

Contents			
3.1	Introduction		
	Arithmetic progression (A.P.)		
3.2	Definition		
3.3	General term of an A.P.		
3.4	Selection of terms in an A.P.		
3.5	Arithmetic mean		
3.6	Properties of A.P.		
	Geometric progression (G.P.)		
3.7	Definition		
3.8	General term of G.P.		
3.9	Sum of first <i>n</i> terms of a G.P.		
3.10	Selection of terms in a G.P.		
3.11	Sum of infinite terms of a G.P.		
3.12	Geometric mean		
3.13	Prpoperties of G.P.		
Harmonic progression (H.P.)			
3.14	Definition		
3.15	General term of an H.P.		
3.16	Harmonic mean		
3.17	Properties of H.P.		
Arithmetico-geometric progression (A.G.P.)			
3.18	<i>n</i> th term of A.G.P.		
3.19	Sum of A.G.P.		
3.20	Method of finding sum		
3.21	Method of difference		
	Miscellaneous series		
3.22	Special series		
3.23	V _n method		
3.24	Properties of arithmetic, geometric and		
	harmonic means between two given numbers		
3.25	Relation between A.P., G.P. and H.P.		
3.26	Applications of progressions		
	Assignment (Basic and Advance Level)		
	Answer Sheet of Assignment		

According to Boethius (510 A.D.) arithmetic, Geometric and Harmonic sequences were known to early Greek writers. Among the Indian mathematician; Aryabhatta (476 A.D.) was the first to give the formula for the sum of squares and cubes of natural numbers in his famous work Aryabhatiyam.

Another special type of sequence having important applications in mathematics, called Fibonacci sequence, was discovered by Italian Mathematician Leonardo Fibonacci (1170-1250 A.D.) The general series was given by Frenchman Francois-vieta (1540-1603 A.D.)

It was only through the rigorous developed of algebraic and set theoretic tools that the concepts related to sequence and series could be formulated suitably.

3.1 Introduction

(1) **Sequence** : A sequence is a function whose domain is the set of natural numbers, *N*.

If $f : N \to C$ is a sequence, we usually denote it by $\langle f(n) \rangle = \langle f(1), f(2), f(3), \dots \rangle$

It is not necessary that the terms of a sequence always follow a certain pattern or they are described by some explicit formula for the n^{th} term. Terms of a sequence are connected by commas. *Example* : 1, 1, 2, 3, 5, 8, is a sequence.

(2) Series : By adding or subtracting the terms of a sequence, we get a series.

If $t_1, t_2, t_3, \dots, t_n, \dots$ is a sequence, then the expression $t_1 + t_2 + t_3 + \dots + t_n \dots$ is a series.

A series is finite or infinite as the number of terms in the corresponding sequence is finite or infinite.

Example : $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ is a series.

(3) **Progression** : A progression is a sequence whose terms follow a certain pattern *i.e.* the terms are arranged under a definite rule.

Example : 1, 3, 5, 7, 9, is a progression whose terms are obtained by the rule : $T_n = 2n - 1$, where T_n denotes the n^{th} term of the progression.

Progression is mainly of three types : Arithmetic progression, Geometric progression and Harmonic progression.

However, here we have classified the study of progression into five parts as :

- Arithmetic progression
- Geometric progression
- Arithmetico-geometric progression
- Harmonic progression
- Miscellaneous progressions

Arithmetic progression(A.P)

3.2 Definition

A sequence of numbers $\langle t_n \rangle$ is said to be in arithmetic progression (A.P.) when the difference $t_n - t_{n-1}$ is a constant for all $n \in N$. This constant is called the common difference of the A.P., and is usually denoted by the letter *d*.

If 'a' is the first term and 'd' the common difference, then an A.P. can be represented as a.a + d.a + 2d.a + 3d....

Example : 2, 7, 12, 17, 22, is an A.P. whose first term is 2 and common difference 5.

Algorithm to determine whether a sequence is an A.P. or not.

Step I: Obtain a_n (the n^{th} term of the sequence).

Step II: Replace *n* by n - 1 in a_n to get a_{n-1} .

Step III: Calculate $a_n - a_{n-1}$.

If $a_n - a_{n-1}$ is independent of *n*, the given sequence is an A.P. otherwise it is not an A.P. An arithmetic progression is a linear function with domain as the set of natural numbers N.

 \therefore $t_n = An + B$ represents the n^{th} term of an A.P. with common difference A.

3.3 General Term of an A.P.

(1) Let 'a' be the first term and 'd' be the common difference of an A.P. Then its n^{th} term is a+(n-1)d.

$$T_n = a + (n-1)d$$

(2) **p**th term of an A.P. from the end : Let 'a' be the first term and 'd' be the common difference of an A.P. having *n* terms. Then p^{th} term from the end is $(n - p + 1)^{\text{th}}$ term from the beginning.

 p^{th} term from the end $= T_{(n-p+1)} = a + (n-p)d$

Important Tips

General term (T_n) is also denoted by l (last term).

Common difference can be zero, +ve or -ve.

n (number of terms) always belongs to set of natural numbers.

If T_k and T_p of any A.P. are given, then formula for obtaining T_n is $\frac{T_n - T_k}{n-k} = \frac{T_p - T_k}{n-k}$.

If $pT_p = qT_q$ of an A.P., then $T_{p+q} = 0$.

If p^{th} term of an A.P. is q and the q^{th} term is p, then $T_{p+q} = 0$ and $T_n = p + q - n$.

$$\mathscr{F}$$
 If the p^{th} term of an A.P. is $\frac{1}{q}$ and the q^{th} term is $\frac{1}{r}$, then its pq^{th} term is 1.

If $T_n = pn + q$, then it will form an A.P. of common difference p and first term p + q.

Let T_r be rth term of an A.P. whose first term is a and common difference is d. If for some positive Example: 1 integers m, n, $m \neq n$, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a - d equals [AIEEE 2004] (a) $\frac{1}{m} + \frac{1}{n}$ (b) 1 (c) $\frac{1}{mn}$ (d) 0 **Solution:** (d) $T_m = \frac{1}{n} \implies a + (m-1)d = \frac{1}{n}$

.....(i)

nd
$$T_n = \frac{1}{m} \Rightarrow a + (n-1)d = \frac{1}{m}$$
(ii)

Subtract (ii) from (i), we get $(m-n)d = \frac{1}{n} - \frac{1}{m} \Rightarrow (m-n)d = \frac{(m-n)}{mn} \Rightarrow d = \frac{1}{mn}$, as $m - n \neq 0$

 $a = \frac{1}{m} - (n-1)d = \frac{1}{m} - \frac{n-1}{mn} = \frac{1}{mn} = d$. Therefore a - d = 0Example: 2 The 19^{th} term from the end of the series $2 + 6 + 10 + \dots + 86$ is (b) 18 (a) 6 (d) 10 (c) 14 Solution: (c) $86 = 2 + (n-1)4 \implies n = 22$ 19th term from end = $t_{n-19+1} = t_{22-19+1} = t_4 = 2 + (4-1)4 = 14$ Example: 3 In a certain A.P., 5 times the 5th term is equal to 8 times the 8th term, then its 13th term is [AMU 1991] (a) 0 (b) - 1 (c) - 12 (d) - 13 **Solution:** (a) We have $5T_5 = 8T_8$ Let *a* and *d* be the first term and common difference respectively $\therefore 5\{a+(5-1)d\} = 8\{a+(8-1)d\}$ \Rightarrow 3a+36d = 0 \Rightarrow a+12d = 0, *i.e.* a+(13-1)d = 0. Hence 13th term = 0 If 7th and 13th term of an A.P. be 34 and 64 respectively, then its 18th term is Example: 4 (b) 88 (c) 89 (a) 87 (d) 90 Solution: (c) Let *a* be the first term and *d* be the common difference of the given A.P., then $T_7 = 34 \implies a + 6d = 34$(i) $T_{13} = 64 \implies a + 12d = 64$(ii) From (i) and (ii), d = 5, a = 4 $\therefore T_{18} = a + 17d = 4 + 17 \times 5 = 89$ **Trick:** $\frac{T_n - T_k}{n - k} = \frac{T_p - T_k}{p - k} \Rightarrow \frac{T_{18} - T_7}{18 - 7} = \frac{T_{13} - T_7}{13 - 7} \Rightarrow \frac{T_{18} - 34}{11} = \frac{64 - 34}{6} \Rightarrow T_{18} = 89$ If $\langle a_n \rangle$ is an arithmetic sequence, then $\Delta = \begin{vmatrix} a_m & a_n & a_p \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix}$ equals Example: 5 (a) 1 (b) -1 (d) None of these (c) 0 Let *a* be the first term and *d* the common difference. Then $a_r = a + (r-1)d$ **Solution:** (c) $\Delta = \begin{vmatrix} a + (m-1)d & a + (n-1)d & a + (p-1)d \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a & a & a \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} + d \begin{vmatrix} m-1 & n-1 & p-1 \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix}$ $= a \begin{vmatrix} 1 & 1 & 1 \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} + d \begin{vmatrix} m & n & p \\ m & n & p \\ 1 & 1 & 1 \end{vmatrix} = a \cdot 0 + d \cdot 0 = 0$ The n^{th} term of the series $3 + 10 + 17 + \dots$ and $63 + 65 + 67 + \dots$ are equal, then the value of *n* is Example: 6 [Kerala (Engg.) 2002] (a) 11 (c) 13 (b) 12 (d) 15 **Solution:** (c) n^{th} term of 1^{st} series = 3 + (n-1)7 = 7n-4 n^{th} term of 2^{nd} series = 63 + (n - 1) = 2n + 61 \therefore we have, $7n-4 = 2n+61 \implies n = 13$

3.4 Selection of Terms in an A.P.

When the sum is given, the following way is adopted in selecting certain number of terms : Number of terms Terms to be taken

3 a - d, a, a + d

a - 3d, a - d, a + d, a + 3d

a – 2d, a – d, a, a + d, a + 2d

In general, we take a - rd, a - (r - 1)d,, a - d, a, a + d,, a + (r - 1)d, a + rd, in case we have to take (2r + 1) terms (*i.e.* odd number of terms) in an A.P.

And, a - (2r-1)d, a - (2r-3)d,....., a - d, a + d,..., a + (2r-1)d, in case we have to take 2r terms in an A.P.

When the sum is not given, then the following way is adopted in selection of terms.

Number of terms Terms to be taken

3	a, a+d, a+2d
4	a, a+d, a+2d, a+3d
5	a, a+d, a+2d, a+3d, a+4d

of Sum terms A.P. The n of an : sum of п terms of the series $a + (a + d) + (a + 2d) + \dots + \{a + (n - 1)d\}$ is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

4

5

Also, $S_n = \frac{n}{2}(a+l)$, where l = last term = a + (n-1)d

Important Tips

- The common difference of an A.P is given by $d = S_2 2S_1$ where S_2 is the sum of first two terms and S_1 is the sum of first term or the first term.
- $The sum of infinite terms = \begin{cases} \infty, & \text{when } d > 0 \\ -\infty, & \text{when } d < 0 \end{cases}$
- The sum of n terms S_n is given then general term $T_n = S_n S_{n-1}$, where S_{n-1} is sum of (n 1) terms of A.P.
- Sum of n terms of an A.P. is of the form $An^2 + Bn$ i.e. a quadratic expression in n, in such case, common difference is twice the coefficient of n^2 i.e. 2A.

