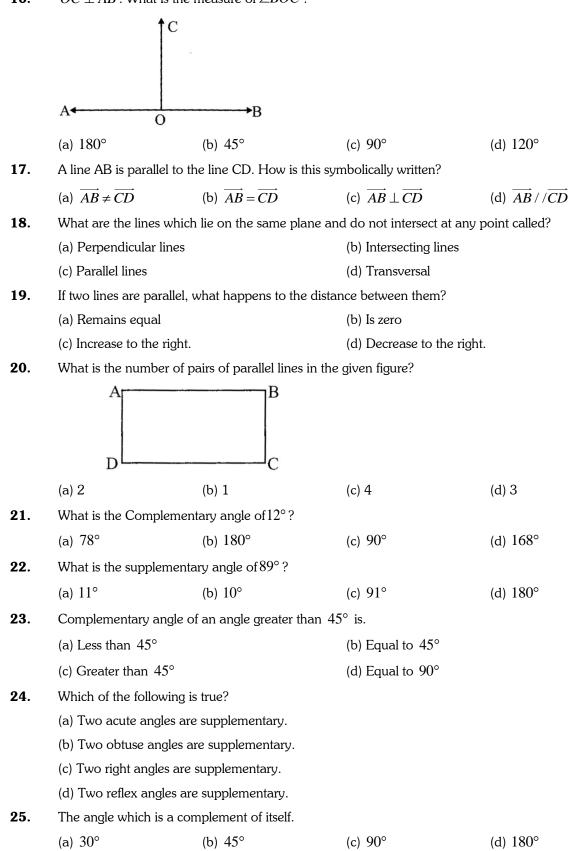

An angle which exactly measures 90° is.

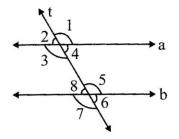
1.


Lines & Angles

QUESTIONS

1.	All angle which exactly	/ measures 90 is.			
	(a) An obtuse angle		(b) An acute angle		
	(c) A right angle		(d) A reflex angle		
2.	2. An angle whose measurement is exactly equal to 0° ?				
	(a) An obtuse angle		(b) A straight angle		
	(c) A zero angle		(d) A right angle		
3.	In the given figure, line	es AB and CD intersect at	point 0. If $a:b=2:3$, the	en what is the measure of $\angle BOD$.	
	A a O b	в			
	(a) 54°	(b) 72°	(c) 100°	(d) 105°	
4.	An angle which measu				
	(a) A zero angle		(b) A right angle		
	(c) A straight angle		(d) An acute angle		
5.					
	Q O	T			
	What is the measure of	f $\angle SOT$.			
	(a) 60°	(b) 70°	(c) 80°	(d) 90°	
6.	Units of an angle is				
	(a) Seconds	(b) Kilograms	(c) Degrees	(d) Kilometres	
7.	Which of the following pairs of angles form a pair of supplementary angles?				
	(a) 45° and 55°	(b) 41° and 49°	(c) 126° and 54°	(d) 135° and 225°	
8.	Instrument used to me	asure or construct angles	is called:		
	(a) Compass	(b) Scale	(c) Protractor	(d) Set squares	
9.	What do we call a 169	° angle?			
	(a) An obtuse angle		(b) An acute angle		
	(c) A right angle		(d) A zero angle		

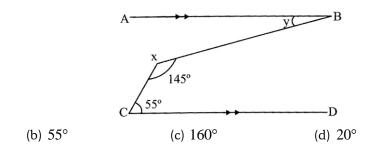
10. The measurement of an angle after the extension of its arms?


16. $\overrightarrow{OC} \perp \overrightarrow{AB}$. What is the measure of $\angle BOC$?

