THEORY OF SEDIMENTATION

Stokes Law

(a)
$$V_S = \frac{g}{18}(G-1)\frac{d^2}{v}$$
 for $d < 0.1$ mm.

where, V_S = Velocity of settlement of particle in m/s.

d = Diameter of the particle in meter.

G = SP gravity of the particle

$$= \frac{\gamma_s}{\gamma_w} \text{ or } \frac{\delta_s}{\delta_w}$$

 $v = \text{Kinematic viscosity of water in m}^2/\text{sec.}$

(b)
$$V_S = \left[\frac{\frac{4}{3} gd(G-1)}{C_D} \right]^{1/2}$$

$$C_D = 0.4$$
 \rightarrow For $(R_e > 10^4)$ $C_D = \frac{24}{R_e}$ \rightarrow For $(R_e < 0.5)$

$$C_D = \frac{24}{R_e} + \frac{3}{\sqrt{R_e}} + 0.34$$
 For $0.5 \le R_e \le 10,000$

(c)
$$V_S = 418(G - 1)d^2\left(\frac{3T + 70}{100}\right)$$
 for d < 0.1 mm

where, T = Temperature of water in °C Vs is in mm/sec. d is in mm

(d)
$$V_S = 1.8\sqrt{gd(G-1)}$$
 For d > 0.1 mm.

(e)
$$V_S = 418(G - 1)d\left(\frac{3T + 70}{100}\right)$$
 For 0.1 < d < 1 mm.

SEDIMENTATION TANK

V_O = 12000 to 18000 lit/m²/ day for plain sedimentation.

 $V_{\rm O}$ = 24000 to 30,000 lit/m²/ day for sedimentation with coagulation.

- (b) Velocity of flow, $V_f = \frac{Q}{BH}$
- (c) Time of horizontal flow, $T = \frac{L}{V_f} = \frac{L}{Q/BH} = \frac{LBH}{Q}$
- (d) Time of falling through height 'H' $T = \frac{H}{V_S} = \frac{LBH}{Q}$
- (e) Detention time, $t_d = \frac{L}{V_f} = \frac{H}{V_S}$

4 to 8 hr → For plain sedimentation

2 to 4 hr → For sedimentation with coagulation

- (f) $P_{\rho} = \frac{V_{S}}{V_{O}} \times 100$ where, $P_{e} =$
- where, $P_e = \%$ of lighter particles (with settling velocity (V_S) less than V_O) which shall be removed in an ideal settling basin.
- (g) % of particle removed

$$= (100 - x_0) + \int_{x=0}^{x=x_0} \left(\frac{V_S}{V_O} \times 100 \right) \cdot dx$$

where, x_0 corresponds to V_0

(h) Detention time 't'

 $t = \frac{BLH}{Q}$ for rectangular tank.

$$t = \frac{d^2(0.011d + 0.785H)}{Q}$$

for circular tank

where, d = Dia of the tank

H = Vertical depth of wall or side water depth

- (i) Displacement efficiency = $\frac{\text{Flowing through period}}{\text{Detention period}}$
- (j) Scour velocity, $V_d = \sqrt{\frac{8\beta}{f'}g(G-1)d}$

where, $\beta = 0.04$ for unigranular sand and 0.06 or more for non-uniform (interlocking) sticky material.

f' = Darcy weisback friction factor.

= 0.025 to 0.03 for settling tanks.

CHEMICALS USED FOR COAGULATION

Alum (Al₂(SO₄)₃.18H₂O)

 $Al_2(SO_4)_3.18H_2O + 3Ca(HCO_3)_2 \longrightarrow 3CaSO_4 + 2Al(OH)_3 \downarrow + 6CO_2 \uparrow$

 $Al_2(SO_4)_3.18H_2O + 3Ca(OH)_2 \longrightarrow 3CaSO_4 + Al(OH)_3 \downarrow + 18H_2O$

 $Al_2(SO_4)_3.18H_2O + 3Na_2CO_3 \longrightarrow 3Na_2SO_4 + 2Al(OH)_3 \downarrow +3CO_2 \uparrow +$

