Sample Question Paper - 24 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- *3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.*
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

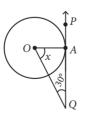
- 1. Find the *n*th term of the following A.P. : $3\sqrt{2}, 4\sqrt{2}+1, 5\sqrt{2}+2, 6\sqrt{2}+3,...$
- **2.** In a certain distribution, mean and median are 9.5 and 10 respectively. Find the mode of the distribution, using an empirical relation.

OR

3. Prove that the roots of quadratic equation $21x^2 - 2x + 1/21 = 0$ are real and repeated.

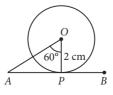
Find the roots of the quadratic equation $a^2x^2 - (a^2b^2 + 1)x + b^2 = 0$.

4. From the given figure, find *x*. Also find the length of *AQ* if radius of the circle is 6 cm.



OR

In the adjoining figure, *AB* is the tangent to the circle with centre *O* at *P*. If $\angle AOP = 60^{\circ}$ and radius is 2 cm, then find *AP*.



Maximum Marks : 40

- 5. Find the number of solid spheres, each of diameter 6 cm that can be made by melting a solid metal cylinder of height 45 cm and diameter 4 cm.
- **6.** If $\sum f_i = 11$, $\sum f_i x_i = 2p + 52$ and the mean of distribution is 6, then find the value of *p*.

SECTION - B

- 7. A pole of height 5 m is fixed on the top of a tower. The angle of elevation of the top of the pole as observed from a point *A* on the ground is 60° and the angle of depression of the point *A* from the top of the tower is 30°. Find the distance of the foot of the tower from point *A*. [Take $\sqrt{3} = 1.732$]
- 8. Find the 37th term of the A.P. \sqrt{x} , $3\sqrt{x}$, $5\sqrt{x}$,

OR

How many numbers lie between 10 and 201, which when divided by 3 leave a remainder 2?

- 9. Draw a tangent to the circle of radius 1.8 cm at the point *P*, without using its centre.
- 10. The difference of two numbers is 4. If the difference of their reciprocals is $\frac{4}{21}$, then find the two numbers.

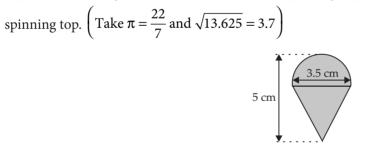
SECTION - C

11. The shadow of a tower standing on a leveled ground is found to be 40 m longer when the sun's altitude is 30° than when it is 60°. Find the height of the tower.

OR

The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60°. At a point R, 40 m vertically above X, the angle of elevation is 45°. Find the height of the tower PQ.

12. A spinning top (lattu) is shaped like a cone surmounted by a hemisphere (see figure). The entire spinning top is 5 cm in height and the diameter of the spinning top is 3.5 cm. Find the total surface area of the



Case Study - 1

13. Suppose you are interested in analysing the monthly groceries expenditure of a family. The data of monthly grocery expenditure of 200 families is given in the following table.

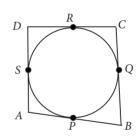
Monthly expenditure (in ₹)	0-1000	1000-2000	2000-3000	3000-4000	4000-5000
Number of families	28	46	54	42	30

Based on the above information, answer the following questions.

- (i) Find the median of the monthly expenditure.
- (ii) Find the sum of upper limit and lower limit of modal class.

Case Study - 2

14. In a park, four poles are standing at positions *A*, *B*, *C* and *D* around the fountain such that the cloth joining the poles *AB*, *BC*, *CD* and *DA* touches the fountain at *P*, *Q*, *R* and *S* respectively as shown in the figure.



Based on the above information, answer the following questions.

(i) If *O* is the centre of the circular fountain, then find $\angle OSA$.

(ii) If DR = 7 cm and AD = 11 cm, then find AP.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

1. Given A.P. is
$$3\sqrt{2}$$
, $4\sqrt{2}+1$, $5\sqrt{2}+2$, $6\sqrt{2}+3$, ...

Here, first term $a = 3\sqrt{2}$ and Common difference, $d = 4\sqrt{2} + 1 - 3\sqrt{2} = \sqrt{2} + 1$ $\therefore a_n = a + (n-1)d = 3\sqrt{2} + (n-1)(\sqrt{2} + 1)$ $= 3\sqrt{2} + n\sqrt{2} - \sqrt{2} + n - 1$

 $=(n+2)\sqrt{2}+(n-1)$, is the required n^{th} term.

2. We know that, empirical relation between mean, median and mode is

Mode = 3 Median -2 Mean ...(i) From given, we have, Mean = 9.5, Median = 10 \therefore Mode = 3(10) - 2(9.5) (Using (i)) \Rightarrow Mode = 11 3. We have, $21x^2 - 2x + 1/21 = 0$

⇒ 441 x^2 - 42x + 1 = 0 Here, a = 441, b = -42 and c = 1. ∴ $D = b^2 - 4ac = (-42)^2 - 4(441)(1) = 1764 - 1764 = 0$

Hence, both roots are real and repeated.

