JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04th June, 2023)

PAPER-1

PHYSICS

SECTION-1: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

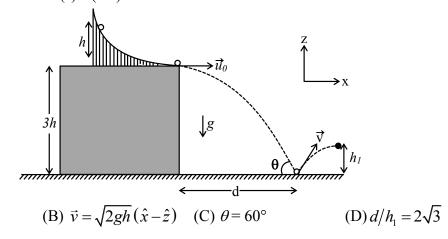
choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

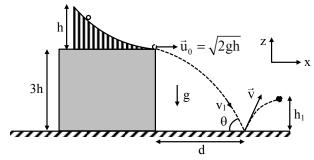
choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

1. A slide with a frictionless curved surface, which becomes horizontal at its lower end,, is fixed on the terrace of a building of height 3h from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity \vec{v} and reaches a maximum height h_1 . The acceleration due to gravity is g and the coefficient of restitution of the ground is $1/\sqrt{3}$. Which of the following statement(s) is(are) correct?



(A) $\vec{u}_0 = \sqrt{2gh}\hat{x}$ Ans. (A,C,D)



Sol.

$$\vec{v}_1 = \sqrt{2gh} \hat{i} - \sqrt{2g3h} \hat{k}$$

$$\vec{v} = \sqrt{2gh} \hat{i} + \sqrt{2g3h} \times \frac{1}{\sqrt{3}} \hat{k}$$

$$= \sqrt{2gh} \hat{i} + \sqrt{2gh} \hat{k}$$

$$\tan \theta = \frac{\sqrt{2g3h}}{\sqrt{2gh}} = \sqrt{3} \quad \theta = 60^{\circ}$$

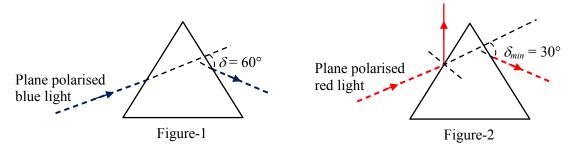
$$h_1 = \frac{v_{1y}^2}{2g} = \frac{2gh}{2g} = h$$

$$d = v_x t = \sqrt{2gh} \times \sqrt{\frac{2 \times 3h}{g}}$$

$$= \sqrt{2gh} \sqrt{\frac{6h}{g}} = 2\sqrt{3}h$$

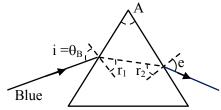
$$= \frac{d}{h_1} = 2\sqrt{3}$$

2. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{min} = 30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?



- (A) The blue light is polarized in the plane of incidence.
- (B) The angle of the prism is 45°.
- (C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
- (D) The angle of refraction for blue light in air at the exit plane of the prism is 60°.

Ans. (**A**,**C**,**D**)



Sol.

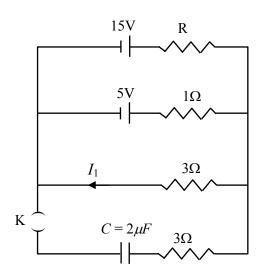
tan
$$\theta_{\rm B} = \mu_{\rm B} = \sqrt{3}$$

 $i = \theta_{\rm B} = 60^{\circ}$
 $1\sin 60^{\circ} = \sqrt{3}\sin r_{\rm 1}$
 $r_{\rm 1} = 30^{\circ}$
 $r_{\rm 1} + r_{\rm 2} = A$
 $\delta = (i + e) - A$
 $60^{\circ} = 60^{\circ} + e - A$
 $e = A$
 $\sqrt{3}\sin r_{\rm 2} = 1\sin e$
 $\sqrt{3}\sin(A - 30) = \sin A$
Solving
 $A = 60^{\circ}$
 $\therefore e = 60^{\circ}$
For red light

$$\mu = \frac{\sin\left(\frac{A + \delta_{\rm min}}{2}\right)}{\sin\frac{A}{2}} = \sqrt{2}$$

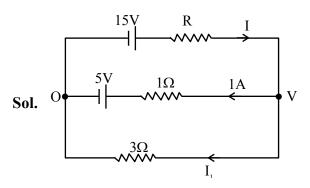
3. In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time $t = t_0$. Which of the following statement(s) is(are) correct?

[Given: $e^{-1} = 0.36$]



- (A) The value of the resistance R is 3Ω .
- (B) For $t < t_0$, the value of current I_1 is 2A.
- (C) At $t = t_0 + 7.2 \mu s$, the current in the capacitor is 0.6 A.
- (D) For $t \to \infty$, the charge on the capacitor is 12 μ C.

Ans. (**A,B,C,D**)



By writing voltage drop across 1Ω

$$\Rightarrow$$
 0 + 5 + 1 × 1 = V

$$V = 6$$

⇒ Similarly across R

$$0 + 15 - I \times R = 6$$

$$IR = 9$$

$$\Rightarrow$$
 across 3Ω

$$6 - 3 I_1 = 0$$

$$I_1 = 2A$$

Hence option (B) is correct

$$\Rightarrow$$
 I = 1 + 2

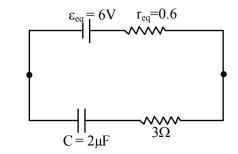
(by KCL)

$$I = 3$$

$$IR = 9$$

$$R = 3\Omega$$

Option (A) is correct



$$\varepsilon = \frac{\frac{15}{3} + \frac{5}{1} + \frac{0}{3}}{\frac{1}{3} + \frac{1}{1} + \frac{1}{3}} = 10 \times \frac{3}{5} = 6V$$

$$q_{max}=2\times 6=12\mu C$$

$$i = \frac{6}{3.6} e^{-\frac{t}{\tau}}$$

$$=\frac{5}{3}e - \frac{7.2}{7.2} = \frac{5}{3}e^{-1} \approx 0.6A$$

SECTION-2: (Maximum Marks: 12)

• This section contains **FOUR (04)** questions.

• Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.

• For each question, choose the option corresponding to the correct answer.

• Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

4. A bar of mas M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with 5.00 m s⁻¹ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct?

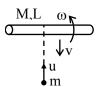
(A)
$$\omega = 6.98 \text{ rad s}^{-1} \text{ and v} = 4.30 \text{ m s}^{-1}$$

(B)
$$\omega = 3.75 \text{ rad s}^{-1} \text{ and v} = 4.30 \text{ m s}^{-1}$$

(C)
$$\omega = 3.75 \text{ rad s}^{-1} \text{ and v} = 10.0 \text{ m s}^{-1}$$

(D)
$$\omega = 6.80 \text{ rad s}^{-1} \text{ and v} = 4.10 \text{ m s}^{-1}$$

Ans. (A)



Sol.

Applying angular momentum conservation about hinge

$$mv\frac{L}{2} + 0 = -mv\frac{L}{2} + \frac{ML^2}{3}\omega$$
(i)

Also from eq. of restitution

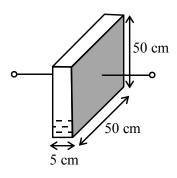
$$e = 1 = \frac{\omega \frac{L}{2} + V}{u} \Rightarrow u = \omega \frac{L}{2} + V \dots(ii)$$

Solving (i) & (ii)

 $\omega \approx 6.98 \text{ rad/sec } \& \text{ v} = 4.30 \text{ m/s}$

Hence option (A)

5. A container has a base of 50 cm \times 5 cm and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area 50 cm \times 50 cm. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of 250 cm³ s⁻¹. What is the value of the capacitance of the container after 10 seconds? [Given: Permittivity of free space $\epsilon_0 = 9 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]



(A) 27 pF

(B) 63 pF

(C) 81 pF

(D) 135 pF

Ans. (B)

Sol. In t = 10 sec volume of liquid is

$$V = 2500 cc$$

$$h = \frac{2500}{50 \times 5} = 10 \text{cm}$$

$$C_d = \frac{A_d \varepsilon_0 k}{d}$$

$$=\frac{50\times10^{-2}\times10\times10^{-2}\,\epsilon_0\times3}{5\times10^{-2}}=3\epsilon_0$$

$$C_{a} = \frac{A_{a} \epsilon_{0}}{d} = \frac{50 \times 10^{-2} \times 40 \times 10^{-2} \epsilon_{0}}{5 \times 10^{-2}} = 4\epsilon_{0}$$

$$C = C_a + C_d = 7\varepsilon_0$$

$$= 7 \times 9 \times 10^{-12} = 63 \text{ Pf}$$

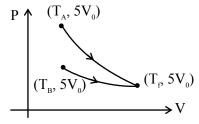
6. One mole of an ideal gas expands adiabatically from an initial state (T_A, V_0) to final state $(T_f, 5V_0)$. Another mole of the same gas expands isothermally from a different initial state (T_B, V_0) to the same final state $(T_f, 5V_0)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ. What is the ratio T_A/T_B ?

(A) $5^{\gamma-1}$

- (B) $5^{1-\gamma}$
- (C) 5^{γ}
- (D) $5^{1+\gamma}$

Ans. (A)

Sol.

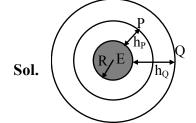


$$T_A V_0^{\gamma - 1} = T_f (5V_0)^{\gamma - 1}$$

$$\frac{T_A}{T_f} = 5^{\gamma - 1} = \frac{T_A}{T_B}$$

- 7. Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_P and h_Q , respectively, where $h_p = R/3$. The accelerations of P and Q due to Earth's gravity are g_P and g_Q , respectively. If $g_P/g_Q = 36/25$, what is the value of h_Q ?
 - (A) 3R/5
- (B) R/6
- (C) 6R/5
- (D) 5R / 6

Ans. (A)



$$\frac{g_{P}}{g_{Q}} = \frac{\frac{GM}{r_{P}^{2}}}{\frac{GM}{r_{Q}^{2}}} = \left(\frac{r_{Q}}{r_{P}}\right)^{2}$$

$$\frac{36}{25} = \left(\frac{r_Q}{r_P}\right)^2$$

$$\frac{r_Q}{r_P} = \frac{6}{5}$$

$$r_{Q} = \frac{6}{5} r_{P}$$

$$R + h_Q = \frac{6}{5} \left(R + \frac{R}{3} \right)$$

$$h_Q = \frac{24}{15}R - R = \frac{9}{15}R = \frac{3}{5}R$$

SECTION-3: (Maximum Marks: 24)

• This section contains **SIX** (**06**) questions.

• The answer to each question is a **NON-NEGATIVE INTEGER**.

• For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

• Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

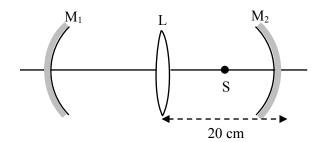
Zero Marks : 0 In all other cases.