15H₂O

Copperas (FeSO₄.7H₂O)

$$\begin{split} & \operatorname{FeSO}_4.7\operatorname{H}_2\operatorname{O} + \operatorname{Ca(OH)}_2 \longrightarrow \operatorname{CaSO}_4 + \operatorname{Fe(OH)}_2 + 7\operatorname{H}_2\operatorname{O} \\ & \operatorname{Copperas} \qquad \operatorname{Hydrated line} \qquad \operatorname{Ferrous hydroxide} \\ & \operatorname{FeSO}_4.7\operatorname{H}_2\operatorname{O} + \operatorname{Ca(HCO}_3)_2 \longrightarrow \operatorname{Fe(HCO}_3)_2 + \operatorname{CaCO}_3 + 7\operatorname{H}_2\operatorname{O} \\ & \operatorname{Fe(HCO}_3)_2 + 2\operatorname{Ca(OH)}_2 \longrightarrow \operatorname{Fe(OH)}_2 + 2\operatorname{CaCO}_3 + 2\operatorname{H}_2\operatorname{O} \\ & \operatorname{Fe(OH)}_2 + \operatorname{O}_2 + 2\operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{4Fe(OH)}_3 \downarrow \end{split}$$

Ferric Hydroxide

Chlorinated Copperas: (Fe₂(SO₄)₃ and FeCl₃)

$$6(\mathsf{FeSO}_4.7\mathsf{H}_2\mathsf{O}) + 3\mathsf{Cl}_2 {\longrightarrow} 2\mathsf{Fe}_2(\mathsf{SO}_4)_3 + 2\mathsf{FeCl}_3 + 42\mathsf{H}_2\mathsf{O}$$

Ferric sulphate

$$Fe_2(SO_4)_3 + 3Ca(OH)_2 \longrightarrow 3CaSO_4 + 2Fe(OH)_3 \downarrow$$

Ferric

Hydrated

Ferric

Sulphate line

hydroxide ppt

2FeCl₃ + 3Ca(OH)₂ --- 3CaCl₂ + 2Fe(OH)₂ \sqrt{

Ferric Hydrated

Ferric

Chloride

hydroxide ppt

Sodium Aluminate (Na₂Al₂O₄)

line

$$\begin{aligned} \text{Na}_2 \text{Al}_2 \text{O}_4 + \text{Ca}(\text{HCO}_3)_2 &\longrightarrow \text{CaAl}_2 \text{O}_4 \downarrow + \text{Na}_2 \text{CO}_3 + \text{CO}_2 \uparrow + \text{H}_2 \text{O} \\ \text{Na}_2 \text{Al}_2 \text{O}_4 + \text{CaCl}_2 &\longrightarrow \text{CaAl}_2 \text{O}_4 \downarrow + 2 \text{NaCl} \\ \text{Na}_2 \text{Al}_2 \text{O}_4 + \text{CaSO}_4 &\longrightarrow \text{CaAl}_2 \text{O}_4 \downarrow + \text{Na}_2 \text{SO}_4 \end{aligned}$$

MIXING BASIN

$$G' = \left[\frac{P}{\mu V}\right]^{1/2}$$

where,

- G' = Temporal mean Velocity gradient (per second).
- P = Power dissipated in watts i.e., N-m/s.
- V = Volume of raw water to which P is applied in m³.
- $\mu = Dynamic viscosity$ (N-s/m²).

(Mixing basin with a flash mixer)

FLOCCULATION

- Velocity gradient, $G' = \left[\frac{P}{\mu V}\right]^{1/2}$
- $20 \text{ sec}^{-1} < G' < 75 \text{ sec}^{-1}$.
- Detention time, t_d is 10 to 30 minute.
- $G' \cdot t_d$ (Conjuction opportunity) = $\frac{\text{Power induced rate of flow}}{\text{Displacement induced rate of flow}}$
- Number of particle collision α G't_d.
- G'td = 2×10^4 to 6×10^4 for Alum. = 1×10^5 to 1.5×10^5 for Iron salt.
- $\frac{G' \text{ of influent end}}{G' \text{ of effluent end}} = 2$

FILTRATION

A Slow Sand Filter

- Depth of filter is 2.5 to 3.5 m.
- Plan area of filter is 100 to 2000m2.
- $0.2 \le D_{10}$ of sand ≤ 0.3 mm.
- $\frac{D_{60}}{D_{10}} = 5.$
- Design period = 10 years.
- Depth of sand is 90 to 110 cm.
- Frequency of cleaning is 1 to 3 months
- Rate of filtration = 2400 to 4800 lit/m²/day or 100 to 200 lit/m²/hr.
- Efficiency of bacteria removal = 98 to 99%.
- It can not be used if turbidity > 50 ppm.
- It is designed for maximum daily demand.
- Discharge
 Rate of filteration = Plan area

B. Rapid Sand Filter

• $N = 1.22\sqrt{Q}$

where, N = Number of unit required

Q = Plant capacity in million lit/day (MLD)

•
$$\frac{D_{60}}{D_{10}} = 1.2 \text{ to } 1.8$$

- Sand layer depth is 60 to 90 cm.
- D₁₀ of sand is 0.35 to 0.55 mm.
- Depth of tank = 2.5 m to 3.5 m.
- Area = $10 \text{ to } 80 \text{ m}^2 \text{ each unit.}$
- Rate of washing is 15 to 90 cm rise/minute.
- Rate of filtration 3000 to 6000 lit/ m^2 /hour (slow sand filter \times 30)
- Cross-sectional area of manfold =2 x cross-sectional area of lateral.
- Cross-sectional area of each lateral = 2 to 4 times cross-sectional area of perforations in it.
- Total cross-sectional area of perforation = 0.2% of total area of 1 filter

Length of each lateral → 60

- 4-5% of filtered water is used as back wash
- 30 min, used for back wash.