OR

Given,
$$a^2x^2 - (a^2b^2 + 1) x + b^2 = 0$$

 $\Rightarrow a^2x^2 - a^2b^2x - x + b^2 = 0 \Rightarrow a^2x (x - b^2) - 1(x - b^2) = 0$
 $\Rightarrow (a^2x - 1) (x - b^2) = 0$
 $\Rightarrow a^2x - 1 = 0 \text{ or } x - b^2 = 0 \Rightarrow x = 1/a^2 \text{ or } x = b^2$
 $\therefore 1/a^2, b^2$ are the required roots.

4. Since, tangent at any point of a circle is perpendicular to the radius through the point of contact.

 $\therefore OA \perp PQ \implies \angle OAQ = 90^{\circ}$ $\therefore In \triangle OAQ, x + 30^{\circ} + 90^{\circ} = 180^{\circ}$ [By angle sum property] $\implies x = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$

Also,
$$\tan 30^\circ = \frac{OA}{AQ} \Rightarrow \frac{1}{\sqrt{3}} = \frac{6}{AQ}$$
 [:. Radius, $OA = 6 \text{ cm}$]
 $\Rightarrow AQ = 6\sqrt{3} \text{ cm}$

OR

Given, $\angle AOP = 60^{\circ}$ and OP = 2 cm Since, tangent at any point of a circle is perpendicular to the radius through the point of contact. $\begin{array}{ll} \therefore & OP \perp AB \\ \Rightarrow & \angle OPA = 90^{\circ} \\ \Rightarrow & \Delta OAP \text{ is right angle triangle.} \end{array}$

In $\triangle OPA$, tan $60^\circ = \frac{AP}{OP} \Rightarrow \sqrt{3} = \frac{AP}{2} \Rightarrow AP = 2\sqrt{3} \text{ cm}$

5. Let *n* be the number of solid spheres formed by melting the solid metallic cylinder

 \therefore *n* × Volume of one solid sphere

= Volume of the solid cylinder

$$\implies n \times \frac{4}{3} \pi R^3 = \pi(r)^2 \times h$$

(where R, r be the radius of sphere and cylinder respectively and h be height of cylinder)

$$\Rightarrow n \times \frac{4}{3} (3)^3 = (2)^2 \times 45$$
$$\Rightarrow n \times \frac{4}{3} \times 27 = 180 \Rightarrow n = \frac{180 \times 3}{4 \times 27} = 5$$

Thus, the number of solid spheres that can be formed is 5.

6. Mean,
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i} \Rightarrow 6 = \frac{2p+52}{11}$$

 $\Rightarrow 66 = 2p + 52 \Rightarrow 2p = 14 \Rightarrow p = 7$
7. Let *BC* be the tower and *CD* be the pole.
In $\triangle ABC$, $\frac{BC}{AB} = \tan 30^{\circ}$
 $\Rightarrow \frac{BC}{AB} = \frac{1}{\sqrt{3}} \Rightarrow AB = BC\sqrt{3}$...(i)
In $\triangle ABD$, $\frac{BD}{AB} = \tan 60^{\circ}$
 $\Rightarrow \frac{BC+CD}{AB} = \sqrt{3} \Rightarrow \frac{BC+5}{BC\sqrt{3}} = \sqrt{3}$ [Using (i)]
 $\Rightarrow BC + 5 = 3BC \Rightarrow 2BC = 5 \Rightarrow BC = 2.5 \text{ m}$
 \therefore Distance of foot of tower from point $A = AB$
 $= BC\sqrt{3} = 2.5 \times 1.732 = 4.33 \text{ m}.$
8. We have, $a = \sqrt{x}, d = 3\sqrt{x} - \sqrt{x} = 2\sqrt{x}$
Now, $a_n = a + (n-1)d$

$$\therefore \ a_{37} = a + 36a = \sqrt{x} + 36(2\sqrt{x})$$
$$\Rightarrow \ a_{37} = \sqrt{x} + 72\sqrt{x} = (1+72)\sqrt{x} = 73\sqrt{x}$$

OR

The required numbers are 11, 14, 17,, 200. This is an A.P. in which a = 11, d = 14 - 11 = 3Now, $a_n = 200 \implies a + (n-1)d = 200$ $\implies 11 + (n-1) \times 3 = 200 \implies 3(n-1) = 189$ $\implies (n-1) = 63 \implies n = 64$

9. Steps of Construction :

Step-I: Draw a circle of radius 1.8 cm and take a point *P* on the circle. **Step-II**: Draw a chord *PQ* through the point *P* on the circle. **Step-III**: Take any point *R* in the major arc and join *PR* and *RQ*. **Step-IV**: On taking *PQ* as base, construct

 $\angle QPY = \angle PRQ.$

Step-V: Produce *YP* to *Y'*. Then, *Y'PY* is the required tangent at point *P*.

10. Let the smaller number be *x*.

 \therefore Larger number is x + 4.