8. A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n = 4 to level n = 3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is _____. [Given: hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum]

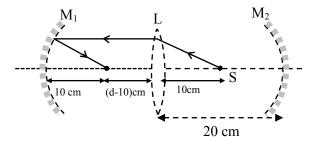
Ans. (3)

Sol.
$$n = 4$$
 $n = 3$
 $-1.51Z^2eV$ $-0.85 Z^2 eV$
 $E = E_4 - E_3 = 0.66 Z^2 eV$
 $K_{max} = E - W$
 $0.66 Z^2 1.95 + 4 = 5.95$
 $W = 0.66Z^2 - 1.95 = \frac{hc}{\lambda} = \frac{1240}{310}$
 $\therefore Z = 3$

9. An optical arrangement consists of two concave mirrors M₁ and M₂, and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M₁ and M₂ are 20 cm and 24 cm, respectively. The distance between L and M₂ is 20 cm. A point object S is placed at the mid-point between L and M₂ on the axis. When the distance between L and M₁ is *n*/7 cm, one of the images coincides with S. The value of *n* is ______.



Ans. (80 or 150 or 220)



Sol.

Two cases are possible if Ist refraction on lens:

Since object is at focus \Rightarrow light will become parallel.

 I^{st} reflection at M_1 :-

Light is parallel \Rightarrow Image will be at focus. IInd refraction from L :-

$$u = -(d - 10)$$

$$f = 10 \text{ cm}$$

$$\frac{1}{v} - \frac{1}{\mu} = \frac{1}{f}$$

$$\frac{1}{v} + \frac{1}{d - 10} = \frac{1}{10}$$

$$\frac{1}{v} = \frac{1}{10} - \frac{1}{(d-10)} \qquad \dots (i)$$

This v will be object for M_2 , and image should be at 10 cm

$$\frac{1}{\mu} + \frac{1}{v_1} = \frac{1}{f}$$

$$-\frac{1}{(20-v)} - \frac{1}{10} = -\frac{1}{12}$$

$$\frac{1}{12} - \frac{1}{10} = \frac{1}{20 - v}$$

$$-\frac{2}{120} = \frac{1}{20 - v}$$

$$20 - v = -60$$

$$v = 80 \text{ cm}$$

From equation (i)

$$\frac{1}{80} = \frac{1}{10} - \frac{1}{d - 10}$$

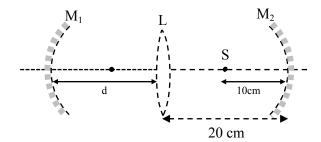
$$\frac{1}{d-10} = \frac{1}{10} - \frac{1}{80}$$

$$\frac{1}{d-10} = \frac{80-10}{800} = \frac{70}{800}$$

$$d-10 = \frac{80}{7} \Rightarrow d = 10 + \frac{80}{7} = \frac{150}{7}$$

$$n = 150$$

Case-2: If 1st reflection on mirror m2



For m₂

$$\frac{1}{V_1} + \frac{1}{-10} = \frac{1}{-12}$$

$$V_1 = 60 \text{ cm}$$

Then refraction on lens L

$$u_2 = -80 \text{ cm}$$

$$\frac{1}{V_2} - \frac{1}{-60} = \frac{1}{10}$$

$$V_2 = \frac{80}{7}$$

Then reflection on m₂

Either V₂ is at centre (normal incidence)

$$d - \frac{80}{7} = 20$$

$$d = \frac{220}{7}$$

$$\frac{n}{7} = \frac{220}{7},$$

$$n = 220$$

V₂ is at pole of m₂

$$d - \frac{80}{7} = 0$$

$$d = \frac{80}{7}$$

$$\frac{n}{7} = \frac{80}{7}$$

$$n = 80$$

10. In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n %. The value of n is _____.

Ans. (1)

Sol.
$$u = 10 \pm 0.1 \text{ cm}, \qquad v = 20 \pm 0.2 \text{ cm}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{v^2} dv + \frac{1}{u^2} du = -\frac{1}{f^2} df$$

$$\frac{1}{20} + \frac{1}{10} = \frac{1}{f} \Rightarrow \frac{1}{f} = \frac{3}{20} \Rightarrow f = \frac{20}{3} \text{ cm}$$

$$\Rightarrow \frac{1}{(20)^2} (0.2) + \frac{1}{(10)^2} (0.1) = \frac{9}{400} df$$

$$df = \frac{1}{9} \left(\frac{400}{400} \times 0.2 + \frac{400}{100} \times 0.1 \right)$$

$$df = \frac{1}{9} (0.2 + 0.4) \Longrightarrow df = \frac{0.6}{9}$$

$$\frac{df}{f} = \frac{0.6}{9} \times \frac{3}{20} = \frac{1}{100}$$

% error = 1 %

Sol.
$$\frac{1}{V} - \frac{1}{U} = \frac{1}{f}$$
; $+ \frac{1}{20} + \frac{1}{10} = \frac{1}{f}$
 $- \frac{1}{V^2} dv + \frac{dU}{u^2} = -\frac{df}{f^2}$ $\frac{1+2}{20} = \frac{1}{f}$; $f = \frac{20}{3}$

$$\frac{0.1}{100} + \frac{0.2}{400} = \frac{6\%}{6}$$

$$\frac{0.4+0.2}{400} = \frac{\Delta f}{f\left(\frac{20}{3}\right)}$$

$$\frac{0.6 \times 20}{400 \times 3} = \frac{\Delta f}{f}$$

$$\frac{1}{100} = \frac{\Delta f}{f}$$

% change in f is 1%

A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma = 5/3)$ and one mole of an ideal diatomic gas $(\gamma = 7/5)$. Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is ______ Joule.