• If for the different A.P's
$$\frac{S_n}{S'_n} = \frac{f_n}{\phi_n}$$
, then $\frac{T_n}{T'_n} = \frac{f(2n-1)}{\phi(2n-1)}$

• If for two A.P.'s
$$\frac{T_n}{T'_n} = \frac{An+B}{Cn+D}$$
 then $\frac{S_n}{S'_n} = \frac{A\left(\frac{n+1}{2}\right)+B}{C\left(\frac{n+1}{2}\right)+D}$

- Some standard results
 - Sum of first n natural numbers $= 1 + 2 + 3 + \dots + n = \sum_{r=1}^{n} r = \frac{n(n+1)}{2}$
 - Sum of first n odd natural numbers $= 1 + 3 + 5 + \dots + (2n-1) = \sum_{r=1}^{n} (2r-1) = n^2$
 - Sum of first n even natural numbers $= 2+4+6+\ldots+2n = \sum_{r=1}^{n} 2r = n(n+1)$
- If for an A.P. sum of p terms is q and sum of q terms is p, then sum of (p + q) terms is $\{-(p + q)\}$.
 - If for an A.P., sum of p terms is equal to sum of q terms, then sum of (p + q) terms is zero.

• If the	p th term of an A.I	P. is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$,	then sum of pq terms is	s given by $S_{pq} = \frac{1}{2}(pq+1)$		
Example: 7	7 th term of an A (a) 53	A.P. is 40, then the sum of (b) 520	first 13 terms is (c) 1040	[Karnat (d) 2080	aka CET 2003]	
olution: (b)	$S_{13} = \frac{13}{2} \{2a + 12$	d = 13 { $a + 6d$ } = 13 × T_7 = 13 ×	× 40 = 520			
Example: 8	The first term	of an A.P. is 2 and commor	n difference is 4. The su	ım of its 40 terms will be	[MNR 1978; M]	
	(a) 3200	(b) 1600	(c) 200	(d) 2800		
olution: (a)	$S = \frac{n}{2}[2a + (n-1)]$	$[d] = \frac{40}{2} [2 \times 2 + (40 - 1)4] = 320$	0			
Example: 9	The sum of the first term is	first and third term of an	A.P. is 12 and the prod	luct of first and second te	erm is 24, the	
				(1) (MP PET 2003]	
olution: (c)	(a) 1 Let $a-d$ a $a+d$	(D) 8 be an A.P.	(c) 4	(d) 6		
	$\therefore (a-d)+(a+d)$	$\therefore (a-d)+(a+d)=12 \implies a=6 \text{ . Also, } (a-d)a=24 \implies 6-d=\frac{24}{6}=4 \implies d=2$				
	\therefore First term = a	a - d = 6 - 2 = 4				
Example: 10	If S_r denotes the second s	he sum of the first <i>r</i> terms	of an A.P., then $\frac{S_{3r} - S}{S_{2r} - S}$	$\frac{r-1}{2r-1}$ is equal to		
	(a) 2 <i>r</i> – 1	(b) 2 <i>r</i> + 1	(c) $4r + 1$	(d) 2 <i>r</i> + 3		
olution: (b)	$\frac{S_{3r} - S_{r-1}}{2} = \frac{\frac{3r}{2}}{2}$	$\{2a + (3r - 1)d\} - \frac{(r - 1)}{2}\{2a + (3r - 1)d\} - (r - 1)$	$\frac{(r-1-1)d}{2} = \frac{(2r+1)a + \frac{d}{2}}{2}$	$\{3r(3r-1) - (r-1)(r-2)\}$		
	$S_{2r} - S_{2r-1}$	T_{2r}		a + (2r - 1)d		
	$=\frac{(2r+1)a+\frac{d}{2}\{8n-1\}}{a+(2r-1)a}$	$\frac{r^2 - 2}{d} = \frac{(2r+1)a + d(4r^2 - 1)}{a + (2r-1)d} =$	2 <i>r</i> +1			
xample: 11	If the sum of t then <i>n</i> is equal	he first 2 <i>n</i> terms of 2, 5, to	8 is equal to the sur	n of the first n terms of	57, 59, 61,	
				[IIT So	creening 2001]	
	(a) 10	(b) 12	(c) 11	(d) 13		
olution: (c)	We have, $\frac{2n}{2}$ {2	$\times 2 + (2n-1)3\} = \frac{n}{2} \{2 \times 57 + (n-1)3\} = \frac{n}{2} \{2 $	$-1)2\} \implies 6n+1=n+56 \implies$	$\rightarrow n = 11$		
xample: 12	If the sum of the and common di	he 10 terms of an A.P. is 4 ifference is	times to the sum of it	s 5 terms, then the ratio [Rajast	of first term han PET 1986]	
	(a) 1:2	(b) 2 : 1	(c) 2:3	(d) 3:2		
olution: (a)	Let <i>a</i> be the fir	st term and d the common	difference	~ 1		
	Then, $\frac{10}{2}$ { { $a + (1)$	$10-1)d\} = 4 \times \frac{5}{2} \{2a + (5-1)d\}$	$\Rightarrow 2a + 9d = 4a + 8d \Rightarrow d$	$=2a \Rightarrow \frac{a}{d} = \frac{1}{2}$, $\therefore a: d =$	1:2	
xample: 13	150 workers w the second day the work now.	rere engaged to finish a pi 7, 4 more workers dropped The number of days in wh	ece of work in a certai d the third day and so ich the work was comp	n number of days. 4 wor on. It takes eight more o leted is [Kuruksh o	kers dropped lays to finish etra CEE 1996]	
	(a) 15	(b) 20	(c) 25	(d) 30	_	
olution: (c)	Let the work w	as to be finished in <i>x</i> days	\mathbf{L} \therefore Work of 1 worker in	h a day $=\frac{1}{150 x}$		

Now the work will be finished in (x + 8) days. \therefore Work done = Sum of the fraction of work done

$$1 = \frac{1}{150x} \times 150 + \frac{1}{150x} (150 - 4) + \frac{1}{150x} (150 - 8) + \dots \text{ to } (x + 8) \text{ terms}$$

$$\Rightarrow 1 = \frac{x + 8}{2} \left\{ 2x \frac{150}{150x} + (x + 8 - 1) \left\{ \frac{-4}{150x} \right\} \right\} \Rightarrow 150 x = (x + 8)(150 - 2(x + 7)) \Rightarrow (x + 8)(x + 7) - 600 = 0$$

$$\Rightarrow (x + 8)(x + 7) - 25 \times 24 , \therefore x + 8 = 25$$
Hence work completed in 25 days.
Example: 14 If the sum of first p terms, first q terms and first r terms of an A.P. be x, y and z respectively, then
$$\frac{x}{p}(q - r) + \frac{z}{q}(r - p) + \frac{z}{r}(p - q) \text{ is}$$
(a) 0 (b) 2 (c) pqr (d) $\frac{8xy}{pqr}$
Solution: (a) We have a, the first term and d, the common difference, $x = (2a + (p - 1)d)\frac{p}{2} \Rightarrow \frac{x}{p} = a + (p - 1)\frac{d}{2}$
Similarly, $\frac{y}{q} = a + (q - 1)\frac{d}{2}$ and $\frac{z}{r} = a + (r - 1)\frac{d}{2}$
 $\therefore \frac{x}{p}(q - r) + \frac{z}{r}(r - q) + \frac{z}{r}(r - q) = \left\{ a + (p - 1)\frac{d}{2} \right\} (r - p) + \left\{ a + (q - 1)\frac{d}{2} \right\} (r - q) + \left\{ a + (r - 1)\frac{d}{2} \right\} (p - q)$
 $= a((q - r) + (r - p) + (p - q)) + a((1 - r))(r - p) + (r - 1)(p - q))$
 $= a - 0 + \frac{d}{2} [(pq - pr + rq - pq + pr - qr - ((q - r) + (r - p) + (p - q))] + a(1 - q - 1)(r - p) + (r - 1)(p - q))$
 $= a - 0 + \frac{d}{2} [(pq - pr + rq - pq + pr - qr - ((q - r) + (r - p) + (p - q))] = 0 - \frac{d}{2} (0 - 0) = 0$
Example: 15 The sum of all odd numbers of two digits is
(a) 2475 (b) 2530 (c) 4905 (d) 5049
Solution: (a) Required sum, $S = 11 + 15 + 5 - \dots = 99$
Let the number of odd terms be n, then $99 = 11 + (n - 1)2 \Rightarrow n + 45$
 $\therefore S = \frac{45}{2} (11 + 99) = 45 \times 55 = 2475 [(x - S - \frac{\pi}{2}(n + 1)]$
Example: 16 If sum of n terms of an A.P. is $3n^2 + 5n$ and $T_m = 164$, then $m =$ [Rajasthan PET 1991, 95; DCE 1999]
(a) 26 (b) 27 (c) 28 (d) None of these
Solution: (b) $T_m = 3w_m - 5m_m - 7 \text{ Iot} = (3m^2 + 3m_m - 1)(3m_m - 1)^2 + 5m_m - 13m_m - 127$
Example: 17 The sum of n terms of the series $\frac{1}{1 + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + \dots$ is [UPSEAT 2002]
(a) $\sqrt{2n + 1}$ (b) $\frac{1}{2} \sqrt{2n + 1} + (2n + 1 + \sqrt{2n + 1})$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} - \sqrt{3} + \sqrt{7} - \sqrt{5} + \dots + \sqrt{2n - 1} + \sqrt{2n - 1}}$
 $= \frac{\sqrt{3} - 1}{\sqrt{3} - \sqrt{3} + \sqrt{7} - \sqrt{5} + \dots$

Solution: (d)
$$S = \frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} + \dots + \frac{1}{a_{n}a_{n+1}} = \frac{\left(\frac{1}{a_{1}} - \frac{1}{a_{2}}\right)}{(a_{2} - a_{1})} + \frac{\left(\frac{1}{a_{2}} - \frac{1}{a_{3}}\right)}{(a_{3} - a_{2})} + \dots + \frac{\left(\frac{1}{a_{n}} - \frac{1}{a_{n+1}}\right)}{(a_{n+1} - a_{n})}$$
As $a_{1}, a_{2}, a_{3}, \dots, a_{n}, a_{n+1}$ are in A.P., *i.e.* $a_{2} - a_{1} = a_{3} - a_{2} = \dots = a_{n+1} - a_{n} = d$ (say)

$$\therefore S = \frac{1}{d} \left[\left(\frac{1}{a_{1}} - \frac{1}{a_{2}}\right) + \left(\frac{1}{a_{2}} - \frac{1}{a_{3}}\right) + \dots + \left(\frac{1}{a_{n}} - \frac{1}{a_{n+1}}\right) \right] = \frac{1}{d} \left[\frac{1}{a_{1}} - \frac{1}{a_{n+1}} \right] = \frac{a_{n+1} - a_{1}}{d \cdot a_{1} \cdot a_{n+1}} = \frac{[a_{1} + (n+1-1)d] - a_{1}}{d \cdot a_{1} \cdot a_{n+1}}$$

$$S = \frac{nd}{d a_{1} a_{n+1}} = \frac{n}{a_{1} a_{n+1}}$$
3.5 Arithmetic Mean

(1) Definitions

(i) If three quantities are in A.P. then the middle quantity is called Arithmetic mean (A.M.) between the other two.

If *a*, *A*, *b* are in A.P., then *A* is called A.M. between *a* and *b*.

(ii) If $a, A_1, A_2, A_3, \dots, A_n, b$ are in A.P., then $A_1, A_2, A_3, \dots, A_n$ are called *n* A.M.'s between *a* and *b*.

(2) Insertion of arithmetic means

(i) **Single A.M. between a and b**: If a and b are two real numbers then single A.M. between a and $b = \frac{a+b}{a+b}$

and
$$D = \frac{1}{2}$$

(ii) *n* A.M.'s between *a* and *b* : If $A_1, A_2, A_3, \dots, A_n$ are *n* A.M.'s between *a* and *b*, then

 $A_{1} = a + d = a + \frac{b - a}{n + 1}, \qquad A_{2} = a + 2d = a + 2\frac{b - a}{n + 1}, \qquad A_{3} = a + 3d = a + 3\frac{b - a}{n + 1}, \qquad \dots,$ $A_{n} = a + nd = a + n\frac{b - a}{n + 1}$

Important Tips

^e Sum of n A.M.'s between a and b is equal to n times the single A.M. between a and b.

i.e. $A_1 + A_2 + A_3 + \dots + A_n = n \left(\frac{a+b}{2} \right)$

 $\overset{\text{\tiny GF}}{=}$ If A_1 and A_2 are two A.M.'s between two numbers a and b, then $A_1 = \frac{1}{3}(2a+b), A_2 = \frac{1}{3}(a+2b)$.

