

Practice Problems

Problems based on ΔQ , ΔU and ΔW

- 1. Work done in the given P-V diagram in the cyclic process is
 - (a) PV
 - (b) 2PV
 - (c) PV/2
 - (d) 3PV
- 2. Which of the following is not a thermodynamics co-ordinate
 - (a) P

(b) T

(c) V

(d) R

(2P,

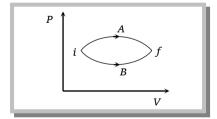
3. Which of the following can not determine the state of a thermodynamic system

[AFMC 2001]

(a) Pressure and volume

(b) Volume and temperature

7P


(P, V)

(c) Temperature and pressure

- (d)
- Any one of pressure, volume or

temperature

- 4. In the figure given two processes A and B are shown by which a thermo-dynamical system goes from initial to final state F. If ΔQ_A and ΔQ_B are respectively the heats supplied to the systems then
 - (a) $\Delta Q_A = \Delta Q_B$
 - (b) $\Delta Q_A \geq \Delta Q_B$
 - (c) $\Delta Q_A < \Delta Q_B$
 - (d) $\Delta Q_A > \Delta Q_B$

- 5. In the cyclic process shown in the figure, the work done by the gas in one cycle is
 - (a) $28 p_1 V_1$
 - (b) $14 p_1 V_1$
 - (c) $18 p_1 V_1$
 - (d) $9 p_1 V_1$
- **6.** The internal energy of an ideal gas depends upon
- (c) Temp
- [RPMT 1997; MP PMT 1999]

- (a) Specific volume
- (b) Pressure
- (c) Temperature
- (d) Density

(a) Joule × Calorie

(a) $\frac{2V^2}{IS}$

15.

(b) Joule / Calorie

what will be the increase in temperature (Specific heat of lead is S)

(b) $\frac{V^2}{4 IS}$

An ideal gas is taken around the cycle ABCA as shown in the P-V diagram. The net work done by the gas during 7. the cycle is equal to [CPMT 1991] (a) $12 P_1 V_1$ (b) $6 P_1 V_1$ $3V_{\bullet}$ (c) $3 P_1 V_1$ (d) P_1V_1 8. The internal energy U is a unique function of any state, because change in U[CPMT 1980] (a) Does not depend upon path (b) Depend upon the path (c) Corresponds to an adiabatic process (d) Corresponds to an isothermal process Which of the following statements is/are correct 9. (a) Whenever heat is supplied to a gas, its internal energy increases (b) Internal energy of a gas must increase when its temperature is increased (c) Internal energy of a gas may be increased even if heat is not supplied to the gas (d) Internal energy of a gas is proportional to square of the velocity of the vessel in which gas is contained P-V diagram of an ideal gas is as shown in figure. Work done by the gas in process ABCD is 10. (a) $4 P_0 V_0$ (b) $2 P_0 V_0$ (c) $3 P_0 V_0$ (d) P_0V_0 Problems based on Joule's law 11. In a water-fall the water falls from a height of 100 m. If the entire kinetic energy of water is converted into heat, the rise in temperature of water will be (b) $0.46^{\circ}C$ (a) 0.23°C (c) $2.3^{\circ}C$ (d) 0.023°C A lead bullet of 10 g travelling at 300 m/s strikes against a block of wood and comes to rest. Assuming 50% of 12. heat is absorbed by the bullet, the increase in its temperature is (specific heat of lead = 150J/kg, K) (a) 100°C (b) 125°C (c) 150°C (d) 200°C 13. The mechanical equivalent of heat J is [MP PET 2000] (b) A physical quantity (c) A conversion factor (d) None of these 14. The S.I. unit of mechanical equivalent of heat is [MP PMT/PET 1998]

(c) Calorie × Erg

A lead ball moving with a velocity V strikes a wall and stops. If 50% of its energy is converted into heat, then