According to question, $\frac{1}{x} - \frac{1}{x+4} = \frac{4}{21}$

$$\Rightarrow \frac{x+4-x}{x(x+4)} = \frac{4}{21} \Rightarrow \frac{1}{x(x+4)} = \frac{1}{21}$$

$$\Rightarrow x^2 + 4x - 21 = 0 \Rightarrow x^2 + 7x - 3x - 21 = 0$$

$$\Rightarrow (x+7)(x-3) = 0 \Rightarrow x = 3 \text{ or } x = -7$$

If $x = 3$, then $x + 4 = 3 + 4 = 7$
If $x = -7$, then $x + 4 = -7 + 4 = -3$
Therefore, the pairs of numbers are 3 and 7 or -7 and -3 .

11. Let *AB* be the tower and *AC* & *AD* be its shadows when the angles of elevation are 60° and 30° respectively.

ĥ

K60°

Then CD = 40 metres. Let *h* be the height of the tower and let

AC = x metres.

In $\triangle ABC$, right angled at *A*, we have

$$\tan 60^\circ = \frac{AB}{AC} \Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow h = \sqrt{3} x \Rightarrow x = \frac{h}{\sqrt{3}}$$
...(i)
In ΔDAB , we have

D 30°

$$\tan 30^{\circ} = \frac{AB}{AD}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x+40} \implies x+40 = \sqrt{3}h \qquad \dots (ii)$$

Putting value of *x* from (i) in (ii), we get

$$\frac{h}{\sqrt{3}} + 40 = \sqrt{3}h \implies h + 40\sqrt{3} = 3h$$
$$\implies 2h = 40\sqrt{3} \implies h = 20\sqrt{3}$$

Thus, the height of the tower is $20\sqrt{3}$ metres.

OR

Let the height of tower PQ be h m and distance PX be v m Given, RX = 40 m = SP, $\angle OXP = 60^{\circ} \text{ and } \angle ORS = 45^{\circ}$ (h - 40) m In ΔPXQ , tan 60° = $\frac{PQ}{VP}$ 45° $\Rightarrow \sqrt{3} = \frac{h}{v}$ 40 m $\Rightarrow y = \frac{h}{\sqrt{2}}$...(i) In ΔRSQ , tan $45^\circ = \frac{QS}{RS}$ $\Rightarrow 1 = \frac{PQ - SP}{VP}$ [$\therefore RS = XP$] $\Rightarrow 1 = \frac{h-40}{v} \Rightarrow y = h-40$...(ii) From (i) and (ii), we get $\frac{h}{\sqrt{3}} = h - 40 \implies \frac{h - \sqrt{3}h}{\sqrt{3}} = -40$ $\Rightarrow -h(\sqrt{3} - 1) = -40\sqrt{3}$ $\Rightarrow h = \frac{40\sqrt{3}}{\sqrt{2}-1} = \frac{40\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ $\Rightarrow h = 20(3 + \sqrt{3}) = 20 \times 4.732 = 94.64 \text{ m}$ 12. We have, radius of hemispherical part of the spinning top= radius of conical part = $r = \frac{3.5}{2}$ cm Height of the conical part (h) = $5 - \frac{3.5}{2} = 3.25$ cm Slant height of the conical part (*l*) = $\sqrt{r^2 + h^2}$ $=\sqrt{\left(\frac{3.5}{2}\right)^2 + (3.25)^2} = 3.7 \text{ cm}$ Total surface area of the spinning top = curved surface

Total surface area of the spinning top = curved surface area of hemispherical part + curved surface area of conical part = $2\pi r^2 + \pi r l = \pi r (2r + l)$

$$= \frac{22}{7} \times \frac{3.5}{2} \left(2 \times \frac{3.5}{2} + 3.7 \right)$$
$$= \frac{22}{7} \times \frac{3.5}{2} \times 7.2 = 39.6 \text{ cm}^2.$$

13. (i) We have, the following table :

Class interval	Frequency (<i>f_i</i>)	Cumulative frequency (<i>c.f.</i>)
0-1000	28	28
1000-2000	46	74
2000-3000	54	128
3000-4000	42	170
4000-5000	30	200
	$\Sigma f_i = n = 200$	

Here,
$$\frac{n}{2} = \frac{200}{2} = 100$$

∴ Median class = 2000 - 3000

$$l = 2000, c.f. = 74, f = 54, h = 1000$$

∴ Median = 2000 + $\left(\frac{100 - 74}{54}\right) \times 1000$

$$= 2000 + \frac{26000}{54} = 2000 + 481.481 = 2481.5$$

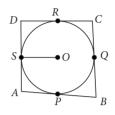
(ii) Since, maximum frequency is 54

 \therefore Modal class = 2000 - 3000

Hence, sum of lower and upper limit = 2000 + 3000

= 5000

14. (i)



Here, OS the is radius of circle.

Since radius at the point of contact is perpendicular to tangent.

So, $\angle OSA = 90^{\circ}$

(ii) Since, the lengths of tangents drawn from an external point to a circle are equal.

$$AP = AS = AD - DS = AD - DR$$

$$= 11 - 7 = 4 \text{ cm}$$