 \cong Between two numbers, $\frac{\text{Sum of } m \text{ A.M.'s}}{\text{Sum of } n \text{ A.M.'s}} = \frac{m}{n}$.

The further of terms in any series is odd, then only one middle term exists which is $\left(\frac{n+1}{2}\right)^{th}$ term.

The formula of terms in any series is even then there are two middle terms, which are given by $\left(\frac{n}{2}\right)^{th}$ and $\left\{\left(\frac{n}{2}\right)+1\right\}^{th}$ term.

Example: 19	After inserting <i>n</i>	A.M.'s between 2 and	38, the sum of the result	ing progression is 200. The value of <i>n</i>
	is			[MP PET 2001]
	(a) 10	(b) 8	(c) 9	(d) None of these
Solution: (b)	There will be $(n + n)$	- 2) terms in the result	ing A.P. 2 A. A.	38

	Sum of the progressior	$n = \frac{n+2}{2}(2+38) \implies 200 = (n-1)^{-1}$	$(+2) \times 20 \implies n = 8$	
Example: 20	3 A.M.'s between 3 and	l 19 are		
	(a) 7, 11, 15	(b) 4, 6, 10	(c) 6, 10, 14	(d) None of these
Solution: (a)	Let A_1, A_2, A_3 be three A.M.'s. Then $3, A_1, A_2, A_3, 19$ are in A.P.			
	\Rightarrow common difference	$d = \frac{19 - 3}{3 + 1} = 4$.Therefore A	$A_1 = 3 + d = 7$, $A_2 = 3 + 2d$	$d = 11$, $A_3 = 3 + 3d = 15$
Example: 21	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> are A.M.	I.'s between 2 and 12, the	n $a+b+c+d+e+f$ is e	equal to
	(a) 14	(b) 42	(c) 84	(d) None of these
Solution: (b)	Since, a, b, c, d, e, f are six A.M.'s between 2 and 12			
	Therefore, $a+b+c+d+e+f = \frac{6}{2}(a+f) = \frac{6}{2}(2+12) = 42$			

3.6 Properties of A.P.

(1) If a_1, a_2, a_3, \dots are in A.P. whose common difference is d, then for fixed non-zero number $K \in R$.

(i) $a_1 \pm K, a_2 \pm K, a_3 \pm K, \dots$ will be in A.P., whose common difference will be d.

(ii) Ka_1, Ka_2, Ka_3, \dots will be in A.P. with common difference = Kd.

(iii) $\frac{d_1}{K}, \frac{d_2}{K}, \frac{d_3}{K}$ will be in A.P. with common difference = d/K.

(2) The sum of terms of an A.P. equidistant from the beginning and the end is constant and is equal to sum of first and last term. *i.e.* $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots$

(3) Any term (except the first term) of an A.P. is equal to half of the sum of terms equidistant from the term *i.e.* $a_n = \frac{1}{2}(a_{n-k} + a_{n+k})$, k < n.

(4) If number of terms of any A.P. is odd, then sum of the terms is equal to product of middle term and number of terms.

(5) If number of terms of any A.P. is even then A.M. of middle two terms is A.M. of first and last term.

(6) If the number of terms of an A.P. is odd then its middle term is A.M. of first and last term.

(7) If a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n are the two A.P.'s. Then $a_1 \pm b_1, a_2 \pm b_2, \dots, a_n \pm b_n$ are also A.P.'s with common difference $d_1 \neq d_2$, where d_1 and d_2 are the common difference of the given A.P.'s.

(8) Three numbers *a*, *b*, *c* are in A.P. iff 2b = a + c.

(9) If T_n, T_{n+1} and T_{n+2} are three consecutive terms of an A.P., then $2T_{n+1} = T_n + T_{n+2}$.

(10) If the terms of an A.P. are chosen at regular intervals, then they form an A.P.

Example: 22 If $a_1, a_2, a_3, \dots, a_{24}$ are in arithmetic progression and $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then $a_1 + a_2 + a_3 + \dots$ [MP PET 1999; AMU 1997] $+a_{23} + a_{24} =$ (a) 909

(b) 75 (c) 750 (d) 900

Solution: (d)	$a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225 \implies (a_1 + a_{24}) + (a_5 + a_{20}) + (a_{10} + a_{15}) = 225 \implies 3(a_1 + a_{24}) = 225 \implies a_1 + a_{24} = 75$			
	(∵ In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to			
	the sum of first and la	st term)		
	$a_1 + a_2 + \dots + a_{24} = \frac{24}{2}(a_1)$	$(+a_{24}) = 12 \times 75 = 900$		
Example: 23	If a, b, c are in A.P., th	en $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ will be in		[DCE 2002; MP PET 1985; Roorkee 1975]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
Solution: (a)	a, b, c are in A.P., $\Rightarrow \frac{1}{b}$	$\frac{1}{c}, \frac{1}{ca}, \frac{1}{ab}$ will be in A.P.	[Dividing each	term by <i>abc</i>]
Example: 24	If log 2, $\log(2^n - 1)$ and	$log(2^{n}+3)$ are in A.P., then	n <i>n</i> =	[MP PET 1998; Karnataka CET 2000]
	(a) 5/2	(b) $\log_2 5$	(c) $\log_3 5$	(d) $\frac{3}{2}$
Solution: (b)) As, log 2, $log(2^n - 1)$ and $log(2^n + 3)$ are in A.P. Therefore			
	$2\log(2^n - 1) = \log 2 + \log(2^n + 3) \implies (2^n - 5)(2^n + 1) = 0$			
	As 2^n cannot be negative, hence $2^n - 5 = 0 \Rightarrow 2^n = 5$ or $n = \log_2 5$			
	G	eometric progre	ession(G.P	.)

3.7 Definition

A progression is called a G.P. if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by *r*.

Example: The sequence 4, 12, 36, 108, is a G.P., because $\frac{12}{4} = \frac{36}{12} = \frac{108}{36} = \dots = 3$, which is opstant

constant.

Clearly, this sequence is a G.P. with first term 4 and common ratio 3.

The sequence $\frac{1}{3}, -\frac{1}{2}, \frac{3}{4}, -\frac{9}{8}, \dots$ is a G.P. with first term $\frac{1}{3}$ and common ratio $\left(-\frac{1}{2}\right) / \left(\frac{1}{3}\right) = -\frac{3}{2}$

3.8 General Term of a G.P.

(1) We know that, $a, ar, ar^2, ar^3, \dots, ar^{n-1}$ is a sequence of G.P.

Here, the first term is 'a' and the common ratio is 'r'.

The general term or n^{th} term of a G.P. is $T_n = ar^{n-1}$

It should be noted that,

$$r = \frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots$$

(2) p^{th} term from the end of a finite G.P. : If G.P. consists of '*n*' terms, p^{th} term from the end $= (n - p + 1)^{th}$ term from the beginning $= ar^{n-p}$.

Also, the p^{th} term from the end of a G.P. with last term *l* and common ratio *r* is $l\left(\frac{1}{r}\right)^{r}$

Important Tips

$$\Rightarrow$$
 If a, b, c are in G.P. $\Rightarrow \frac{b}{a} = \frac{c}{b}$ or $b^2 = ac$

\mathscr{T} If T_k and T	_p of any G.P. are give	n, then formula for obt	taining T _n is		
	$\left(rac{T_n}{T_k} ight)$	$\left(\frac{1}{p}\right)^{\frac{1}{p-k}} = \left(\frac{T_p}{T_k}\right)^{\frac{1}{p-k}}$			
ল If a, b, c aা	re in G.P. then				
$\Rightarrow \frac{b}{a} = \frac{c}{b} =$	$\Rightarrow \frac{a+b}{a-b} = \frac{b+c}{b-c}$ or $\frac{a-b}{b-c}$	$\frac{a}{b} = \frac{a}{b}$ or $\frac{a+b}{b+c} = \frac{a}{b}$			
☞ Let the fir	st term of a G.P be p	ositive, then if r > 1, th	nen it is an increasing G	.P., but if r is positive and le	ss than 1,
i.e. 0< r < I.et the fir	1, then it is a decreas ast term of a G P be	sing G.P. negative then if r >	1 then it is a decreasi	na GP but if $0 < r < 1$ the	n it is an
increasing	G.P.	negative, then g i v			
ল্গ If a, b, c, d	l, are in G.P., then t	hey are also in continu	the proportion i.e. $\frac{a}{b} = \frac{b}{c}$	$=\frac{c}{d}=\ldots=\frac{1}{r}$	
Example: 25	The numbers $(\sqrt{2} +$	1), 1, $(\sqrt{2} - 1)$ will be in		[4	AMU 1983]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these	
Solution: (b)	Clearly $(1)^2 = (\sqrt{2} + 1)^2$	$).(\sqrt{2}-1)$			
	$\therefore \sqrt{2} + 1, 1, \sqrt{2} - 1$ ar	e in G.P.			
Example: 26	If the $p^{ m th}$, $q^{ m th}$ and $r^{ m th}$	^h term of a G.P. are <i>a</i> ,	b, c respectively, then a	${}^{q-r} \cdot b^{r-p} \cdot c^{p-q}$ is equal to	Г 1001, 05]
	(a) 0	(b) 1	(c) abc	(d) pqr	. 1991, 991
Solution: (b)	Let $x, xy, xy^2, xy^3,$	be a G.P.			
	$\therefore a = xy^{p-1}, b = xy^q$	$^{-1}, c = xy^{r-1}$			
	Now, $a^{q-r} . b^{r-p} . c^{p-q}$	$= (xy^{p-1})^{q-r} (xy^{q-1})^{r-p} (xy^{r-1})^{r-1}$	$y^{p-q} = x^{(q-r)+(r-p)+(p-q)} \cdot y^{(p-1)(q)}$	q-r)+(q-1)(r-p)+(r-1)(p-q)	
	$= x^0 \cdot y^{p(q-r)+q(r-p)+q(r$	$x^{(p-q)-(q-r+r-p+p-q)} = x^0 \cdot y^{0-1}$	$x^{-0} = (xy)^0 = 1$		
Example: 27	If the third term of	a G.P. is 4 then the pr	oduct of its first 5 term	s is [IIT 1982; Rajasthan	PET 1991]
	(a) 4 ³	(b) 4 ⁴	(c) 4^5	(d) None of these	
Solution: (c)	Given that $ar^2 = 4$				
	Then product of first 5 terms = $a(ar)(ar^2)(ar^3)(ar^4) = a^5r^{10} = [ar^2]^5 = 4^5$				
Example: 28	If $x, 2x+2, 3x+3$ ar	e in G.P., then the four	rth term is	[MNF	. 1980, 8 1]
Solution: (d)	(a) 27 Given that $x, 2x+2$,	(b) -27 3x+3 are in G.P.	(c) 13.5	(d) - 13.5	
	Therefore, $(2x+2)^2$	$=x(3x+3) \Rightarrow x^2+5x+4$	$4 = 0 \implies (x+4)(x+1) = 0 =$	$\Rightarrow x = -1, -4$	
	Now first term <i>a</i> =	x, second term $ar = 2(x)$	c + 1)	· · · · · · · · · · · · · · · · · · ·	
	$\Rightarrow r = \frac{2(x+1)}{x}$, then	4 th term = $ar^3 = x \left[\frac{2(x+x)}{x} \right]$	$\frac{1}{x} \bigg]^3 = \frac{8}{x^2} (x+1)^3$		
	Putting $x = -4$, we	get			
	$T_4 = \frac{8}{16} (-3)^3 = -\frac{27}{2} =$	= -13.5			

3.9 Sum of First '*n*' Terms of a G.P.

If a be the first term, r the common ratio, then sum S_n of first n terms of a G.P. is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$
, $|r| < 1$

$$S_n = \frac{a(r^n - 1)}{r - 1}, \qquad |r| > 1$$
$$S_n = na, \qquad r = 1$$

3.10 Selection of Terms in a G.P.

(1) When the product is given, the following way is adopted in selecting certain number of terms :

Number of terms	Terms to be taken
3	$\frac{a}{r}$, a, ar
4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$
5	$\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$

(2) When the product is not given, then the following way is adopted in selection of terms

Number of terms	Terms to be taken
3	a, ar, ar^2
4	a, ar, ar^2, ar^3
5	a, ar, ar^2, ar^3, ar^4

Example: 29 Let a_n be the *n*th term of the G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2n} = \alpha$ and $\sum_{n=1}^{100} a_{2n-1} = \beta$, such that $\alpha \neq \beta$, then the common ratio is [IIT 1992]

(a)
$$\frac{\alpha}{\beta}$$
 (b) $\frac{\beta}{\alpha}$ (c) $\sqrt{\frac{\alpha}{\beta}}$ (d) $\sqrt{\frac{\beta}{\alpha}}$

Solution: (a) Let *x* be the first term and *y*, the common ratio of the G.P.