Ans. (121)

Sol. At constant pressure

$$W = nR\Delta T = 66$$

$$\Delta U = n(C_V)_{mix} \Delta T$$

$$(C_{V})_{mix} = \frac{n_{1}C_{V_{1}} + n_{2}C_{V_{2}}}{n_{1} + n_{2}}$$

$$(C_{V})_{mix} = \frac{2 \times \frac{3}{2}R + 1 \times \frac{5}{2}R}{3}$$

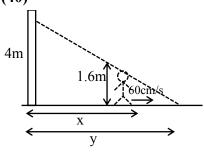
$$\left(C_{V}\right)_{mix} = \frac{11}{6}R$$

$$\Delta U = \frac{11}{6} (nR\Delta T)$$

$$\Delta U = \frac{11}{6} \times 66 = 121J$$

12. A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s⁻¹, the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s⁻¹.

Ans. (40)



Sol.

$$\frac{4}{y} = \frac{1.6}{y - x}$$

$$4y - 4x = 1.6y$$

$$4y - 4x = 1.6y$$

$$2.4 y = 4x$$

 $X = 0.6y$

$$\frac{\mathrm{dx}}{\mathrm{dt}} = 0.6 \times \frac{\mathrm{dy}}{\mathrm{dt}}$$

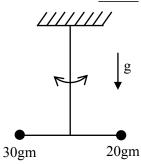
$$60 = 0.6 \times \frac{dy}{dt}$$

$$\therefore \frac{\mathrm{dy}}{\mathrm{dt}} = 100 \,\mathrm{cm} \,/\,\mathrm{s}$$

Speed of tip of person's

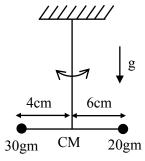
Shadow w.r.t person = 100 - 60 = 40 cm/s

13. Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad⁻¹. The angular frequency of the oscillations in $n \times 10^{-3}$ rad s⁻¹. The value of n is _____.



Ans. (10)

Sol.



 $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{C}}$

$$\Rightarrow \omega = \sqrt{\frac{C}{I}}$$

Where I = moment of inertia

$$I = (30) (4)^2 + (20) (6)^2$$

$$= 1200 \text{ gm-cm}^2$$

$$= 1.2 \times 10^{-4} \text{ kg-m}^2$$

$$\Rightarrow \omega = \sqrt{\frac{1.2 \times 10^{-8}}{1.2 \times 10^{-4}}}$$

$$\Rightarrow \omega = \sqrt{10^{-4}}$$

$$\omega = (10^{-2})$$

$$n \times 10^{-3} = 10^{-2} \Longrightarrow n = 10$$

SECTION-4: (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

14. List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

_	_	_
Г	•	4 I
	418	

- (P) $^{238}_{92}U \rightarrow ^{234}_{91}Pa$
- (Q) $^{214}_{82}Pb \rightarrow ^{210}_{82}Pb$
- (R) $^{210}_{81}Tl \rightarrow ^{206}_{82}Pb$
- (S) ${}^{228}_{91}Pa \rightarrow {}^{224}_{88}Ra$

List-II

- (1) one α particle and one β^+ particle
- (2) three β^- particles and one α particle
- (3) two β^- particles and one α particle
- (4) one α particle and one β^- particle
- (5) one α particle and two β^+ particles

(A)
$$P \rightarrow 4$$
, $Q \rightarrow 3$, $R \rightarrow 2$, $S \rightarrow 1$

(B)
$$P \rightarrow 4$$
, $Q \rightarrow 1$, $R \rightarrow 2$, $S \rightarrow 5$

(C)
$$P \rightarrow 5$$
, $Q \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 4$

(D)
$$P \rightarrow 5$$
, $Q \rightarrow 1$, $R \rightarrow 3$, $S \rightarrow 2$

Ans. (A)

Sol.
$$_{Z_1}Z^{A_1} \rightarrow_{Z_2} Y^{A_2} + N_{12}He^4 + N_{21}e^0 + N_{3-1}e^0$$

Conservation of charge

$$Z_1 = Z_2 + 2 N_1 + N_2 - N_3$$
 ... (i)

Conservation of nucleons.

$$A_1 = A_2 + 4N_1$$

$$N_1 = \frac{A_1 - A_2}{4} \qquad \dots (ii)$$

From (i) and (ii)

$$N_2 - N_3 = Z_1 - Z_2 - \left(\frac{A_1 - A_2}{2}\right)$$

(P)
$$_{92}$$
 U²³⁸ \rightarrow_{91} Pa²³⁴

$$N_1 = \frac{238 - 234}{4} = 1 \rightarrow 1\alpha$$

$$N_2 - N_3 = (92 - 91) - (\frac{4}{2}) = -1 \rightarrow 1\beta^-$$

(Q)
$$_{82}\text{Pb}^{214} \rightarrow_{82} \text{Pb}^{210}$$

214 – 210

$$N_{_{1}}=\frac{214-210}{4}=1 \! \to \! 1\alpha$$

$$N_2 - N_3 = (82 - 82) - (\frac{4}{2}) = -2 \rightarrow 2\beta^-$$

$$(R)_{81} T\ell^{210} \rightarrow_{82} Pb^{206}$$

$$N_1 = \frac{210 - 206}{4} = 1 \rightarrow 1\alpha$$

$$N_2 - N_3 = (81 - 83) - \frac{4}{2} = -3 \rightarrow 3\beta^-$$

(S)
$$_{91}Pa^{228} \rightarrow_{88} Ra^{224}$$

$$N_1 = \frac{228 - 224}{4} = 1\alpha$$

$$N_2 - N_3 = (91 - 88) - \frac{4}{2} = 1\beta^+$$

15. Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.