26. Angle which is a supplement of itself?

(a) 90° (b) 180° (c) 45°	(d) 110°
---	----------

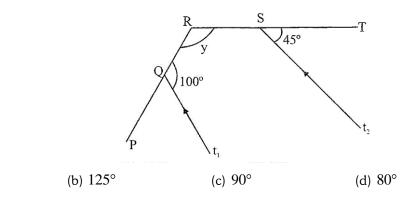
Direction: 27 - 30 based on the following figures


27. What type of angles are 3 and 5?

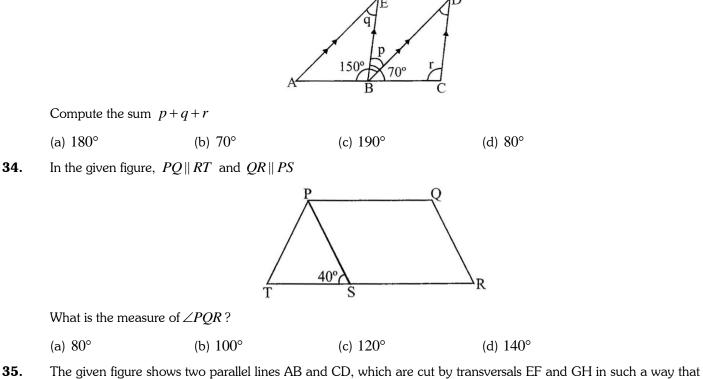
- (a) Corresponding angles
- (b) Alternate angles
- (c) Vertically opposite angels
- (d) Interior angles on the same side of the transversal

28 .	Which of the following is a pair of vertically opposite angles?				
	(a) 1 and 4	(b) 1 and 7	(c) 2 and 3	(d) 5 and 2	
29.	If the measure of $\angle 2 = 70^\circ$, what is the measure of $\angle 6$.				
	(a) 110°	(b) 70°	(c) 45°	(d) 120°	
30 .	If $\angle 2 = 70^\circ$, what is the measure of $\angle 4 + \angle 5$?				

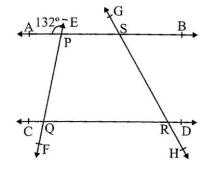
- (a) 180° (b) 110° (c) 90° (d) 70°
- **31.** Find the angle y in the given figure, if $AB \parallel CD$



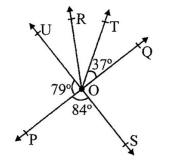
7


32. Find the unknown angle y in the figure $t_1 || t_2$

(a) 25°

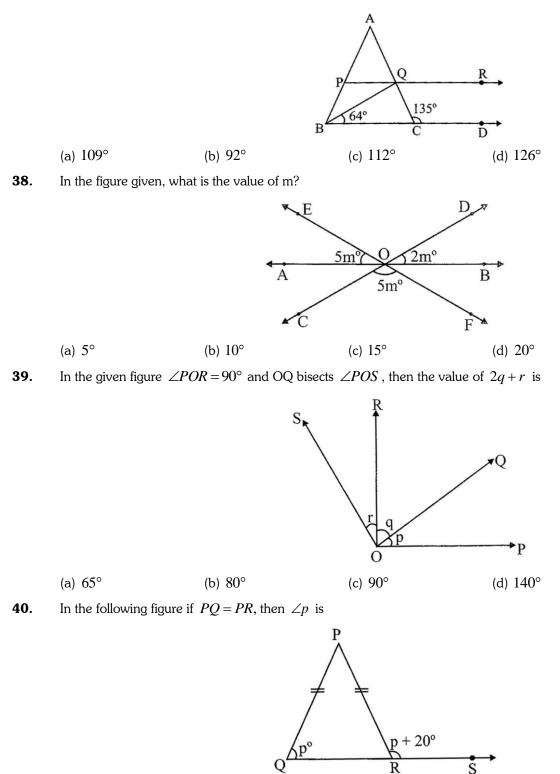

(a) 45°

33. Observe the figure given $AE \parallel BD$ and $BE \parallel CD$



35. The given figure shows two parallel lines AB and CD, which are cut by transversals EF and GH in such a way that $\angle PQR = \angle GSP$.