Then,
$$\alpha = \sum_{n=1}^{100} a_{2n} = a_2 + a_4 + a_6 + \dots + a_{200}$$
 and $\beta = \sum_{n=1}^{100} a_{2n-1} = a_1 + a_3 + a_5 + \dots + a_{199}$
 $\Rightarrow \quad \alpha = xy + xy^3 + xy^5 + \dots + xy^{199} = xy \frac{1 - (y^2)^{100}}{1 - y^2} = xy \left(\frac{1 - y^{200}}{1 - y^2}\right)$
 $\beta = x + xy^2 + xy^4 + \dots + xy^{198} = x \cdot \frac{1 - (y^2)^{100}}{1 - y^2} = x \cdot \left(\frac{1 - y^{200}}{1 - y^2}\right)$
 $\therefore \quad \frac{\alpha}{\beta} = y$. Thus, common ratio $= \frac{\alpha}{\beta}$

Example: 30 The sum of first two terms of a G.P. is 1 and every term of this series is twice of its previous term, then the first term will be

[Rajasthan PET 1988]

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$
Solution: (b) We have, common ratio $r = 2$; $\left[:\frac{a_{n-1}}{a_{n-1}} = 2\right]$
Let a be the first term, then $a + ar = 1 \Rightarrow a(1 + r) = 1 \Rightarrow a = \frac{1}{1 + r} = \frac{1}{1 + 2} = \frac{1}{3}$
3.11 Sum of Infinite Terms of a G.P.
(1) When $|r| < 1$, (or $-1 < r < 1$)
 $\overline{S_{*} = \frac{a}{1 - r}}$
(2) If $r \ge 1$, then S_{*} doesn't exist
Example: 31 The first term of an infinite geometric progression is x and its sum is 5. Then
(a) $0 \le x \le 10$ (b) $0 < x < 10$ (c) $-10 < x < 0$ (d) $x > 10$
Solution: (b) According to the given conditions, $5 = \frac{x}{1 - r}$, r being the common ratio $\Rightarrow r = 1 - \frac{x}{5}$
Now, $|r| < 1.4 \cdot a_{-} - 1 < r < 1 \Rightarrow -1 < 1 - \frac{x}{5} < 1 \Rightarrow -2 < -\frac{x}{5} < 0 \Rightarrow 2 > \frac{x}{5} > 0$ *i.e.*
 $0 < \frac{x}{5} < 2, \therefore 0 < x < 10$
Example: 32 $\lim_{x \to r} \sum_{n=1}^{\infty} \frac{1}{n} e^{r^{2}}$ is [All EEE 2004]
 $a = e^{1}$ (c) $1 - e$ (d) e
Solution: (b) $\lim_{x \to r} \sum_{n=1}^{\infty} \frac{1}{n} e^{r^{2}} = \lim_{x \to m} \frac{1}{n} e^{1/2} + e^{1/2} + e^{1/2} + e^{1/2} = \lim_{x \to m} \frac{1}{n} (e^{1/2} + e^{1/2})^{1} = \lim_{x \to m} \frac{1}{n} e^{1/2} + e^{1/2} = \lim_{x \to m} \frac{1}{n} e^{1/2} + \frac{1}{n} = \frac{1}$

 $x = 1 + a + a^{2} + \infty$ $y = 1 + b + b^{2} + \infty$ $z = 1 + c + c^{2} + \infty$ Then x, y, z shall be in
(a) A.P.
(b) G.P.
(c) H.P.
(d) None of these
Solution:
(c) $x = 1 + a + a^{2} + \infty = \frac{1}{1 - a}$ $y = 1 + b + b^{2} + \infty = \frac{1}{1 - b}$ $z = 1 + c + c^{2} + \infty = \frac{1}{1 - c}$ Now, a, b, c are in A.P. $\Rightarrow 1 - a, 1 - b, 1 - c$ are in A.P. $\Rightarrow \frac{1}{1 - a}, \frac{1}{1 - b}, \frac{1}{1 - c}$ are in H.P. Therefore x, y, z are in H.P.

3.12 Geometric Mean

(1) **Definition** : (i) If three quantities are in G.P., then the middle quantity is called geometric mean (G.M.) between the other two. If *a*, *G*, *b* are in G.P., then *G* is called G.M. between *a* and *b*.

(ii) If $a, G_1, G_2, G_3, \dots, G_n, b$ are in G.P. then $G_1, G_2, G_3, \dots, G_n$ are called *n* G.M.'s between *a* and *b*.

(2) **Insertion of geometric means** : (i) **Single G.M. between** *a* **and** *b* **:** If *a* and *b* are two real numbers then single G.M. between *a* and $b = \sqrt{ab}$

(ii) *n* G.M.'s between *a* and *b* : If $G_1, G_2, G_3, \dots, G_n$ are *n* G.M.'s between *a* and *b*, then

$$G_{1} = ar = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}}, \quad G_{2} = ar^{2} = a \left(\frac{b}{a}\right)^{\frac{2}{n+1}}, \quad G_{3} = ar^{3} = a \left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \quad \dots, \quad G_{n} = ar^{n} = a \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$

Important Tips

The Product of n G.M.'s between a and b is equal to nth power of single geometric mean between a and b. i.e. $G_1 G_2 G_3 \dots G_n = (\sqrt{ab})^n$

G.M. of $a_1 a_2 a_3 \dots a_n$ is $(a_1 a_2 a_3 \dots a_n)^{1/n}$

 $\overset{\text{\tiny GP}}{=}$ If G_1 and G_2 are two G.M.'s between two numbers a and b is $G_1 = (a^2b)^{1/3}, G_2 = (ab^2)^{1/3}$.

The product of n geometric means between a and $\frac{1}{2}$ is 1.

The If n G.M.'s inserted between a and b then $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

3.13 Properties of G.P.

(1) If all the terms of a G.P. be multiplied or divided by the same non-zero constant, then it remains a G.P., with the same common ratio.

(2) The reciprocal of the terms of a given G.P. form a G.P. with common ratio as reciprocal of the common ratio of the original G.P.

(3) If each term of a G.P. with common ratio r be raised to the same power k, the resulting sequence also forms a G.P. with common ratio r^k .

(4) In a finite G.P., the product of terms equidistant from the beginning and the end is always the same and is equal to the product of the first and last term.

i.e., if $a_1, a_2, a_3, \dots, a_n$ be in G.P. Then $a_1 a_n = a_2 a_{n-1} = a_3 a_{n-2} = a_n a_{n-3} = \dots = a_r a_{n-r+1}$

(5) If the terms of a given G.P. are chosen at regular intervals, then the new sequence so formed also forms a G.P.

(6) If $a_1, a_2, a_3, \dots, a_n$ is a G.P. of non-zero, non-negative terms, then $\log a_1, \log a_2, \log a_3, \dots, \log a_n, \dots$ is an A.P. and vice-versa.

(7) Three non-zero numbers *a*, *b*, *c* are in G.P. iff $b^2 = ac$.

(8) Every term (except first term) of a G.P. is the square root of terms equidistant from it. *i.e.* $T_r = \sqrt{T_{r-p} \cdot T_{r+p}}$; [r > p]

(9) If first term of a G.P. of *n* terms is *a* and last term is *l*, then the product of all terms of the G.P. is $(al)^{n/2}$.

(10) If there be *n* quantities in G.P. whose common ratio is *r* and S_m denotes the sum of the

first *m* terms, then the sum of their product taken two by two is $\frac{r}{r+1}S_nS_{n-1}$.

Example: 35 The two geometric mean between the number 1 and 64 are [Kerala (Engg.) 2002] (a) 1 and 64 (b) 4 and 16 (c) 2 and 16 (d) 8 and 16 **Solution:** (b) Let G_1 and G_2 are two G.M.'s between the number a=1 and b=64 $G_1 = (a^2b)^{\frac{1}{3}} = (1.64)^{\frac{1}{3}} = 4$, $G_2 = (ab^2)^{\frac{1}{3}} = (1.64)^{\frac{1}{3}} = 16$ The G.M. of the numbers $3, 3^2, 3^3, \dots, 3^n$ is Example: 36 [DCE 2002] (b) $3^{\frac{n+1}{2}}$ (d) $3^{\frac{n-1}{2}}$ (a) $3^{\frac{2}{n}}$ (c) $3^{\frac{n}{2}}$ **Solution:** (b) G.M. of $(3.3^2.3^3.....3^n) = (3.3^2.3^3.....3^n)^{1/n} = (3)^{\frac{1+2+3+...+n}{n}} = 3^{\frac{n(n+1)}{2n}} = 3^{\frac{n+1}{2}}$ **Example: 37** If a, b, c are in A.P. b - a, c - b and a are in G.P., then a : b : c is (a) 1:2:3 (b) 1:3:5 (c) 2:3:4 (d) 1:2:4 **Solution:** (a) Given, *a*, *b*, *c* are in A.P. $\Rightarrow 2b = a + c$ $b - a, c - b, a \text{ are in G.P. So } (c - b)^2 = a(b - a)$ $\Rightarrow (b-a)^{2} = (b-a)a \qquad \qquad \begin{bmatrix} \because 2b = a+c \\ \Rightarrow b+b = a+c \\ \Rightarrow b-a = c-b \end{bmatrix}$ $\Rightarrow b = 2a$ $[\because b \neq a]$ Put in 2b = a + c, we get c = 3a. Therefore a : b : c = 1 : 2 : 3Harmonic progression(H.P.)

3.14 Definition

A progression is called a harmonic progression (H.P.) if the reciprocals of its terms are in A.P.