[Given: Wien's constant as 2.9×10^{-3} m-K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V-m]

List-II List-II

(P) 2000 K

(1) The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV

(Q) 3000 K

(2) The radiation at peak wavelength is visible to human eye.

(R) 5000 K

- (3) The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
- (S) 10000 K
- (4) The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K.
- (5) The radiation at peak emission wavelength can be used to image human bones.

(A)
$$P \rightarrow 3$$
, $Q \rightarrow 5$, $R \rightarrow 2$, $S \rightarrow 3$

(B)
$$P \rightarrow 3$$
, $Q \rightarrow 2$, $R \rightarrow 4$, $S \rightarrow 1$

(C)
$$P \rightarrow 3$$
, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 1$

(D)
$$P \rightarrow 1$$
, $Q \rightarrow 2$, $R \rightarrow 5$, $S \rightarrow 3$

Ans. (C)

- **Sol.** \Rightarrow For option (P) temperature is minimum hence λm will be maximum $\beta = \frac{\lambda D}{d} \Rightarrow \beta$ will also be maximum
 - \Rightarrow For option (Q) T = 3000

$$\lambda m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{30000}$$

$$\lambda m = \frac{2.9}{3} \times 10^{-6}$$

$$=0.96\times10^{-6}$$

$$= 966.6 \text{ nm}$$

$$P_{3000} = 6A (3000)^4$$

$$P_{6000} = 6A (6000)^4$$

$$\frac{P_{3000}}{P_{6000}} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

$$P_{3000} = \frac{1}{16} P_{6000}$$

$$O - 4$$

$$\Rightarrow$$
 For (R) T = 5000 K

$$\lambda m = \frac{2.9 \times 10^{-3}}{5 \times 10^{3}} = 0.58 \times 10^{-6}$$

$$= 580 \text{ nm}$$

Visible to human eyes

$$R-2$$

$$\Rightarrow$$
 For (S) T = 10,000 \rightarrow maximum

Hence (3) is wrong as it has minimum (λm)

16. A series LCR circuit is connected to a 45 sin (ωt) Volt source. The resonant angular frequency of the circuit is 10^5 rad s⁻¹ and current amplitude at resonance is I_0 . When the angular frequency of the source is $\omega = 8 \times 10^4$ rad s⁻¹, the current amplitude in the circuit is 0.05 I_0 . If L = 50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option.

		List-I		List-II
(P)	I_0 in mA		(1)	44.4

(A)
$$P \rightarrow 2$$
, $Q \rightarrow 3$, $R \rightarrow 5$, $S \rightarrow 1$ (B) $P \rightarrow 3$, $Q \rightarrow 1$, $R \rightarrow 4$, $S \rightarrow 2$

(C)
$$P \rightarrow 4$$
, $Q \rightarrow 5$, $R \rightarrow 3$, $S \rightarrow 1$ (D) $P \rightarrow 4$, $Q \rightarrow 2$, $R \rightarrow 1$, $S \rightarrow 5$

Ans. (B)

Sol.
$$V = 45 \sin \omega t$$
,

$$L = 50 \text{ mH}$$

$$\omega_0 = 10^5 \text{ rad / s} = \frac{1}{\sqrt{LC}} \Rightarrow C = \frac{1}{L\omega_0^2} = \frac{1}{5 \times 10^{-2} \times 10^{10}}$$

$$= 2 \times 10^{-9} \text{ F}$$

$$I_0 = \frac{45}{R}$$

$$\omega = 8 \times 10^4 \text{ rad/s} = 0.8 \ \omega_0$$

$$I = 0.05I_0 = \frac{I_0}{20} \Longrightarrow Z = 20R$$

$$X_{L} = 8 \times 10^{4} \times 5 \times 10^{-2} \Omega = 4k\Omega$$

$$X_{C} = \frac{1}{8 \times 10^{4} \times 2 \times 10^{-9}} = \frac{1}{16} \times 10^{5} \Omega = \frac{25}{4} \text{ k}\Omega$$

$$Z^2 = R^2 + (X_C - X_L)^2$$

$$400R^2 = R^2 + \left(\frac{9}{4}k\Omega\right)^2$$

$$R = \frac{\frac{9}{4} k\Omega}{\sqrt{399}} \approx \frac{9}{80} k\Omega = \frac{900}{8} \Omega$$

$$I_0 = \frac{V_0}{R} = \frac{45 \times 8}{900} = \frac{8}{20} A \approx 0.4A = 400 \text{mA}$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{8}{900} \sqrt{\frac{5 \times 10^{-2}}{2 \times 10^{-9}}} = \frac{8}{900} \sqrt{25 \times 10^{6}}$$

$$Q = \frac{8}{900} \times 5000 = 44.4$$

$$Q = \frac{\omega_0}{\Delta\omega} \Rightarrow \Delta\omega = \frac{\omega_0}{Q} = \frac{10^5}{44.4} = 2250.0$$

$$P_{\text{max}} = I_0^2 R = \frac{45^2}{R^2} \times R = \frac{45^2}{R} = \frac{45^2}{900} \times 8 = 18.4 \text{W}$$

17. A thin conducting rod MN of mass 20 gm, length 25 cm and resistance 10 Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4$ T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.