Economical dia of rising main is given by Lea $D = 1.22\sqrt{Q}$

Q is in m³/sec, D is in meter.

HYDRAULICS OF SAND GRAVITY FILTERS

$$h_L = \frac{1.067V^2}{\phi \cdot g \cdot n^4} \in \frac{C_D \cdot f}{d}$$

where,

h₁ = Frictional head loss through the filter in meter.

 \overline{V} = Approach velocity or filtration velocity in m/s.

D = Depth of filter in meter

φ = Shape factor (for non spherical particle)

d = Diameter of sand particles in meter.

 $g = Accelerations due to gravity in m/s^2$.

n = Porosity

C_D = Newton's dray coefficient.

f = Mass friction of sand particle of dia d

• Rose Equation, $h_L = \frac{1.067 \text{ V}}{1.000 \text{ J}}$

$$h_{L} = \left[\frac{1.067 V^{2} D}{\phi g n^{4}} \cdot \frac{C_{D}}{d} \right]$$

HYDRAULIC HEAD LOSS AND EXPANSION OF THE FILTER DURING **BACKWASH**

 $H_{L_e} \gamma_w = D \gamma_{sub}$ where, $H_{Le} = Head$ loss through the filter bed required to initiate expansion in meter.

 $\gamma_w = \text{Unit weight of mater in kN/m}^3$.

D = Depth of filter bed in meter.

 γ_{sub} = Submerged unit weight of sand in bed of depth 'D' in kN/m³.

•
$$H_{L_e} = D(1-n)(G-1)$$
 • $H_{L_e} = D_e(1-n_e)(G-1)$

where, D = Depth of expanded/fluidized bed in meter. n_e = The porosity of the expanded fluidized bed.

$$D_{e} = \frac{(1-n)D}{(1-n_{e})}$$
 $D_{e} = (1-n)D.\Sigma \frac{f}{1-n_{e}}$

where, f = mass fraction of sand of various sizes in the sand (as per sieve analysis)

$$n_e = \left(\frac{V_b}{V_s}\right)^{0.22}$$

where, n_e = Porosity of expanded bed V_b = Backwash velocity in m/s V_s = Settling velocity in m/s.

$$V_s = \left[\frac{4}{3} \frac{gd(G-1)}{C_D} \right]^{1/2}$$

• Pressure Filters: Pressure filters are just like small rapid gravity filters placed in closed vessels, and through which water to be treated is passed under pressure.

- Rate of Filtration—6,000 to 15,000 litre/hour/m² (Rapid Sand Filter × 2)
- The pressure filter are less efficient than the rapid gravity filters, in removing bacteria and turbidities

DISINFECTION OR STERILIZATION

(i) Treatment with Ozone

(ii) Disinfecting Action of Chlorine

$$Cl_2 + H_2O \xrightarrow{PH > 5} HOCI + HCI$$

Hypochlorous acid.

 $HOCI \xrightarrow{PH > 8} H^+ + OCI^-$

Hydrogen ion Hypochlorite ion

 $NH_3 + HOCI \rightarrow NH_2CI + H_2O PH > 7.5$

Monochloro Amine

 $NH_3 + HOCI \rightarrow NH_2CI + H_2O PH > 7.5$

 $NH_2CI + HOCI \rightarrow NHCI_2 + H_2O PH \rightarrow 5 \text{ to } 6.5$ Di-chloroamine

 $\mathsf{NHCl_2} + \mathsf{HOCl} \to \mathsf{NCl_3} + \mathsf{H_2O} \quad \mathsf{PH} < 4.4$

Nitrogen Trichloroamine

(iii) Doses of Chlorine

Type of virus to be killed	Quantity of free chlorine required in mg/l with about 30 minutes	
MBC OF ALL IS ALL IN	contact period for water of pH lower than 7 or so	
Poliomyelitis virus	0.1	
Hepatitis virus	0.4	
Cysts of E.histolytica, i.e. the	3.0 or even lower	
organism causing ameobic	the second to the KeV/ a 171	
dysentery		
Tuberculosis organisms	3.0 (4 - 6)bg b	
Coxsaickie Virus	Very huge dose varying from 21 to 138 mg//	