What is the measure of $\angle HRD$?(a) 52° (b) 50° (c) 48° (d) 46°


36. What is the complement of $\angle TOU$ in the given figure, given that PQ is a straight

(b) 35°	(c) 32°	(d) 26°

(a) 60°

37. In the given figure. $PR \parallel BD$. What is the measure of $\angle AQB$ in the given figure?

(b) 80°

(d) None of these

ANSWER – KEY					
1 . C	2. C	3. B	4. C	5. D	
6. C	7. C	8. C	9. A	10. C	
11 . C	12. A	13. A	14. B	15. A	
16. C	17. D	18. C	19. A	20. A	
21 . A	22. C	23. A	24. C	25. B	
26 . A	27. B	28. D	29. B	30. A	
31 . D	32. B	33. C	34. D	35. C	
36. D	37. A	38. C	39. C	40. B	

SOLUTIONS

- **1.** (C): An angle which exactly measures 90° is called the right angle.
- **2.** (C) Not available
- **3.** (B): $\angle a + \angle b = 180^{\circ} \frac{\angle a}{\angle b} = \frac{2}{3}$
 - $\therefore \ \angle a = 2x \quad \angle b = 3x$

$$\Rightarrow 2x + 3x = 180^{\circ} \Rightarrow x = 36^{\circ}$$

Now, $\angle BOD$ is vertically opposite to

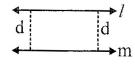
$$\angle a \therefore \angle BOD = \angle a = 2x = 72^{\circ}$$

4. (C) Not available

5. (D): $\angle SOT = \angle POS + \angle POT = \frac{1}{2}$ ($\angle POQ + POR$): (Mind of a mathematician). This result should elicit in mind

of students that for all supplementary angles and angle bisectors drawn, the inside $\angle les$ are complementary.

$$=\frac{1}{2}(\angle POQW + \angle POR) = \frac{1}{2} \times 180^\circ = 90^\circ$$


- **6.** (C): A common unit of measurement of angles is degrees.
- **7.** (C) Not available
- 8. (C) Not available
- **9.** (A) Not available
- **10.** (C): Extending the arms of an angle does not affect the angle between them.
- 11. (C): The vertex of an angle is the common point of the rays that form the arms of an angle. Hence, it is 0.
- **12.** (A): \overrightarrow{QP} and \overrightarrow{QR} are the two arms of $\angle PQR$
- **13.** (A): In \parallel gm PQRS; PQ \parallel SR and PS \parallel QR

 $\angle PSR = 180^{\circ} - \angle PSE = 180^{\circ} - 130^{\circ} = 50^{\circ}$

By property of transversal,

 $\angle QRS = 180^\circ - \angle PSR = 130^\circ$; Again $\angle PQR = 180^\circ - \angle QRS = 50^\circ$

- **14.** (B): Perpendicular segments meet at a point forming right angles.
- **15.** (A) Not available
- **16.** (C) Not available
- **17.** (D) Not available
- 18. (C) Not available
- **19.** (A): The distance between the parallel lines is the same.

- **20.** (A): There are two pairs of parallel lines ($AB \parallel DC$ and $AD \parallel BC$) as the opposite sides of a rectangle are parallel.
- **21.** (A): Complementary angles add up to 90° . Hence, $90^{\circ} 12^{\circ} = 78^{\circ}$
- **22.** (C): The sum of supplementary angles is 180° $\therefore 180^{\circ} - 80^{\circ} = 91^{\circ}$
- **23.** (A): Let angle $\angle a > 45^\circ$: Its complementary angle, say $\angle b = 90 \angle a \ \angle a > 45^\circ$
 - $\therefore -\angle a < -45^{\circ}$

Add 90° to both sides \Rightarrow

 $=90^{\circ} - \angle a < 90^{\circ} - 45^{\circ}$

$$\Rightarrow \angle b = 90^\circ - \angle a < 45^\circ$$

Note: This technique of dealing with inequalities $\angle a > 45^\circ \Rightarrow -\angle a < -45^\circ$ should be. learnt and remembered for future applications.