(c) $\frac{V^2S}{I}$

(d) Erg / Calorie

(d) $\frac{V^2S}{2I}$

В

Vacuum

Α

Gas

	(a) 0.95 K	(b) 0.095 K	(c) 0.0095 K	(d) None of these				
17.	4200 <i>J</i> of work is requ	ired for						
of 10	(a) Increasing the tem	perature of 10 <i>gm</i> of water t 10° <i>C</i>	(b) Increasing the temperature					
of 10	(c) Increasing the tem o kg of water through 10	perature of 1 <i>kg</i> of water thr ° <i>C</i>	rough 10°C	(d) Increasing the temperature				
	Pr	oblems based on Fir	st law of thermody	ynamic <mark>s</mark>				
> 1	- Basic level							
18.	First law of thermodynamics is a special case of [CPMT 1985; RPET 2000; DCE 2000; CBSE PMT 2000; AIEEE 2002; AFR							
	(a) Newton's law		(b) Law of conservat	(b) Law of conservation of energy				
	(c) Charle's law		(d) Law of heat exchange					
19.	If $\Delta Q > 0$ when heat flows into a system, $\Delta W > 0$ when work is done on the system, then the increase in the internal energy ΔU is							
				[AMU (Med.) 2001]				
	(a) $\Delta W + \Delta Q$	(b) $\Delta W - \Delta Q$	(c) $\Delta Q - \Delta W$	(d) $-(\Delta Q + \Delta W)$				
20.	In a given process on a	in ideal gas, $dW = 0$ and dQ	< 0. Then for the gas	[IIT-JEE (Screening) 2001]				
	(a) The temperature w	vill decrease	(b)	The volume will increase				
	(c) The pressure will r	remain constant	(d) The temperature	will increase				
21.		t the heat supplied to the sy amics can be written as (wh		on the system respectively, then the ergy)				
	(a) $\Delta Q = \Delta U + \Delta W$	(b) $\Delta Q = \Delta U - \Delta W$	(c) $\Delta Q = \Delta W - \Delta U$	(d) $\Delta Q = -\Delta W - \Delta U$				
22.	In thermodynamic process, 200 <i>Joules</i> of heat is given to a gas and 100 <i>Joules</i> of work is also done on it. The change in internal energy of the gas is							
	(a) 100 <i>J</i>	(b) 300 <i>J</i>	(c) 419 <i>J</i>	(d) 24 <i>J</i>				
23.		8 <i>joules</i> of work was done		such a manner that the gas releases internal energy of the gas was 30				
	,			[CPMT 1986]				
	(a) 2 <i>J</i>	(b) 42 <i>J</i>	(c) 18 <i>J</i>	(d) 58 <i>J</i>				
24.	In a reversible isobaric heating of an ideal gas from state 1 to state 2, the equations for heat transfer and work are							
	(a) $Q = C_P(T_2 - T_1), W = p(V_2 - V_1)$		(b) $Q = C_P(T_2 - T_1), W =$	= 0				
	(c) $Q = \int_{1}^{2} C_{P} dT, W = 0$		(d) None of these					
>>	Advance level							
25.	and <i>B</i> . Part <i>A</i> has an idforce constant <i>k</i> is con Gas in chamber <i>A</i> is all	leal gas at pressure P_0 and the value of the equilibrium to expand. Let in equilibrium P_0	emperature T_0 and in parall of the container as sh	ston of area S into two equal parts A rt B is vacuum. A massless spring of lown. Initially spring is unstretched. seed by x_0 . Then				
	(a) Final pressure of the	he gas is $\frac{m_0}{S}$						

A 10kg mass falls through 25 m on to the ground and bounces to a height of 0.50 m. Assume that all potential

energy lost is used in heating up the mass. The temperature rise will be (Given specific heat of the material is

[ISM Dhanbad 1994]

16.

252 *Joule/kg K*)

- (b) Work done by the gas is $\frac{1}{2}kx_0^2$
- (c) Change in internal energy of the gas is $\frac{1}{2}kx_0^2$
- (d) Temperature of the gas is decreased

Problems based on Isothermal process

Which is incorrect 26. [DCE 2001]

(a) In an isobaric process, $\Delta P = 0$

(b) In an isochoric process, $\Delta W = 0$

- (c) In an isothermal process, $\Delta T = 0$
- (d) In an isothermal process, $\Delta Q = 0$

Consider the following statements 27.

Assertion (A): The isothermal curves intersect each other at a certain point

Reason (R): The isothermal changes take place slowly, so the isothermal curves have very little slope

Of these statements [AIIMS 2001]

- (a) Both A and R are true and R is a correct explanation of A
- (b) Both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) Both A and R are false
- (e) A is false but R is true
- 28. The isothermal bulk modulus of a perfect gas at normal pressure is
 - (a) $1.013 \times 10^5 \ N/m^2$
- (b) $1.013 \times 10^6 N/m^2$
- (c) $1.013 \times 10^{-11} \ N/m^2$ (d) $1.013 \times 10^{11} \ N/m^2$
- When an ideal gas in a cylinder was compressed isothermally by a piston, the work done on the gas was found 29. to be $1.5 \times 10^4 J$. During this process about
 - (a) 3.6×10^3 calorie of heat flowed out from the gas
- (b) 3.6×10^3 calorie of heat flowed into the gas
- (c) 1.5×10^4 calorie of heat flowed into the gas
- (d) 1.5×10^4 calorie of heat flowed out from the gas
- If a gas is heated at constant pressure, its isothermal compressibility 30.
 - (a) Remains constant