Standard form : $\frac{1}{a} + \frac{1}{a+d} + \frac{1}{a+2d} + \dots$ *Example*: The sequence $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots$ is a H.P., because the sequence 1, 3, 5, 7, 9, is an A.P. 3.15 General Term of an H.P. If the H.P. be as $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots$ then corresponding A.P. is $a, a+d, a+2d, \dots$ T_n of A.P. is a + (n-1)d $\therefore T_n$ of H.P. is $\frac{1}{a+(n-1)d}$ In order to solve the question on H.P., we should form the corresponding A.P. Thus, General term : $\left| T_n = \frac{1}{a + (n-1)d} \right|$ or $\left| T_n \text{ of H.P.} = \frac{1}{T_n \text{ of A.P.}} \right|$ The 4th term of a H.P. is $\frac{3}{5}$ and 8th term is $\frac{1}{3}$ then its 6th term is Example: 38 [MP PET 2003] (a) $\frac{1}{6}$ (b) $\frac{3}{5}$ (c) $\frac{1}{7}$ (d) $\frac{3}{5}$ **Solution:** (b) Let $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots$ be an H.P. $\therefore 4^{\text{th}} \text{ term} = \frac{1}{a+3d} \Rightarrow \frac{3}{5} = \frac{1}{a+3d}$ $\Rightarrow \frac{5}{2} = a + 3d$(i) Similarly, 3 = a + 7d....(ii) From (i) and (ii), $d = \frac{1}{3}$, $a = \frac{2}{3}$:. 6th term $=\frac{1}{a+5d} = \frac{1}{\frac{2}{2}+\frac{5}{2}} = \frac{3}{7}$ If the roots of $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ be equal, then a, b, c are in Example: 39 [Rajasthan PET 1997] (a) A.P. (b) G.P. (c) H.P. (d) None of these As the roots are equal, discriminate = 0Solution: (c) $\Rightarrow \quad \{b(c-a)\}^2 - 4a(b-c)c(a-b) = 0 \Rightarrow b^2c^2 + a^2b^2 - 2ab^2c - 4a^2bc + 4a^2c^2 + 4ab^2c - 4abc^2 = 0$ $\Rightarrow (b^2c^2 + 2ab^2c + a^2b^2) = 4ac\{ab + bc - ac\} \Rightarrow (ab + bc)^2 = 4ac(ab + bc - ac) \Rightarrow \{b(a+c)\}^2 = 4abc(a+c) - 4a^2c^2$ $\Rightarrow b^2(a+c)^2 - 2b(a+c) \cdot 2ac + (2ac)^2 = 0 \Rightarrow [b(a+c) - 2ac]^2 = 0$ $\therefore \quad b = \frac{2ac}{a+c}$ Thus, a, b, c are in H.P. **Example: 40** If the first two terms of an H.P. be $\frac{2}{5}$ and $\frac{12}{23}$ then the largest positive term of the progression is the (b) 7th term (d) 8th term (a) 6th term (c) 5th term

Solution: (c) For the corresponding A.P., the first two terms are $\frac{5}{2}$ and $\frac{23}{12}$ *i.e.* $\frac{30}{12}$ and $\frac{23}{12}$

Common difference $= -\frac{7}{12}$ \therefore The A.P. will be $\frac{30}{12}, \frac{23}{12}, \frac{16}{12}, \frac{9}{12}, \frac{2}{12}, -\frac{5}{12}, \dots$ The smallest positive term is $\frac{2}{12}$, which is the 5th term. \therefore The largest positive term of the H.P. will

be the 5th term.

3.16 Harmonic Mean

(1) **Definition** : If three or more numbers are in H.P., then the numbers lying between the first and last are called harmonic means (H.M.'s) between them. For example 1, 1/3, 1/5, 1/7, 1/9 are in H.P. So 1/3, 1/5 and 1/7 are three H.M.'s between 1 and 1/9.

Also, if a, H, b are in H.P., then H is called harmonic mean between a and b.

- (2) Insertion of harmonic means :
- (i) Single H.M. between *a* and $b = \frac{2ab}{a+b}$

(ii) *H*, H.M. of *n* non-zero numbers $a_1, a_2, a_3, ..., a_n$ is given by $\frac{1}{H} = \frac{\frac{1}{a_1} + \frac{1}{a_2} + + \frac{1}{a_n}}{n}$.

(iii) Let *a*, *b* be two given numbers. If *n* numbers H_1, H_2, \dots, H_n are inserted between *a* and *b* such that the sequence $a, H_1, H_2, H_3, \dots, H_n, b$ is an H.P., then H_1, H_2, \dots, H_n are called *n* harmonic means between *a* and *b*.

Now,
$$a, H_1, H_2, \dots, H_n, b$$
 are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \dots, \frac{1}{H_n}, \frac{1}{b}$ are in A.P.

Let *D* be the common difference of this A.P. Then,

$$\frac{1}{b} = (n+2)^{th} \text{ term} = T_{n+2}$$
$$\frac{1}{b} = \frac{1}{a} + (n+1)D \implies D = \frac{a-b}{(n+1)ab}$$

Thus, if *n* harmonic means are inserted between two given numbers *a* and *b*, then the common difference of the corresponding A.P. is given by $D = \frac{a-b}{(n+1)ab}$

Also,
$$\frac{1}{H_1} = \frac{1}{a} + D$$
, $\frac{1}{H_2} = \frac{1}{a} + 2D$,...., $\frac{1}{H_n} = \frac{1}{a} + nD$ where $D = \frac{a-b}{(n+1)ab}$

Important Tips

 $\overset{\circ}{=}$ If a, b, c are in H.P. then $b = \frac{2ac}{a+c}$.

 \Rightarrow If H_1 and H_2 are two H.M.'s between a and b, then $H_1 = \frac{3ab}{a+2b}$ and $H_2 = \frac{3ab}{2a+b}$

3.17 Properties of H.P.

(1) No term of H.P. can be zero.

(2) If a, b, c are in H.P., then
$$\frac{a-b}{b-c} = \frac{a}{c}$$
.

(3) If *H* is the H.M. between *a* and *b*, then

(i)
$$\frac{1}{H-a} + \frac{1}{H-b} = \frac{1}{a} + \frac{1}{b}$$
 (ii) $(H-2a)(H-2b) = H^2$ (iii) $\frac{H+a}{H-a} + \frac{H+b}{H-b} = 2$

Example: 41 The harmonic mean of the roots of the equation $(5+\sqrt{2})x^2 - (4+\sqrt{3})x + 8 + 2\sqrt{3} = 0$ is [IIT 1999] (a) 2 (b) 4 (c) 6 (d) 8

Solution: (b) Let α and β be the roots of the given equation

$$\therefore \quad a+\beta = \frac{4+\sqrt{3}}{5+\sqrt{2}}, \ \alpha\beta = \frac{8+2\sqrt{3}}{5+\sqrt{2}}$$

Hence, required harmonic mean
$$=\frac{2\alpha\beta}{\alpha+\beta} = \frac{2\left(\frac{8+2\sqrt{3}}{5+\sqrt{2}}\right)}{\frac{4+\sqrt{3}}{5+\sqrt{2}}} = \frac{2(8+2\sqrt{3})}{4+\sqrt{3}} = \frac{4(4+\sqrt{3})}{4+\sqrt{3}} = 4$$

Example: 42 If *a*, *b*, *c* are in H.P., then the value of $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right)\left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$ is

[MP PET 1998; Pb. CET 2000]

(a)
$$\frac{2}{bc} + \frac{1}{b^2}$$
 (b) $\frac{3}{c^2} + \frac{2}{ca}$ (c) $\frac{3}{b^2} - \frac{2}{ab}$ (d) None of these

Solution: (c) a, b, c are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\therefore \frac{1}{a} + \frac{1}{c} = \frac{2}{b}$$
Now, $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right) = \left\{\frac{1}{b} + \left(\frac{1}{a} + \frac{1}{c}\right) - \frac{2}{a}\right\} \left(\frac{2}{b} - \frac{1}{b}\right) = \left(\frac{1}{b} + \frac{2}{b} - \frac{2}{a}\right) \left(\frac{1}{b}\right) = \frac{1}{b} \left(\frac{3}{b} - \frac{2}{a}\right) = \frac{3}{b^2} - \frac{2}{ab}$

Example: 43 If *a*, *b*, *c* are in H.P., then which one of the following is true

[MNR 1985]

(a)
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{b}$$
 (b) $\frac{ac}{a+c} = b$ (c) $\frac{b+a}{b-a} + \frac{b+c}{b-c} = 1$ (d) None of these

Solution: (d) *a*, *b*, *c* are in H.P. $\Rightarrow b = \frac{2ac}{a+c}$, \therefore option (b) is false

$$b-a = \frac{2ac}{a+c} - a = \frac{a(c-a)}{c+a} \implies b-c = \frac{c(a-c)}{a+c}$$

$$\therefore \quad \frac{1}{b-a} + \frac{1}{b-c} = \frac{a+c}{a-c} \left\{ -\frac{1}{a} + \frac{1}{c} \right\} = \frac{a+c}{a-c} \cdot \frac{a-c}{ac} = \frac{a+c}{ac} = \frac{a+c}{2ac} \cdot 2 = \frac{2}{b}, \quad \therefore \text{ option (a) is false}$$

$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = \frac{(c+a)(b+a)}{a(c-a)} + \frac{(b+c)(a+c)}{c(a-c)} = \frac{a+c}{a-c} \left\{ -\left(\frac{b+a}{a}\right) + \frac{b+c}{c} \right\} = \frac{a+c}{a-c} \left(\frac{b}{c} - \frac{b}{a}\right) = \frac{a+c}{a-c} \cdot \frac{(a-c)b}{ac}$$

$$= \frac{a+c}{ac} \cdot b = \frac{a+c}{2ac} \cdot 2b = \frac{1}{b} \cdot 2b = 2$$

 \therefore option (c) is false.

Arithmetico-geometric progression(A.G.P.)

3.18 *n*th Term of A.G.P.

If $a_1, a_2, a_3, \dots, a_n, \dots$ is an A.P. and $b_1, b_2, \dots, b_n, \dots$ is a G.P., then the sequence $a_1b_1, a_2b_2, a_3b_3, \dots, a_nb_n, \dots$ is said to be an arithmetico-geometric sequence.

Thus. the general form of arithmetico geometric sequence an is $a,(a+d)r,(a+2d)r^2,(a+3d)r^3,...$

From the symmetry we obtain that the *n*th term of this sequence is $[a+(n-1)d]r^{n-1}$

Also, let $a_{1}(a+d)r_{1}(a+2d)r^{2}$, $(a+3d)r^{3}$, be an arithmetico-geometric sequence. Then, $a + (a + d)r + (a + 2d)r^2 + (a + 3d)r^3 + \dots$ is an arithmetico-geometric series.

3.19 Sum of A.G.P.

(1) **Sum of** *n* **terms :** The sum of *n* terms of an arithmetico-geometric sequence $a,(a+d)r,(a+2d)r^2, (a+3d)r^3,...$ is given by

$$S_n = \begin{cases} \frac{a}{1-r} + dr \frac{(1-r^{n-1})}{(1-r)^2} - \frac{\{a+(n-1)d\}r^n}{1-r}, \text{ when } r \neq 1\\ \frac{n}{2}[2a+(n-1)d], \text{ when } r = 1 \end{cases}$$

(2) **Sum of infinite sequence :** Let |r| < 1. Then $r^n, r^{n-1} \to 0$ as $n \to \infty$ and it can also be shown that $n.r^n \to 0$ as $n \to \infty$. So, we obtain that $S_n \to \frac{a}{1-r} + \frac{dr}{(1-r)^2}$, as $n \to \infty$.

In other words, when |r| < 1 the sum to infinity of an arithmetico-geometric series is $S_{\infty} = \frac{a}{1-r} + \frac{dr}{\left(1-r\right)^2}$

3.20 Method for Finding Sum

This method is applicable for both sum of *n* terms and sum of infinite number of terms.

First suppose that sum of the series is S, then multiply it by common ratio of the G.P. and subtract. In this way, we shall get a G.P., whose sum can be easily obtained.

3.21 Method of Difference

If the differences of the successive terms of a series are in A.P. or G.P., we can find n^{th} term of the series by the following steps :

Step I: Denote the n^{th} term by T_n and the sum of the series upto *n* terms by S_n .

Step II: Rewrite the given series with each term shifted by one place to the right.

Step III: By subtracting the later series from the former, find T_n .

