D^2}$$

2.
$$C_H = \frac{gH}{\omega^2 D^2}$$

3.
$$C_Q = \frac{Q}{ND^3}$$

$$3. C_Q = \frac{Q}{\omega D^3}$$

4.
$$C_P = \frac{P}{N^3 D^5}$$

4.
$$C_P = \frac{P}{\rho \omega^3 D^5}$$

Here, N_s = Specific speed

C_H = Head coefficient

Co = Discharge coefficient

Cp = Power coefficient

 $g \rightarrow Acln.$ due to gravity = 9.81 m/s².

$$w \rightarrow Angular speed = \frac{2\pi N}{60}$$

N → No. of revolution/minute

 $H \rightarrow Head (m)$

 $P \rightarrow Pressure (N/m^2)$

p→ Density (kg/m³) Q → Discharge (m³/sec) D → Diameter (m)

PELTON WHEEL TURBINE

1. Velocity Triangle

(i) At Inlet

(ii) At outlet

$$V_1 = V_{w_1}$$

•
$$V_{r_2} = kV_{r_1}$$

k = Friction factor

 $\beta > 90^{\circ}$

$$|V_{r_2}\cos\phi|$$

$$=|U_2|+|V_{w_2}|$$

H.P = Hydraulic power.

(ii) Jet power or k.E/sec of Jet =
$$\frac{1}{2}\rho Q v_1^2 = \frac{1}{2} \cdot \frac{wQ}{g} \cdot v_1^2$$

(iii)
$$R.P = \frac{wQ}{g}[V_{w_1} + V_{w_2}]u$$

R.P = Runner power

H.P > K.E/sec. of Jet > R.P > S.P

3. Efficiencies

(i)
$$\eta_{\text{nozzle}} = \frac{k \cdot E / \text{sec of jet}}{H \cdot P \text{ available of base of nozzle}}$$

$$=\frac{V_1^2}{2gH}=C_V^2$$

$$\left[\because v_1 = C_v \sqrt{2gH}\right]$$

where, $\eta_{\text{nozzle}} = \text{nozzle efficiency}$

(ii)
$$\eta_h = \frac{R \cdot P}{k \cdot E / \sec \text{ of Jet}}$$

$$\eta_{h} = \frac{2[V_{W_{1}} + V_{W_{2}}]u}{V_{1}^{2}} = \frac{2(V_{1} - u)(1 + k\cos\phi)u}{V_{1}^{2}}$$

$$\eta_h \big|_{max} = \frac{(1 + k \cos \phi)}{2}$$
 where, $\eta_h = \text{Hydraulic efficiency}$.

 $\eta_h|_{max} = Maximum hydraulic efficiency.$

(iii)
$$\eta_{m} = \frac{S \cdot P}{H \cdot P}$$
 where, $\eta_{m} =$ Mechanical efficiency.

(iv)
$$| \eta_o = \frac{S \cdot P}{H \cdot P} = \eta_{\text{nozzle}} \cdot \eta_h \cdot \eta_{\text{mechanical}}$$
 where, $\eta_o = \text{overall efficiency}$

4. Design Criteria

(i)
$$\phi = \frac{u_1}{\sqrt{2gH}} = 0.45 \text{ to } 0.47$$
 where, $\phi = \text{Speed ratio.}$

(ii)
$$\psi = \frac{V_{f_1}}{\sqrt{2gH}} = \text{zero}$$
 where, $\psi = \text{Flow ratio}$

(iii)
$$m = \frac{D}{d} = 11 \text{ to } 15$$

where, m = Jet ratio

D = Dia of pitch circle

d = Dia of jet.

(iv)
$$n = \left(15 + \frac{m}{2}\right)$$
 this is Tygon formula.

= 18 to 25

where, η = Number of vanes

(v) No. of jet= Total discharge through penstock
Discharge through each jet

6

KEPLAN AND PROPELLER TURBINE (AXIAL FLOW REACTION TURBINE)

1.
$$Q = A_{F_1}.V_{F_1} = A_{F_2}.V_{F_2}$$

where, Q = Discharge

$$A_{F_1} = \frac{\pi}{4} (D_0^2 - D_b^2)$$

2.
$$U_1 = U_2 = \frac{\pi DN}{60}$$

where, $D = D_0$ at expressed edge

 $D = D_b$ at inner edge

and
$$D = \frac{D_o + D_b}{2}$$
 at mid point

 $D_o = Outer dia of runner$ $D_b = Dia of hub or boss.$

The analysis of velocity triangle, powers. Are Similar to that of francies turbines. In this case generally $\theta > 90^{\circ}$ and $V_{w_2} = 0$.

Master formular (Beronoulies principle) can be applied.

3. Design Parameter

(i)
$$\phi = \frac{U_1}{\sqrt{2gH}}$$
 is of the order of 2.0

(ii)
$$\Psi = \frac{V_{f_1}}{\sqrt{2gH}} = 0.5 \text{ to } 0.7$$

(iii) Number of vanes on the runner are generally 3 to 8.

Impulse turbine (Pelton): High head and low discharge.
Francis turbine: Medium head and medium discharge.
Kaplan and Propeler turbine: Low head and high discharge.

Turbine	Specific speed, N _s ,(MKS)
1.Pelton wheel turbine (single jet)	10-35
2. Pelton wheel turbine (multiple jet)	35 - 60
3. Francis turbine	60 - 300
4. Kaplan turbine	> 300