- (b) Increases linearly with temperature
- (c) Decreases linearly with temperature
- (d) Decreases inversely with temperature
- N moles of an ideal diatomic gas are in a cylinder at temperature T. Suppose on supplying heat to the gas, its 31. temperature remain constant but n moles get dissociated into atoms. Heat supplied to the gas is
 - (a) Zero
- (b) $\frac{1}{2}nRT$
- (c) $\frac{3}{2}nRT$
- (d) $\frac{3}{2}(N-n)RT$

Problems based on Adiabatic process

- The slopes of isothermal and adiabatic curves are related as 32.
 - (a) Isothermal curve slope = Adiabatic curve slope
- (b) Isothermal curve slope = $\gamma \times Adiabatic$ curve slope
- (c) Adiabatic curve slope = $\gamma \times$ Isothermal curve slope (d) Adiabatic curve slope = $\frac{1}{2} \times$ Isothermal curve slope
- The work done in which of the following processes is equal to the change in internal energy of the system [UPSEAT 20 33.
 - (a) Adiabatic process
- (b) Isothermal process
- (c) Isochoric process
- (d) None of these
- In an adiabatic process, the state of a gas is changed from P_1, V_1, T_1 to P_2, V_2, T_2 . Which of the following relation 34. is correct

(d) $T_1V_1^{\gamma} = T_2V_2^{\gamma}$

36.	A monoatomic gas ($\gamma = 5/3$) is suddenly compressed to $\frac{1}{8}$ of its original volume adiabatically, then the pressure									
	of the gas will change to 2001]	[CPMT 1976, 83; MP PMT	[CPMT 1976, 83; MP PMT 1994; Roorkee 2000; KCET (Engg./Med.) 2000; Pb. PMT 1999,							
	(a) $\frac{24}{5}$	(b) $\frac{40}{3}$	(c) 8	(d) 32	times	it's	initial			
press	pressure									
37.	Consider the following statements									
	Assertion (A): In adiabatic compression, the internal energy and temperature of the system get decreased									
	Reason (<i>R</i>): The adiaba	tic compression is a slow pro	cess							
	Of these statements					[AIIM	S 2001]			
	(a) Both A and R are tru	e and R is a correct explanati	on of A							
	(b) Both A and R are true but R is not a correct explanation of A									
	(c) A is true but R is false									
	(d) Both A and R are false									
	(e) A is false but R is true									
38.	If γ denotes the ratio of two specific heats of a gas, the ratio of slopes of adiabatic and isothermal <i>P-V</i> curves at their point of intersection is									
	(a) $1/\gamma$	(b) γ	(c) $\gamma - 1$	(d) $\gamma + 1$						
39.	During the adiabatic expansion of 2 <i>moles</i> of a gas, the internal energy was found to have decreased by 100 The work done by the gas in this process is									
	(a) Zero	(b) - 100 <i>J</i>	(c) 200 J	(d) 100 J						
40.	For an adiabatic expansi	of $\frac{\Delta P}{P}$ is equal to	[CPMT 1983; MP PMT 1990]							
	(a) $-\sqrt{\gamma} \frac{\Delta V}{V}$	(b) $-\frac{\Delta V}{V}$	(c) $-\gamma \frac{\Delta V}{V}$	(d) $-\gamma^2 \frac{\Delta}{\gamma}$	$\frac{\Delta V}{V}$					
41.	The pressure in the tyre its new temperature will	e of a car is four times the at l be ($\gamma = 1.4$)	mospheric pressure at 30	O K. If this	tyre sud	ldenly	bursts,			
	(a) $300 (4)^{1.4/0.4}$	(b) $300 \left(\frac{1}{4}\right)^{-0.4/1.4}$	(c) 300 (2) ^{-0.4/1.4}	(d) 300 (4	L) ^{-0.4 / 1.4}					

(c) $1.4 N/m^2$

(d) $1.4 \times 10^5 \ N / m^2$

Pressure-temperature relationship for an ideal gas undergoing adiabatic change is $(\gamma = C_p \ / \ C_v)$

(b) $PT^{-1+\gamma} = constant$

(c) $T_1 P_1^{\gamma} = T_2 P_2^{\gamma}$

[CPMT 1992; MP PMT 1986, 87, 94, 97; DCE 2001; UPSEAT 1999; 2001; AFMC 2002]

(c) $P^{\gamma-1}T^{\gamma} = \text{constant}$ (d) $P^{1-\gamma}T^{\gamma} = \text{constant}$

(a) $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$ (b) $P_1 V_1^{\gamma - 1} = P_2 V_2^{\gamma - 1}$

35.