Step IV: From T_n , S_n can be found by appropriate summation. **Example: 44** $1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots \infty$ is equal to [DCE 1999] (c) 9 (d) 12 (b) 6 $S = 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots \infty$ Solution: (b) $\frac{\frac{1}{2}S = \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots \infty}{\frac{1}{2}S = 1 + \frac{2}{2} + \frac{2}{2^2} + \frac{2}{2^3} + \dots \infty}$ (on subtracting) $\Rightarrow \frac{S}{2} = 1 + 2\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \infty\right) \Rightarrow \frac{S}{2} = 1 + 2 \times \left(\frac{1/2}{1 - 1/2}\right) = 3$. Hence S = 6**Example: 45** Sum of the series $1 + 2.2 + 3.2^2 + 4.2^3 + \dots + 100.2^{99}$ is [IIIT (Hydrabad) 2000; Kerala (Engg.) 2001] (a) $100.2^{100} + 1$ (b) $99.2^{100} + 1$ (c) $99.2^{100} - 1$ (d) $100.2^{100} - 1$ **Solution:** (b) Let $S = 1 + 2.2 + 3.2^2 + 4.2^3 + \dots + 100.2^{99}$(i) $2S = 1.2 + 2.2^2 + 3.2^3 + \dots + 99.2^{99} + 100.2^{100}$ (ii) Equation (i) - Equation (ii) gives, $-S = 1 + (1.2 + 1.2^{2} + 1.2^{3} + \dots \text{ upto 99 terms}) - 100.2^{100} = 1 + \frac{2(2^{99} - 1)}{2} - 100.2^{100}$ $\implies S = -1 - 2^{100} + 2 + 100.2^{100} = 1 + 99.2^{100}$ The sum of the series $3 + 33 + 333 + \dots + n$ terms is Example: 46 [Rajasthan PET 2000] (a) $\frac{1}{27}(10^{n+1}+9n-28)$ (b) $\frac{1}{27}(10^{n+1}-9n-10)$ (c) $\frac{1}{27}(10^{n+1}+10n-9)$ (d) None of these $S = 3 + 33 + 333 + \dots$ to *n* terms Solution: (b) $\frac{S = 3 + 33 + \dots}{0 = 3 + 30 + 300 + \dots}$ to *n* terms $-T_n$ (on subtracting) \therefore $T_n = 3(1+10+100+\dots$ to *n* terms) = $3 \times 1 \cdot \frac{10^n - 1}{10-1} = \frac{1}{3}(10^n - 1)$ $S_n = \sum_{i=1}^{n} \frac{1}{3} (10^n - 1) = \frac{1}{3} \sum_{i=1}^{n} 10^n - \frac{1}{3} \sum_{i=1}^{n} 1 = \frac{1}{3} \left(10 \cdot \frac{10^n - 1}{10 - 1} \right) - \frac{1}{3} n$ $S = \frac{1}{27} (10^{n+1} - 9n - 10)$ Example: 47 The sum of *n* terms of the following series $1 + (1 + x) + (1 + x + x^2) + \dots$ will be [IIT 1962] (a) $\frac{1-x^n}{1-x}$ (b) $\frac{x(1-x^n)}{1-x}$ (c) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$ (d) None of these $S = 1 + (1 + x) + (1 + x + x²) + \dots$ **Solution:** (c) $\frac{S = 1 + (1 + x) + \dots}{0 = (1 + x + x^{2} + \dots \text{ to } n \text{ terms}) - T_{n}} \quad \text{(on subtracting)}$ \therefore $T_n = \frac{1-x^n}{1-x^n}$

$$S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n \frac{1-x^n}{1-x} = \frac{1}{1-x} \sum_{n=1}^n 1 - \frac{1}{1-x} \sum_{n=1}^n x^n = \frac{1}{1-x} \cdot n - \frac{1}{1-x} \cdot x \cdot \left(\frac{1-x^n}{1-x}\right)$$

(d) None of these

$$= \frac{n}{1-x} - \frac{x(1-x^n)}{(1-x)^2} = \frac{n(1-x) - x(1-x^n)}{(1-x)^2}$$

Example: 48 The sum to *n* terms of the series $1+3+7+15+31+\ldots$ is

(a) $2^{n+1} - n$

[IIT 1963]

Solution: (b)

$$S = 1 + 3 + 7 + 15 + 31 + \dots$$

$$S = 1 + 3 + 7 + 15 + \dots$$

$$0 = (1 + 2 + 4 + 8 + 16 + \dots \text{ to } n \text{ terms}) - T_n \quad \text{(on subtracting)}$$

$$\therefore \quad T_n = 1 + 2 + 4 + 8 + \dots \text{ to } n \text{ terms} = 1 \cdot \frac{2^n - 1}{2 - 1} = 2^n - 1$$

$$S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n (2^n - 1) = \sum_{n=1}^n 2^n - \sum_{n=1}^n 1 = 2 \cdot \left(\frac{2^n - 1}{2 - 1}\right) - n = 2^{n+1} - n - 2$$

Miscellaneous series

(b) $2^{n+1} - n - 2$ (c) $2^n - n - 2$

3.22 Special Series

There are some series in which n^{th} term can be predicted easily just by looking at the series.

If
$$T_n = \alpha n^3 + \beta n^2 + \gamma n + \delta$$

Then $S_n = \sum_{n=1}^n T_n = \sum_{n=1}^n (\alpha n^3 + \beta n^2 + \gamma n + \delta) = \alpha \sum_{n=1}^n n^3 + \beta \sum_{n=1}^n n^2 + \gamma \sum_{n=1}^n n + \delta \sum_{n=1}^n 1$
 $= \alpha \left(\frac{n(n+1)}{2} \right)^2 + \beta \left(\frac{n(n+1)(2n+1)}{6} \right) + \gamma \left(\frac{n(n+1)}{2} \right) + \delta n$
Volt: : I Sum of squares of first *n* natural numbers
 $= 1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{r=1}^n r^2 = \frac{n(n+1)(2n+1)}{6}$
I Sum of cubes of first *n* natural numbers
 $= 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \sum_{r=1}^n r^3 = \left[\frac{n(n+1)}{2} \right]^2$
3.23 V_n Method

- - (1) To find the sum of the series $\frac{1}{a_1 a_2 a_3 \dots a_r} + \frac{1}{a_2 a_3 \dots a_{r+1}} + \dots + \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$

Let *d* be the common difference of A.P. Then $a_n = a_1 + (n-1)d$.

Let S_n and T_n denote the sum to *n* terms of the series and n^{th} term respectively.

$$S_n = \frac{1}{a_1 a_2 \dots a_r} + \frac{1}{a_2 a_3 \dots a_{r+1}} + \dots + \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$$

$$\therefore T_n = \frac{1}{a_n a_{n+1} \dots a_{n+r-1}}$$

Let
$$V_n = \frac{1}{a_{n+1}a_{n+2}...a_{n+r-1}}$$
; $V_{n-1} = \frac{1}{a_na_{n+1}...a_{n+r-2}}$

$$\Rightarrow V_n - V_{n-1} = \frac{1}{a_{n+1}a_{n+2}...a_{n+r-1}} - \frac{1}{a_na_{n+1}...a_{n+r-2}} = \frac{a_n - a_{n+r-1}}{a_na_{n+1}...a_{n+r-1}}$$

$$= \frac{[a_1 + (n-1)a_n] - [a_1 + ((n+r-1)-1)d]}{a_na_{n+1}...a_{n+r-1}} = d(1-r)T_n$$

$$\therefore T_n = \frac{1}{d(r-1)} \{V_{n-1} - V_n\}, \quad \therefore S_n = \sum_{n=1}^n T_n = \frac{1}{d(r-1)} (V_0 - V_n)$$

$$S_n = \frac{1}{(r-1)(a_2 - a_1)} \{\frac{1}{a_1a_2...a_{n+r-1}} - \frac{1}{a_{n+1}a_{n+2}...a_{n+r-1}}\}$$
Example: If $a_1, a_2, ..., a_n$ are in A.P., then

$$\frac{1}{a_1a_2a_3} + \frac{1}{a_2a_3a_4} + \dots + \frac{1}{a_na_{n+1}a_{n+2}} = \frac{1}{2(a_2 - a_1)} \{\frac{1}{a_1a_2} - \frac{1}{a_{n+1}a_{n+2}}\}$$
(2) If $S_n = a_1a_{n+1}a_{n+r-1}$
 $T_n = a_na_{n+1}...a_{n+r-1}$
Let $V_n = a_na_{n+1}...a_{n+r-1}$
 $I_n = a_na_{n+1}...a_{n+r-1}$
 $\sum V_n - V_{n-1} = a_na_{n+1}a_{n+2}...a_{n+r-1} (a_{n+r} - a_{n-1}) = T_n \{[a_1 + (n+r-1)d] - [a_1 + (n-2)d]\} = T_n(r+1)d$
 $\therefore T_n = \frac{V_n - V_{n-1}}{(r+1)d}$
 $S_n = \sum_{n=1}^n T_n = \frac{1}{(r+1)d} \sum_{n=1}^n (V_n - V_{n-1}) = \frac{1}{(r+1)d} (V_n - V_0) = \frac{1}{(r+1)d} \{(a_na_{n+1}...a_{n+r}) - (a_0a_1...a_r)\}$
 $= \frac{1}{(r+1)(a_2 - a_1)} [a_na_{n+1}...a_{n+r} - a_0a_1...a_r]$
Example: 1.2.3.4 + 2.3.4.5 + + $n(n+1)(n+2)(n+3) = \frac{1}{5.1} \{n(n+1)(n+2)(n+3) - 0.1.2.3\}$
 $= \frac{1}{5} \{n(n+1)(n+2)(n+3)\}$
Example: 49 The sum of $1^3 + 2^3 + 3^3 + + 1n^3$ is (MP PET 2003)
Solution: (c) $S = 1^3 + 2^3 + 3^3 + + 1n^3$; For $n = 15$, the value of $\left(\frac{n(n+1)}{2}\right)^2 = \left(\frac{15 \times 16}{2}\right)^2 = 14400$
Example: 50 A series whose nth term is $\left(\frac{n}{n}\right\} + y$, the sum of r terms will be (UPSEAT 1999)

(a)
$$\left\{\frac{r(r+1)}{2x}\right\} + ry$$
 (b) $\left\{\frac{r(r-1)}{2x}\right\}$ (c) $\left\{\frac{r(r-1)}{2x}\right\} - ry$ (d) $\left\{\frac{r(r+1)}{2x}\right\} - rx$
Solution: (a) $S_r = \sum_{r=1}^r t_n = \sum_{r=1}^r \left(\frac{n}{x} + y\right) = \frac{1}{x} \sum_{r=1}^r n + y \sum_{r=1}^r 1 = \frac{1}{x} \frac{r(r+1)}{2} + yr = \frac{r(r+1)}{2x} + ry$

[UPSEAT 1999]

Example: 51 If $(1^2 - t_1) + (2^2 - t_2) + \dots + (n^2 - t_n) = \frac{1}{3}n(n^2 - 1)$, then t_n is