[Given: The acceleration due to gravity $g = 10 \text{ ms}^{-2}$ and $e^{-1} = 0.4$]

()	(<u>•</u>)	(<u>•</u>)	$\vec{\mathrm{B}}_0$ (§1	
(•) M	(<u>•</u>)	(<u>§</u>)	N 🗐	
())	4 - <u>2</u> 5	cm (§)	(•) \ g	,
(0)	(<u>§</u>)	(<u>•</u>)	()	
(<u>•</u>)	(<u>•</u>)	()	()	
(<u>•</u> 1	((•)	(<u>•</u>)	 (•)	

List-II List-II

(P) At
$$t = 0.2$$
 s, the magnitude of the induced emf in Volt

(Q) At
$$t = 0.2$$
 s, the magnitude of the magnetic force in Newton (2) 0.14

(R) At
$$t = 0.2$$
 s, the power dissipated as heat in Watt (3) 1.20

(S) The magnitude of terminal velocity of the rod in m s⁻¹ (4)
$$0.12$$
 (5) 2.00

(A)
$$P \rightarrow 5$$
, $Q \rightarrow 2$, $R \rightarrow 3$, $S \rightarrow 1$

(B)
$$P \rightarrow 3$$
, $Q \rightarrow 1$, $R \rightarrow 4$, $S \rightarrow 5$

0.07

(1)

(C)
$$P \rightarrow 4$$
, $O \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 2$

(D)
$$P \rightarrow 3$$
, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 5$

Ans. (D)

Sol. From force equation

$$mg - Bi\ell = \frac{mdv}{dt}$$

$$mg - \frac{BBi\ell}{R} \times \ell = \frac{mdv}{dt}$$

$$\frac{mgR}{B^2\ell^2} - v = \frac{mR}{B^2\ell^2} \frac{dv}{dt}$$

$$\frac{B^2\ell^2}{mR} \int_{t=0}^t dt = \int_0^v \frac{dv}{\left(\frac{mgR}{B^2\ell^2} - v\right)}$$

Now
$$\frac{\text{mgR}}{\text{B}^2 \ell^2} = \frac{20 \times 10^{-3} \times 10 \times 10}{16 \times \frac{1}{16}} = 2$$

And
$$\frac{B^2\ell^2}{mR} = \frac{16 \times \frac{1}{16}}{20 \times 10^{-3} \times 10} = \frac{1}{0.2} = 5$$

$$\therefore 5t = \left[-\ell n (2 - v) \right]_0^v$$

$$-5t = \ell n \left[\frac{2-v}{v} \right]$$

$$v = 2 (1 - e^{-5t})$$

At
$$t = 0.2$$
 sec

$$v = 2 (1 - e^{-5t})$$
At $t = 0.2$ sec $v = 2 (1 - e^{-5 \times 0.2})$

$$v = 2 (1 - 0.4)$$

$$v = 2 (1 - 0.4)$$

$$v = 1.2 \text{ m/s}$$

(P) Now at t = 0.2 sec

The magnitude of the induced emf = $E = Bv\ell$

$$= 4 \times 1.2 \times \frac{1}{4} = 1.2 \text{Volt}$$

(Q) At t = 0.2 sec, the magnitude of magnetic force = $BIl\sin\theta$

$$=B\times\frac{B\ell v}{R}\times\ell\times\sin90^{\circ}$$

$$= \frac{4 \times 4 \times \frac{1}{4} \times 1.3 \times \frac{1}{4}}{10} = 0.12 \text{ Newton}$$

(R) At t = 0.2 sec, the power dissipated as heat

$$P = i^2 R = \frac{v^2}{R} = \frac{1.2 \times 1.2}{10}$$

$$P = 0.144$$
 watt

(S) Magnitude of terminal velocity

At terminal velocity, the net force become zero

∴
$$mg = Bi\ell$$

$$mg = B \times \frac{B\ell v_t}{R} \times \ell$$

$$\therefore v_{T} = \frac{mgR}{B^{2}\ell^{2}} = \frac{20 \times 10^{-3} \times 10 \times 10}{16 \times \frac{1}{16}}$$

$$v_T = 2 \text{ m/s}$$

Hence, Answer is (D)

CHEMISTRY

SECTION-1: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get –2 marks.

- 1. The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Ans. (**B,C,D**)

Sol. \Rightarrow Under roasting condition, the malachite will be converted into

$$CuCO_3.Cu(OH)_2 \rightarrow 2CuO + CO_2 + H_2O$$

$$\Rightarrow \operatorname{ZnCO}_3 \to \operatorname{ZnO} + \operatorname{CO}_2 \uparrow$$
(Calamine)

⇒ Copper pyrites is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slag of' as iron silicate and copper is produced in the form of copper matte.

$$FeO + SiO_2 \rightarrow FeSiO_3$$
(Slag)

$$\Rightarrow \text{ Ag + KCN + O}_2 + \text{H}_2\text{O} \longrightarrow [\text{Ag(CN)}_2]^- + \text{KOH}$$

$$\downarrow \text{Zn}$$

$$\text{Ag } \downarrow + [\text{Zn(CN)}_4]^{2-}$$

2. In the following reactions, P, Q, R, and S are the major products.

$$CH_{3}CH_{2}CH(CH_{3})CH_{2}CN \xrightarrow{(i) PhMgBr, then \, H_{3}O^{\oplus}} \mathbf{P}$$