42.

43.

(a) $PT^{\gamma} = \text{constant}$

When a gas expands adiabatically

(a) $1 \times 10^5 \ N / m^2$

(a) No energy is required for expansion

(c) Internal energy of the gas is used in doing work(d) Law of conservation of energy does not hold

The adiabatic elasticity of hydrogen gas (γ = 1.4) at N.T.P. is

(b) $1 \times 10^{-8} \ N / m^2$

(b) Energy is required and it comes from the wall of the container of the gas

- Two identical adiabatic vessels are filled with oxygen at pressure P_1 and P_2 $(P_1 > P_2)$. The vessels are interconnected with each other by a non-conducting pipe. If U_{01} and U_{02} denote initial internal energy of oxygen in first and second vessel respectively and $\mathit{U_{f_1}}$ and $\mathit{U_{f_2}}$ denote final internal energy values, then

- (a) $\frac{U_{01}}{U_{02}} = \frac{P_1}{P_2}$, $U_{f_1} > U_{f_2}$ (b) $\frac{U_{01}}{U_{02}} = \frac{P_2}{P_1}$, $U_{f_1} > U_{f_2}$ (c) $\frac{U_{01}}{U_{02}} = \frac{P_2}{P_1}$, $U_{f_1} = U_{f_2}$ (d) $\frac{U_{01}}{U_{02}} = \frac{P_1}{P_2}$, $U_{f_1} = U_{f_2}$
- The volume of a gas at two atmospheric pressure is 1 litre. Its volume is increased to 4.5 litre by adiabatic 45. process, then the heat taken by the gas in calories in this process will be
 - (a) 840

- (d) Zero

Problems based on Isobaric proces

- In which process the P-V indicator diagram is a straight line parallel to volume axis [KCET (Engg./Med.) 2000; CPMT 20 46.
 - (a) Irreversible
- (b) Adiabatic
- (c) Isothermal
- (d) Isobaric

- When heat is given to a gas in an isobaric process, then 47.
 - (a) The work is done by the gas

- (b)
- Internal energy of the gas

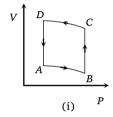
increases

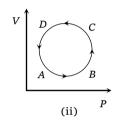
(c) Both (a) and (b)

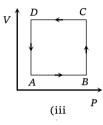
- (d) None from (a) and (b)
- The specific heat of hydrogen gas at constant pressure is $C_p = 3.4 \times 10^3 \, cal/kg^{\circ}C$ and at constant volume is 48. $C_v = 2.4 \times 10^3 \, cal/kg^{\circ}C$. If one kilogram hydrogen gas is heated from 10°C to 20°C at constant pressure, the external work done on the gas to maintain it at constant pressure is
 - (a) 10⁵ calories
- (b) 10⁴ calories
- (c) 10^3 calories
- (d) 5×10^3 calories
- Two kq of water is converted into steam by boiling at atmospheric pressure. The volume changes from 49. $2 \times 10^{-3} m^3$ to $3.34 m^3$. The work done by the system is about
 - (a) $-340 \, kJ$
- (b) -170 kJ
- (c) 170 kJ
- A vessel contains an ideal monoatomic gas which expands at constant pressure, when heat Q is supplied to it. 50. Then work done by the gas in the expansion is

- (c) 2Q/5
- 540 calories of heat convert 1 cubic centimeter of water at 100°C into 1671 cubic centimeter of steam at 100°C 51. at a pressure of one atmosphere. Then the work done against the atmospheric pressure is nearly

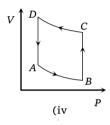
- (c) Zero cal
- When 1 q of water changes from liquid to vapour phase at constant pressure of 1 atmosphere, the volume 52. increases from $1 cm^3$ to 1671 cc. The heat of vaporisation at this pressure is 540 cal/q. The increase in internal energy of water
 - (a) 2099 J
- (b) 3000 J
- (c) 992 J
- (d) 2122 J

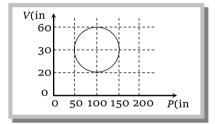

Problems based on Cyclic and non-cyclic process

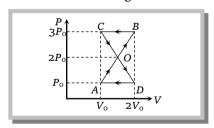

- Heat energy absorbed by a system in going through a cyclic process shown in figure is 53.
 - (a) $10^7 \pi J$
 - (b) $10^4 \pi J$
 - (c) $10^2 \pi J$
 - (d) $10^{-3} \pi J$


- 30
- A system, after passing through different states returns back to its original state is 54.