(a)
$$\frac{n}{2}$$
 (b) $n-1$ (c) $n+1$ (d) n
Solution: (d) $\frac{1}{3}n(n^2-1) = (1^2+2^2+...+n^2) - (t_1 + t_2 + + t_n)$
 $\Rightarrow t_1 + t_2 + + t_n = 1^2 + 2^2 + 3^2 + + n^2 - \frac{1}{3}n(n^2-1) = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3}n(n^2-1) = \frac{n(n+1)}{6} [2n+1-(2n-2)]$
 $\therefore t_1 + t_2 + t_3 + + t_n = \frac{n(n+1)}{2} \Rightarrow S_n = \frac{n(n+1)}{2}$
 $t_n = S_n - S_{n-1} = \frac{n(n+1)}{2} - \frac{(n-1)n}{2} = n$
Example: 52 The sum of the series $\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} +$ is [MNR 1984; UPSEAT 2000]
(a) $\frac{1}{3}$ (b) $\frac{1}{6}$ (c) $\frac{1}{9}$ (d) $\frac{1}{12}$
Solution: (d) $S = \left(\frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} +\right) = \frac{1}{4}\left[\left(\frac{1}{3} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{11}\right) + \left(\frac{1}{11} - \frac{1}{15}\right) + + \frac{1}{\infty}\right] = \frac{1}{4}\left[\frac{1}{3} - 0\right] = \frac{1}{12}$
Example: 53 The sum of the series 1.2.3 + 2.3.4 + 3.4.5 + to n terms is [Murushetra CEE 1998]
(a) $n(n+1)(n+2)(n+3)$ (b) $(n+1)(n+2)(n+3)$
(c) $\frac{1}{4}n(n+1)(n+2)(n+3)$ (d) $\frac{1}{4}(n+1)(n+2)(n+3)$
Solution: (c) $T_n = n(n+1)(n+2) = n^3 + 3n^2 + 2n$
 $\therefore S = 1.2.3 + 2.3.4 + 3.4.5 + to n terms = \sum_{n=1}^{n} (n^3 + 3n^2 + 2n) = \sum_{n=1}^{n} n^3 + 3 \sum_{n=1}^{n} n^2 + 2 \sum$

3.24 Properties of Arithmetic, Geometric and Harmonic means between Two given Numbers

Let *A*, *G* and *H* be arithmetic, geometric and harmonic means of two numbers *a* and *b*. Then, $A = \frac{a+b}{2}$, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$

These three means possess the following properties :

(1)
$$A \ge G \ge H$$

 $A = \frac{a+b}{2}, G = \sqrt{ab} \text{ and } H = \frac{2ab}{a+b}$
 $\therefore A - G = \frac{a+b}{2} - \sqrt{ab} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \ge 0$
 $\Rightarrow A \ge G$ (i)
 $G - H = \sqrt{ab} - \frac{2ab}{a+b} = \sqrt{ab} \left(\frac{a+b-2\sqrt{ab}}{a+b}\right) = \frac{\sqrt{ab}}{a+b} (\sqrt{a} - \sqrt{b})^2 \ge 0$

 $\Rightarrow G \ge H$ (ii)

From (i) and (ii), we get $A \ge G \ge H$

Note that the equality holds only when a = b

(2) *A*, *G*, *H* from a G.P., *i.e.*
$$G^2 = AH$$

$$AH = \frac{a+b}{2} \times \frac{2ab}{a+b} = ab = (\sqrt{ab})^2 = G^2$$

Hence, $G^2 = AH$

(3) The equation having *a* and *b* as its roots is $x^2 - 2Ax + G^2 = 0$ The equation having *a* and *b* its roots is $x^2 - (a+b)x + ab = 0$

$$\Rightarrow x^{2} - 2Ax + G^{2} = 0 \qquad \qquad \left[\because A = \frac{a+b}{2} \text{ and } G = \sqrt{ab} \right]$$

The roots *a*, *b* are given by $A \pm \sqrt{A^2 - G^2}$

(4) If *A*, *G*, *H* are arithmetic, geometric and harmonic means between three given numbers *a*, *b* and *c*, then the equation having *a*, *b*, *c* as its roots is $x^3 - 3Ax^2 + \frac{3G^3}{H}x - G^3 = 0$

$$A = \frac{a+b+c}{3}, G = (abc)^{1/3} \text{ and } \frac{1}{H} = \frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3}$$
$$\Rightarrow a+b+c = 3A, abc = G^3 \text{ and } \frac{3G^3}{H} = ab+bc+ca$$

The equation having *a*, *b*, *c* as its roots is $x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc = 0$

$$\Rightarrow x^3 - 3Ax^2 + \frac{3G^3}{H}x - G^3 = 0$$

3.25 Relation between A.P., G.P. and H.P.

(1) If A, G, H be A.M., G.M., H.M. between a and b, then $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \begin{cases} A \text{ when } n = 0\\ G \text{ when } n = -1/2\\ H \text{ when } n = -1 \end{cases}$

(2) If A_1, A_2 be two A.M.'s; G_1, G_2 be two G.M.'s and H_1, H_2 be two H.M.'s between two numbers *a* and *b* then $\boxed{\frac{G_1G_2}{H_1H_2} = \frac{A_1 + A_2}{H_1 + H_2}}$

(3) **Recognization of A.P., G.P., H.P.** : If *a*, *b*, *c* are three successive terms of a sequence.

Then if,
$$\frac{a-b}{b-c} = \frac{a}{a}$$
, then *a*, *b*, *c* are in A.P
If, $\frac{a-b}{b-c} = \frac{a}{b}$, then *a*, *b*, *c* are in G.P.

If, $\frac{a-b}{b-c} = \frac{a}{c}$, then a, b, c are in H.P.

(4) If number of terms of any A.P./G.P./H.P. is odd, then A.M./G.M./H.M. of first and last terms is middle term of series.

(5) If number of terms of any A.P./G.P./H.P. is even, then A.M./G.M./H.M. of middle two terms is A.M./G.M./H.M. of first and last terms respectively.

(6) If p^{th} , q^{th} and r^{th} terms of a G.P. are in G.P. Then p, q, r are in A.P.

- (7) If *a*, *b*, *c* are in A.P. as well as in G.P. then a = b = c.
- (8) If *a*, *b*, *c* are in A.P., then x^a, x^b, x^c will be in G.P. $(x \neq \pm 1)$

If the A.M., G.M. and H.M. between two positive numbers a and b are equal, then [Rajasthan PET 2003] Example: 54 (a) a = b(b) ab = 1(c) a > b(d) a < bSolution: (a) \therefore A.M. = G.M. $\Rightarrow \frac{a+b}{2} = \sqrt{ab} \Rightarrow \frac{(\sqrt{a})^2 - 2\sqrt{a}\sqrt{b} + (\sqrt{b})^2}{2} = 0 \Rightarrow \frac{(\sqrt{a} - \sqrt{b})^2}{2} = 0 \Rightarrow a = b$ \therefore G.M. = H.M. $\Rightarrow \sqrt{ab} = \frac{2ab}{a+b} \Rightarrow a+b-2\sqrt{ab} = 0 \Rightarrow (\sqrt{a}-\sqrt{b})^2 = 0 \Rightarrow \sqrt{a} = \sqrt{b} \therefore a = b$ Thus A.M. =(G.M.) (H.M.) So a = bExample: 55 Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation [AIEEE 2004] (a) $x^2 - 18x - 16 = 0$ (b) $x^2 - 18x + 16 = 0$ (c) $x^2 + 18x - 16 = 0$ (d) $x^2 + 18x + 16 = 0$ **Solution:** (b) A = 9, G = 4 are respectively the A.M. and G.M. between two numbers, then the quadratic equation having its roots as the two numbers, is given by $x^2 - 2Ax + G^2 = 0$ *i.e.* $x^2 - 18x + 16 = 0$ **Example: 56** If $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in H.P., then [UPSEAT 2002] (a) a^2b, c^2a, b^2c are in A.P. (b) $a^2b.b^2c.c^2a$ are in H.P. (c) $a^2b.b^2c.c^2a$ are in G.P. (d) None of these **Solution:** (a) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ are in H.P. $\Rightarrow \frac{b}{a}, \frac{c}{b}, \frac{a}{c}$ are in A.P. $\Rightarrow abc \times \frac{b}{a}, abc \times \frac{c}{b}, abc \times \frac{a}{c}$ are in A.P. $\Rightarrow b^2c, ac^2, a^2b$ are in A.P. $\therefore a^2b, c^2a, b^2c$ are in A.P. If *a*, *b*, *c* are in G.P., then $\log_a x$, $\log_b x$, $\log_c x$ are in Example: 57 [Rajasthan PET 2002] (b) G.P. (c) H.P. (d) None of these (a) A.P. **Solution:** (c) *a*, *b*, *c* are in G.P. $\Rightarrow \log_x a, \log_x b, \log_x c$ are in A.P. $\Rightarrow \frac{1}{\log_a x}, \frac{1}{\log_b x}, \frac{1}{\log_c x}$ are in A.P. $\therefore \log_a x, \log_b x, \log_c x$ are in H.P.

Example: 58 If A_1, A_2 ; G_1, G_2 and H_1, H_2 be two A.M.'s, G.M.'s and H.M.'s between two quantities, then the value of $rac{G_1G_2}{H_1H_2}$ is

[Roorkee 1983; AMU 2000]

(a)
$$\frac{A_1 + A_2}{H_1 + H_2}$$
 (b) $\frac{A_1 - A_2}{H_1 + H_2}$ (c) $\frac{A_1 + A_2}{H_1 - H_2}$ (d) $\frac{A_1 - A_2}{H_1 - H_2}$

Solution: (a) Let *a* and *b* be the two numbers

$$\therefore A_{1} = a + \left(\frac{b-a}{3}\right) = \frac{2a+b}{3}, A_{2} = a + 2\left(\frac{b-a}{3}\right) = \frac{a+2b}{3}$$

$$G_{1} = a\left(\frac{b}{a}\right)^{1/3} = a^{2/3} b^{1/3}, G_{2} = a\left(\left(\frac{b}{a}\right)^{1/3}\right)^{2} = a^{1/3}b^{2/3}$$

$$H_{1} = \frac{1}{\frac{1}{a} + \left(\frac{1}{b} - \frac{1}{a}\right)\frac{1}{3}} = \frac{3}{\frac{2}{a} + \frac{1}{b}} = \frac{3ab}{a+2b}, H_{2} = \frac{3ab}{2a+b}$$

$$\therefore \frac{G_{1}G_{2}}{H_{1}H_{2}} = \frac{(a^{2/3}b^{1/3})(a^{1/3}b^{2/3})}{\frac{3ab}{a+2b}} = \frac{(a+2b)(2a+b)}{9ab}$$

$$A_{1} + A_{2} = \frac{2a+b}{3} + \frac{a+2b}{3} = a+b$$

$$H_{1} + H_{2} = \frac{3ab}{a+2b} + \frac{3ab}{2a+b} = 3ab\left(\frac{2a+b+a+2b}{(a+2b)(2a+b)}\right) = \frac{9ab(a+b)}{(a+2b)(2a+b)}$$

$$\therefore \frac{A_{1} + A_{2}}{H_{1} + H_{2}} = \frac{(a+2b)(2a+b)}{9ab} = \frac{G_{1}G_{2}}{H_{1}H_{2}}$$

Example: 59 If the ratio of H.M. and G.M. of two quantities is 12:13, then the ratio of the numbers is [Rajasthan PET 1990] (b) 2:3 (c) 3:4 (d) None of these (a) 1:2 **Solution:** (d) Let *x* and *y* be the numbers

$$\therefore \text{ H.M.} = \frac{2xy}{x+y}, \text{ G.M.} = \sqrt{xy}$$

$$\therefore \frac{\text{H.M.}}{\text{G.M.}} = \frac{2\sqrt{xy}}{x+y} = \frac{2\sqrt{x/y}}{\frac{x}{y}+1} \implies \frac{12}{13} = \frac{2r}{r^2+1}, \text{ ($\therefore r = \sqrt{\frac{x}{y}}$) $\Rightarrow $12r^2 - 26r + 12 = 0 $\Rightarrow $6r^2 - 13r + 6 = 0$}$$

$$\therefore r = \frac{13 \pm \sqrt{13^2 - 4.6.6}}{2 \times 6} = \frac{13 \pm 5}{12} = \frac{18}{12}, \frac{8}{12} = \frac{3}{2}, \frac{2}{3}$$

$$\therefore \text{ Ratio of numbers } = \frac{x}{y} = r^2 : 1 = \frac{9}{4} : 1 \text{ or } \frac{4}{9} : 1 = 9 : 4 \text{ or } 4 : 9$$

Example: 60 If the A.M. of two numbers is greater than G.M. of the numbers by 2 and the ratio of the numbers is 4 [Rajasthan PET 1988] : 1, then the numbers are (h) 12 2 (2) (c) 16 1 (d) None of these

(a) 4, 1
 (b) 12, 3
 (c) 16, 4

 Solution: (c) Let x and y be the numbers

$$\therefore$$
 A.M. = G.M. +

$$\therefore$$
 A.M. = G.M. + 2 $\Rightarrow \frac{x+y}{2} = \sqrt{xy} + 2$

Also,
$$\frac{x}{y} = 4:1 \implies x = 4y$$

$$\therefore \frac{4y+y}{2} = \sqrt{4y} + 2 \implies \frac{5y}{2} = 2y + 2 \implies y = 4 \implies x = 4 \times 4 = 16$$

 \therefore The numbers are 16, 4.