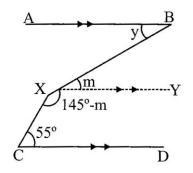
- **24.** (C): Sum of two right $\angle les 90^\circ + 90^\circ = 180^\circ$ Hence, supplementary
- **25.** (B): Let angle be $\angle a$: If its complementary $\angle le(\theta)$ is same angle, then complement is also $\angle a$ Their sum

 $\angle a + \angle \theta = \angle a + \angle a = 90^{\circ} \Longrightarrow \angle a = 45^{\circ}$

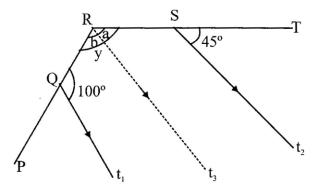
26. (A): Let $\angle a \& \angle b$ be supplementary $\Rightarrow \angle a + \angle b = 180^{\circ}$

But according to question, $\angle a = \angle b$

$$\therefore 2\angle a = 180^{\circ}$$


- **27.** (B): $a \parallel b$, t is the transversal. '3' and '5' are both interior angles, but on different sides of transversal. So, '3' and '5' are alternate angles.
- 28. (D): 5 and 7 are vertically opposite angles formed at the intersection of transversal 't' and line 'b'.
- **29.** (B): $\angle 2 = \angle 4$ (Vertically opposite)
 - $\angle 4 = \angle 8$ (Alternate angles)

 $\angle 8 = \angle 6$ (vertically opposite angles)


$$\therefore \angle 2 = \angle 4 = \angle 6 = 70^{\circ}$$

30. (A): $\angle 2 = \angle 4 = 70^{\circ}$ $\angle 4 + \angle 5 = 180^{\circ}$ $\therefore \ \angle 2 + \angle 5 = 70^{\circ} + 110^{\circ} = 180^{\circ}$

31. (D): Draw $XY \parallel AB$ and CD.

32. (B): Draw $t_3 || t_1$ from point 'R'

Construct a line t_3 through R and parallel to $t_1 \& t_2$.

$$\Rightarrow a+b=y \text{ and } a=45^{\circ}$$

(Corresponding angles)

$$b = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

(Angles on the same side of transversal.)

$$\Rightarrow$$
 y = a + b = 45° + 80° = 125°

33. (C): From the figure.

 $150 - p + 70 - p + p = 180^{\circ}$

$$\Rightarrow p = 220^{\circ} - 180^{\circ} = 40^{\circ}$$

Since $AE \parallel BD$, q = p as they are alternate angles.

In $\triangle BCD$, $\angle BDC = p$ (Alternate angles)

$$70 - p + p + r = 180^{\circ} \Longrightarrow r = 110^{\circ}$$

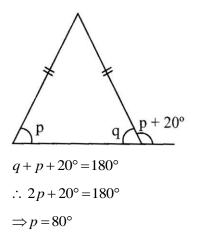
:. The required sum

$$= \angle p + \angle q + \angle r = 40^{\circ} + 40^{\circ} + 110^{\circ} = 190^{\circ}$$

34. (D) Not available

35. (C):
$$\angle HRD = \angle SRQ = \angle GSP = \angle PQR$$

$$=180^{\circ} - \angle PQC = 180^{\circ} - \angle SPQ$$


$$=180^{\circ} - \angle APE = 180^{\circ} - 132^{\circ} = 48^{\circ}$$

36. (D): $\angle POU + 79^\circ + 37^\circ = 180^\circ \Rightarrow \Rightarrow TOU = 64^\circ \Rightarrow \text{ its complementary } \angle le = 90^\circ - 64^\circ = 26^\circ$.

- **37.** (A): $\angle AQB = \angle PQB + \angle AQP = 64^\circ + \angle AQP$; $\angle AQP = \angle RQC = 180^\circ 135^\circ = 45^\circ$ $\therefore \angle AQB = 64^\circ + 45^\circ = 109^\circ$
- **38.** (C): $\angle EOD = 5m^{\circ}$ (by principle of vertically opposite $\angle les$)
 - $\therefore 5m + 5m + 5m + 5m + 2m + 2m = 360^{\circ}$
 - $\Rightarrow 24m = 360^{\circ}$

$$\Rightarrow m = 15^{\circ}$$

- **39.** (C) Not available
- **40.** (B): $\angle p = \angle q$