- (a) Adiabatic process
- (b) Isobaric process
- (c) Isothermal process
- (d) Cyclic process
- **55.** A thermodynamic system is taken from state *A* to *B* along *ACB* and is brought back to *A* along *BDA* as shown in the *PV* diagram. The net work done during the complete cycle
 - (a) $P_1ACBP_2P_1$
 - (b) ACBB'A'A
 - (c) ACBDA
 - (d) ADBB'A'A

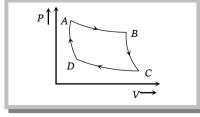

- P P_1 A' B' V
- **56.** In the diagrams (i) to (iv) of variation of volume with changing pressure is shown. A gas is taken along the path *ABCD*. The change in internal energy of the gas will be


(b)


- (a) Positive in all cases (i) to (iv)
- (iii) but zero in (iv) case
- (c) Negative in cases (i), (ii) and (iii) but zero in (iv) case (d)
- Zero in all four cases

Positive in cases (i), (ii) and

- 57. A system is taken through a cyclic process represented by a circle as shown. The heat absorbed by the system is
 - (a) $\pi \times 10^3 J$
 - (b) $\frac{\pi}{2}J$
 - (c) $4\pi \times 10^2 J$
 - (d) πJ



- **58.** A thermodynamic system undergoes cyclic process *ABCDA* as shown in figure. The work done by the system is
 - (a) P_0V_0
 - (b) $2P_0V_0$
 - (c) $\frac{P_0 V_0}{2}$
 - (d) Zero

Problems based on Second law of thermodynamics

- **59.** The P-V graph of an ideal gas cycle is shown here as below. The adiabatic process is described by
 - (a) AB and BC
 - (b) AB and CD
 - (c) BC and DA
 - (d) BC and CD

[CPMT 1985; UPSEAT 2003]

60.

A measure of the degree of disorder of a system is known as

	(a) Isobaric	(b) Isotropy	(c) Enthalpy	(d) Entropy						
61.	The efficiency of Carnot engine operating with reservior temperature at 100 $\it K$ and -23 $\it K$ will be									
	(a) $\frac{100 + 23}{100}$	(b) $\frac{100-23}{100}$	(c) $\frac{100+23}{373}$	(d) $\frac{100-23}{373}$						
62.	Coefficient of performance of an ideal refrigerator working between temperature T_1 and T_2 ($T_1 > T_2$) is [AFMC 2]									
	(a) $\beta = \frac{T_2}{T_1 - T_2}$	(b) $\beta = \frac{T_2}{T_1 + T_2}$	(c) $\beta = \frac{T_1}{T_1 - T_2}$	(d) $\beta = \frac{T_1}{T_1 + T_2}$						
63.	Entropy of a thermodynamic system does not change when this system is used for									
	(a) Conduction of heat f work isobarically	(b) Conversion of heat into								
	(c) Conversion of heat into internal energy isochorically (d) Conversion of work into heat isochorically									
64.	The second law of thermodynamics states that (a) Heat is neither created nor destroyed									
	(b) Heat can be converted into other forms of energy									
	(c) Heat flows from a hot object to a cold one									
	(d) The mechanical equivalent of heat is the amount of energy that must be expended in order to produce heat									
65.	A Carnot engine works between ice point and steam point. Its efficiency will be									
	(a) 26.81%	(b) 53.36%	(c) 71.23%	(d) 85.42%						

${\mathcal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7•	8.	9.	10.
a	d	d	d	d	С	С	a	b, c	С
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	С	С	b	b	a	b	b	a	a
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
b	b	С	a	a, b, c, d	d	e	a	b	a
31.	32.	33.	34.	35.	36.	37•	38.	39.	40.
b	С	a	a	d	d	d	b	d	С
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
d	С	d	d	d	d	С	b	d	С
51.	52.	53.	54.	55.	56.	57•	58.	59.	60.
b	a	С	d	С	d	d	d	С	d
61.	62.	63.	64.	65.					
a	a	d	С	a					