Example: 61 If the ratio of A.M. between two positive real numbers *a* and *b* to their H.M. is *m* : *n*, then *a* : *b* is

(a)
$$\frac{\sqrt{m-n}+\sqrt{n}}{\sqrt{m-n}-\sqrt{n}}$$
 (b) $\frac{\sqrt{n}+\sqrt{m-n}}{\sqrt{n}-\sqrt{m-n}}$ (c) $\frac{\sqrt{m}+\sqrt{m-n}}{\sqrt{m}-\sqrt{m-n}}$ (d) None of these
Solution: (c) We have, $\frac{m}{n} = \frac{(a+b)/2}{2ab/(a+b)} \Rightarrow \frac{m}{n} = \frac{(a+b)^2}{4ab} = \left(\frac{a}{b}+1\right)^2 \Rightarrow 4\frac{m}{n}\left(\frac{a}{b}\right) = \left(\frac{a}{b}+1\right)^2 \Rightarrow 2\frac{\sqrt{m}}{\sqrt{n}}\sqrt{\frac{a}{b}} = \left(1+\frac{a}{b}\right)$
Let $\frac{a}{b} = r^2$, $\therefore \frac{2\sqrt{m}}{\sqrt{n}}r = (1+r^2) \Rightarrow 2\sqrt{m}r = \sqrt{n} + \sqrt{n}r^2 \Rightarrow \sqrt{n}r^2 - 2\sqrt{m}r + \sqrt{n} = 0$
 $\therefore r = \frac{2\sqrt{m} \pm \sqrt{4m-4n}}{2\sqrt{n}} = \frac{\sqrt{m} \pm \sqrt{m-n}}{\sqrt{n}}$
Considering +ve sign, $r = \frac{\sqrt{m} \pm \sqrt{m-n}}{\sqrt{n}} = \frac{(\sqrt{m} + \sqrt{m-n})(\sqrt{m} - \sqrt{m-n})}{\sqrt{n}(\sqrt{m} - \sqrt{m-n})} = \frac{m-(m-n)}{\sqrt{n}(\sqrt{m} - \sqrt{m-n})} = \frac{\sqrt{n}}{\sqrt{m} - \sqrt{m-n}}$.

3.26 Applications of Progressions

There are many applications of progressions is applied in science and engineering. Properties of progressions are applied to solve problems of inequality and maximum or minimum values of some expression can be found by the relation among A.M., G.M. and H.M.

Example: 62 If
$$x = \log_5 3 + \log_7 5 + \log_9 7$$
 then
(a) $x \ge \frac{3}{2}$ (b) $x \ge \frac{1}{\sqrt{2}}$ (c) $x \ge \frac{3}{\sqrt{2}}$ (d) None of these
Solution: (c) $x = \log_5 3 + \log_7 5 + \log_9 7$
 $\frac{\log_5 3 + \log_7 5 + \log_9 7}{3} \ge (\log_5 3 . \log_7 5 . \log_9 7)^{1/3}$ [A.M. \ge G.M.]
 $\Rightarrow \frac{x}{3} \ge (\log_9 3)^{1/3} \Rightarrow x \ge 3(\log_9 9^{1/2})^{1/3} \Rightarrow x \ge 3\left(\frac{1}{2}\right)^{1/3}$. Hence $x \ge \frac{3}{\sqrt{2}}$
Example: 63 If a, b, c, d are four positive numbers then
(a) $\left(\frac{a}{b} + \frac{b}{c}\right)\left(\frac{c}{d} + \frac{d}{e}\right) \ge 4 \cdot \sqrt{\frac{a}{e}}$ (b) $\left(\frac{a}{b} + \frac{c}{d}\right)\left(\frac{b}{c} + \frac{d}{d}\right) \ge 4 \cdot \sqrt{\frac{a}{e}}$
(c) $\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a} \ge 5$ (d) $\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{e}{e} \ge \frac{1}{5}$
Solution: (a,b,c) We have $\frac{\frac{b}{b} + \frac{b}{c}}{2} \ge \left(\frac{a}{b} \cdot \frac{b}{c}\right)^{1/2}$; (: A.M. \ge G.M.)
 $\Rightarrow \frac{a}{b} + \frac{b}{c} \ge 2\sqrt{\frac{a}{c}}$ (i)
Similarly, $\frac{c}{d} + \frac{d}{e} \ge 2\sqrt{\frac{c}{e}}$ (ii)
Multiplying (i) by (ii),
 $\left(\frac{a}{b} + \frac{b}{c}\right)\left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{c}}\sqrt{\frac{c}{e}} \Rightarrow \left(\frac{a}{b} + \frac{b}{c}\right)\left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$, ... (a) is true
Next, $\left(\frac{a}{b} + \frac{c}{d}\right)\left(\frac{b}{c} + \frac{d}{e}\right) \ge 2\left(\frac{a}{b} \cdot \frac{c}{d}\right)^{1/2} \cdot 2\left(\frac{b}{c} \cdot \frac{d}{e}\right)^{1/2} \Rightarrow \left(\frac{a}{b} + \frac{c}{d}\right)\left(\frac{b}{c} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$, ... (b) is true

$$\frac{\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a}}{5} \ge \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{d} \cdot \frac{d}{e} \cdot \frac{e}{a}\right)^{1/5} \Rightarrow \frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a} \ge 5, \quad \therefore \text{ (c) is true}$$

Now,
$$\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5 \left(\frac{b}{a} \cdot \frac{c}{b} \cdot \frac{d}{c} \cdot \frac{e}{d} \cdot \frac{a}{e} \right)^{1/5} \implies \frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5$$
, \therefore (d) is false

Example: 64 Let a_n = product of first *n* natural numbers. Then for all $n \in N$

(a)
$$n^n \ge a_n$$
 (b) $\left(\frac{n+1}{2}\right)^n \ge n!$ (c) $n^n \ge a_n + 1$ (d) None of these

Solution: (a,b) We have
$$a_n = 1.2.3....n = n!$$
, $n^n = n.n.n...$ to *n* times

$$\Rightarrow n^{n} \ge n.(n-1)(n-2)....\{n-(n-1)\} \Rightarrow n^{n} \ge n.(n-1)(n-2).....2.1 \Rightarrow n^{n} \ge n! \therefore n^{n} \ge a_{n}.$$
 So (a) is true
 $n^{n} \ge (n+1)! \Rightarrow n^{n} \ge a_{n}+1.$ So (c) is false
 $\frac{1+2+3+....+n}{n} \ge (1.2.3....n)^{1/n} \Rightarrow \frac{n(n+1)}{2n} \ge (n!)^{1/n} \Rightarrow \frac{n+1}{2} \ge (n!)^{1/n}. \therefore \left(\frac{n+1}{2}\right)^{n} \ge n!.$ So (b) is true.

Example: 65 In the given square, a diagonal is drawn and parallel line segments joining points on the adjacent sides are drawn on both sides of the diagonal. The length of the diagonal is $n\sqrt{2}$ cm. If the distance between consecutive line segments be $\frac{1}{\sqrt{2}}$ cm then the sum of the lengths of all possible line segments and the diagonal is

(a)
$$n(n+1)\sqrt{2} \ cm$$
 (b) $n^2 \ cm$ (c) $n(n+2)cm$ (d) $n^2\sqrt{2} \ cm$
Solution: (d) Let us consider the diagonal and an adjacent parallel line
Length of the line $PQ = RS = AC - (AR + SC) = AC - 2AR$
 $= AC - 2.PR$ ($\because AR = PR$)
 $= n\sqrt{2} - 2 \cdot \frac{1}{\sqrt{2}} = n\sqrt{2} - \sqrt{2} = (n-1)\sqrt{2} \ cm$
Length of line adjacent to PQ , other than AC , will be $((n-1)-1)\sqrt{2} = (n-2)$
 \therefore Sum of the lengths of all possible line segments and the diagonal
 $= 2 \times [n\sqrt{2} + (n-1)\sqrt{2} + (n-2)\sqrt{2} + (...] - n\sqrt{2}$, $n \in N$
 $= 2 \times \sqrt{2}[n + (n-1) + (n-2) + + 1] - n\sqrt{2} = 2\sqrt{2} \times \frac{n(n+1)}{2} - n\sqrt{2} = n\sqrt{2}\{n+1-1\} = n^2\sqrt{2} \ cm$
Example: 66 Let $f(x) = \frac{1-x^{n+1}}{1-x}$ and $g(x) = 1 - \frac{2}{x} + \frac{3}{x^2} - + (-1)^n \frac{n+1}{x^n}$. Then the constant term in $f'(x) \times g(x)$ is equal to
(a) $\frac{n(n^2-1)}{6}$ when n is even (b) $\frac{n(n+1)}{2}$ when n is odd (c) $-\frac{n}{2}(n+1)$ when n is even
(d) $-\frac{n(n-1)}{2}$ when n is odd
Solution: (b,c) $f(x) = \frac{1-x^{n+1}}{1-x} = \frac{(1-x)(1+x+x^2+.....+x^n)}{(1-x)} = 1+x+x^2+.....+x^n$; $f'(x) = 1+2x+3x^2+.....+nx^{n-1}$
 $f'(x).g(x) = (1+2x+3x^2+....+nx^{n-1}) \times \left(1-\frac{2}{x}+\frac{3}{x^2}-....+(-1)^n\frac{n+1}{x^n}\right)$

$$\therefore \text{ constant term in } f'(x) \times g(x) \text{ is}$$

$$c = 1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + n^{2}(-1)^{n-1} = [1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2}] - 2[2^{2} + 4^{2} + 6^{2} + \dots]$$
when
$$n \qquad \text{is} \qquad \text{odd,}$$

$$c = [1^{2} + 2^{2} + \dots + n^{2}] - 2[2^{2} + 4^{2} + 6^{2} + \dots + (n-1)^{2}] = \left[\frac{n(n+1)(2n+1)}{6} - 2.2^{2}[1^{2} + 2^{2} + 3^{2} + \dots + \left(\frac{n-1}{2}\right)^{2}\right]$$

$$= \frac{n(n+1)(2n+1)}{6} - 8\frac{\left(\frac{n-1}{2}\right) \cdot \left(\frac{n-1}{2}+1\right) \left(2\frac{n-1}{2}+1\right)}{6} = \frac{n(n+1)(2n+1)}{6} - \frac{n(n-1)(n+1)}{3}$$

$$= \frac{n(n+1)}{6}(2n+1-2(n-1)) = \frac{n(n+1)}{6} \times 3 = \frac{n(n+1)}{2}$$

when *n* is even, $c = [1^2 + 2^2 + \dots + n^2] - 2[2^2 + 4^2 + \dots + n^2] = \frac{n(n+1)(2n+1)}{6} - 2.2^2 \left[1^2 + 2^2 + \dots + \left(\frac{n}{2}\right) \right]$

$$=\frac{n(n+1)(2n+1)}{6} - 8\frac{\left(\frac{n}{2}\right)\cdot\left(\frac{n}{2}+1\right)\left(2\cdot\frac{n}{2}+1\right)}{6} = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3}n(n+1)(n+2)$$
$$=\frac{1}{6}n(n+1)(2n+1-2(n+2)) = -\frac{1}{2}n(n+1)$$