(iv) Forms in which chlorine is applied

- (a) Free chlorine
- (b) Hypochlorites & Bleaching Powder
- (c) Chloramines
- (d) Chlorine dioxide (CIO₂)

 $Ca(OCI)_2$ Ca^{2+} + $2OCI^-$ Calcium Hypochlorite Calcium ion Hypochlorite ion $CI^- + H^+ \xrightarrow{PH < 7} HOCI (Hypochlorous acid)$

TYPE OF CHLORINATION

(i) Plain chlorination

(ii) Pre-chlorination

(iii) Post-chlorination

- (iv) Double chlorination
- (v) Break point chlorination
- (vi) Super chlorination

(viii) Dechlorination

STARCH IODIDE TEST

%0 CL

70

[Quantity of chlorine in]		Number of ml of
The contract of the second contract of the con	-0 355	thiosulphate
mg/lit in the original sample of water		required to remove
[sample of water		the blue colour

WATER SOFTENING

- Methods of Removing Temporary Hardness
 - (i) Boiling $\begin{array}{ccc} \text{Ca(HCO}_3)_2 & + \text{ Heat} & \longrightarrow & \text{CaCO}_3 \downarrow + \text{CO}_2 \uparrow + \text{H}_2 \text{O} \\ & \text{Calcium bi} & & \text{Calcium} \\ & \text{Carbonate} & & \text{Carbonate} \end{array}$
- Method of Removing Permanent Hardness
 - (i) Lime-Soda Process
 - (a) $Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$
 - (b) (i) $Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow Ca(HCO_3)_2 + Mg(OH)_2 \downarrow$
 - (ii) $MgCO_3 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaCO_3 \downarrow$
 - (c) $MgCl_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + CaCl_2$
 - (d) $MgSO_4 + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + CaSO_4$
 - (e) $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$
 - (f) $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2NaCl$
 - (g) $CaSO_4 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + Na_2SO_4$

• Dry sludge produced in mg/lit = $[C_{aR} + 0.58M_{gR} + L_{iA}]$

where, C_{aR} = Calcium hardness removed in mg/lit (expressed as CaCO₃)

M_{gR} = Magnesium hardness removed in mg/lit (expressed as CaCO₃)

L_{iA} = Lime added in mg/lit (expressed as CaCO₃)

 Zeolite or Base Exchange or Cation-Exchange Process for Removing Hardness

Demineralization Process for Removing Hardness

Hardness for drinking water = 75 - 115 mg/lit. is recommended.

Drinking water specification: IS: 10500, 1992 (Reaffirmed 1993) Tolerance Limit

S. No.	Parameter	IS: 10500 Requirement (desirable limit)	Undesirable effect outside the desirable limit	IS: 10500 Permissible limit in the absence of alternate source
		Essential Ch	naracteristics	(2).
1.	Hq	6.5-8.5	Beyond this range the water will effect the mucous membrane and/or water supply system	No relaxation

2.	Colour (hazen units), Maximum	6.5-8.5	Above 5, consumer acceptance decreases	25
3.	Odour	Unobjec- tionable		we can't take
4.	Taste	Agreeable		
5.	Turbidity, NTU, Max	5 5 M 2 M 2	5 Above 5, consumer acceptance decreases	
Fo	llowing Results are	expressed in mg/	1:	in the first
6.	Total hardness as CaCO ₃ Max	300	Encrustation in water supply structure and adverse effects on domestic use	600
7.	Iron as Fe, Max	0.30	Beyond this limit taste/ appearance are affected, has adverse effect on domestic uses and water supply structures, and promotes iron bacteria.	1.0
8.	Chlorides as CI, Max	250	Beyond this limit tast, corrosion and palatability are effected	1000
9.	Residual, Free Chlorine, Min	0.20	4340000	
	n el Pond	Desirable C	haracteristics	
10.	Dissolved solids, Max	500	Beyond this palatability decreases and may cause gastro intentiona irritation	2000
11.	Calcium as Ca, Max	75	Encrustation in water supply structure and adverse effects on domestic use	200
12.	Magnesium as Mg, Max	30		100
13.	Nitrates as NO ₃	45	Beyond this methane- moglobinemia takes place	un 100
14.	Fluoride, Max	mol a point	Fluoride may be kept as low as possible. High fluoride may cause fluorosis	1.5
15.	Alkalinity, Max	200	Beyond this limit taste becomes unpleasant.	600