Ph – H + CH₃CCl
$$\xrightarrow{\text{(i) anhyd. AlCl}_3}$$
 Q

$$CH_{3}CH_{2}CC1 \xrightarrow{(i)\frac{1}{2}(PhCH_{2})_{2}Cd} R$$

$$PhCH_{2}CHO \xrightarrow{\begin{subarray}{c} (i) PhMgBr, then $H_{2}O$\\ \hline (ii) CrO_{3}, dil. H_{2}SO_{4}\\ \hline (iii) HCN\\ (iv) H_{2}SO_{4}, \Delta \end{subarray}} S$$

The correct statement(s) about P, Q, R, and S is(are)

- (A) Both **P** and **Q** have asymmetric carbon(s).
- (B) Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) **P** has asymmetric carbon(s), **S** does **not** have any asymmetric carbon.

Ans. (**C**,**D**)

Sol. Formation of P

$$CH_3 - CH_2 - CH - CH_2 - CN \xrightarrow{PhMgBr} H_3O^+$$

$$PhMgBr \\ then H_3O^+$$

$$Asymmetric \\ carbon \\ (P)$$

Formation of Q

$$+ CH_3 - C - CI \xrightarrow{\text{anhy. AlCl}_3} Ph - C - CH_3$$

$$PhMgBr \text{then } H_3O^+$$

$$OH$$

$$Ph - C - CH_3$$

$$Ph - C - CH_3$$

$$Q)$$
No asymmetric carbon

Formation of R

C-Cl
$$+\frac{1}{2}$$
 (Ph - CH₂)₂Cd Ph Ph Ph Ph asymmetric carbon (R)

Formation of S

$$Ph - CH_{2} - C - H \xrightarrow{PhMgBr} Ph - CH_{2} - CH - Ph$$

$$OH$$

$$CrO_{3} \text{ with dil. } H_{2}SO_{4}$$

$$Ph - CH_{2} - C - Ph$$

$$OH$$

$$HCN$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$COOH$$

$$Ph - CH_{2} - C - Ph$$

$$OH$$

$$COOH$$

(S) No asymmetric carbon

 $\textbf{3.} \qquad \text{Consider the following reaction scheme and choose the correct option(s) for the major products } \textbf{Q},$

R and S.

$$Styrene \xrightarrow{\text{(i) } B_2H_6 \\ \text{(ii) } NaOH, H_2O_2, H_2O} \bullet P \xrightarrow{\text{(i) } CrO_3, H_2SO_4 \\ \text{(ii) } Cl_2, Red Phosphorus} \bullet Q$$

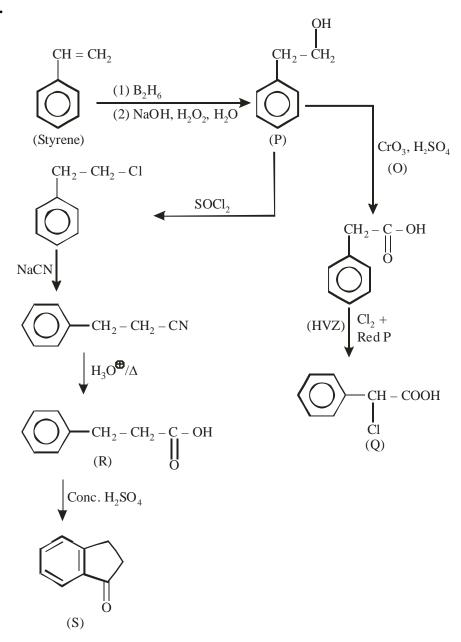
$$P \xrightarrow{\text{(i)SOCl}_2} R \xrightarrow{\text{conc.H}_2SO_4} S$$

$$\xrightarrow{\text{(iii) H}_3O^+, \Delta}$$

(C)
$$Q$$
 R S Q R S

Ans. (B)

Sol.



SECTION-2: (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If **ONLY** the correct option is chosen; Full Marks

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

In the scheme given below, X and Y, respectively, are 4.

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$\mathbf{P} \xrightarrow{\text{PbO}_2(\text{excess}) \atop \text{heat}} \mathbf{X} \text{ (a coloured species in solution)}$$

$$\mathbf{Q} \xrightarrow{\text{MnO(OH)}_2, \atop \text{Conc.H}_2\text{SO}_4} \mathbf{Y} \text{ (gives blue-coloration with KI-starch paper)}$$

(A) CrO_4^{2-} and Br_2

(B) MnO₄²⁻ and Cl₂

(C) MnO₄⁻ and Cl₂

(D) MnSO₄ and HOCl

Ans. (**C**)

Sol.
$$\operatorname{MnCl}_2 + \operatorname{NaOH} \rightarrow \operatorname{Mn(OH)}_2 \downarrow + \operatorname{NaCl}_{\begin{subarray}{c} (\mathbf{P}) \\ \text{(white ppt.)} \end{subarray}} + \operatorname{NaCl}_{\begin{subarray}{c} (\mathbf{Q}) \\ \text{(Filterate)} \end{subarray}}$$

$$\begin{array}{c} \operatorname{Mn}(\operatorname{OH})_2 \xrightarrow{\operatorname{PbO}_2 + \operatorname{H}^+(\operatorname{H}_2\operatorname{SO}_4)} \operatorname{MnO}_4^- + \operatorname{Pb}^{2+} \\ \operatorname{Cl}^- \xrightarrow{\operatorname{MnO}(\operatorname{OH})_2/\operatorname{conc.} \operatorname{H}_2\operatorname{SO}_4/\square} \operatorname{Cl}_2 \\ & \downarrow 2\operatorname{I}^- \\ & (\operatorname{Starch} + \operatorname{I}_2) + 2\operatorname{Cl}^- \end{array}$$

5. Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $[\Lambda_{\rm m} = {\rm molar\ conductivity}]$

 $\Lambda_{\rm m}^{\circ}$ = limiting molar conductivity

c = molar concentration

 K_a = dissociation constant of HX]

$$(A) \; K_a \; \Lambda_m^{\circ}$$

(B)
$$K_a \Lambda_m^{\circ} / 2$$

(C)
$$2 K_a \Lambda_m^{\circ}$$

(B)
$$K_a \Lambda_m^{\circ} / 2$$
 (C) $2 K_a \Lambda_m^{\circ}$ (D) $1 / (K_a \Lambda_m^{\circ})$

Ans. (A)

Sol. For weak acid,
$$\alpha = \frac{\Lambda_m}{\Lambda_0}$$

$$K_a = \frac{C\alpha^2}{1-\alpha} \Rightarrow K_a (1-\alpha) = C\alpha^2$$

$$\implies K_a \left(1 - \frac{\Lambda_m}{\Lambda_0} \right) = C \left(\frac{\Lambda_m}{\Lambda_0} \right)^2$$

$$\Rightarrow K_a - \frac{\Lambda_m K_a}{\Lambda_0} = \frac{C \Lambda_m^2}{(\Lambda_0)^2}$$

Divide by $\ensuremath{^{'}} \Lambda_m$

$$\Rightarrow \frac{K_a}{\Lambda_m} = \frac{C\Lambda_m}{\left(\Lambda_0\right)^2} + \frac{K_a}{\Lambda_0}$$

$$\Rightarrow \frac{1}{\Lambda_{\rm m}} = \frac{C\Lambda_{\rm m}}{K_{\rm a}(\Lambda_0)^2} + \frac{1}{\Lambda_0}$$

Plot
$$\frac{1}{\Lambda_m}$$
 vs $C\Lambda_m$ has

Slope =
$$\frac{1}{K_a(\Lambda_0)^2}$$
 = S

y-intercept =
$$\frac{1}{\Lambda_0}$$
 = P

Then,
$$\frac{P}{S} = \frac{\frac{1}{\Lambda_0}}{\frac{1}{K_a(\Lambda_0)^2}} = K_a \Lambda_0$$

- 6. On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L⁻¹ to 10^{-3} mol L⁻¹. The pK_a of HX is:
 - (A) 3

(B) 4

(C) 5

(D) 2

Ans. (B)

Sol. At pH = 7
$$\Rightarrow$$
 pure water solubility = $S_1 = \sqrt{K_{sp}}$

At
$$pH = 2$$

$$\Rightarrow \ MX(s) + aq \xleftarrow{K_{SP}} \ M^+(aq) + X^-(aq)$$

$$X^{-}(aq) + H^{+}(aq) \xrightarrow{1/K_a} HX(aq)$$

s-x 10 x = sApproximation : s - x = 0 [X⁻ is limiting reagent]

$$\Rightarrow s \simeq x$$

$$\Rightarrow s(s-x) = K_{sp} \qquad(1)$$

$$\frac{s}{(s-x)(10^{-2})} = \frac{1}{K_a} \qquad(2)$$

Multiply (1) × (2)
$$\Rightarrow \frac{s^2}{10^{-2}} = \frac{K_{sp}}{K_a}$$

 $\Rightarrow s = \frac{\sqrt{K_{sp}}}{10\sqrt{K_a}}$

Now given :
$$\frac{s}{s_1} = \frac{10^{-3}}{10^{-4}}$$

$$\Rightarrow \frac{\sqrt{K_{sp}}}{10\sqrt{K_a}} = 10 \qquad \Rightarrow \frac{1}{10\sqrt{K_a}} = 10$$
$$\Rightarrow \sqrt{K_a} = 10^{-2}$$
$$\Rightarrow K_a = 10^{-4}$$
$$\Rightarrow pK_a = 4$$

7. In the given reaction scheme, P is a phenyl alkyl ether, Q is an aromatic compound; R and S are the major products.

$$\mathbf{P} \xrightarrow{\text{HI}} \mathbf{Q} \xrightarrow{\text{(ii) NaOH} \atop \text{(ii) CO}_2} \mathbf{R} \xrightarrow{\text{(i)(CH}_3\text{CO)}_2\text{O}} \mathbf{S}$$

The correct statement about S is

- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

Ans. (B)

Sol. P is phenyl alkyl ether

Q is aromatic compound

R and S are the major product

i.e.

Phenyl alkyl ether

$$O-R$$
 $H-I$
 $O-H$
 $+R-I$

Phenyl alkyl ether

 $O-H$
 $+R-I$

Phenyl alkyl ether

 $O-Na^+$
 $O-Na^+$

Correct ans is (B)

Aspirin inhibits the synthesis of chemicals known as prostaglandin's.

SECTION-3: (Maximum Marks: 24)

- This section contains **SIX** (**06**) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 **ONLY** If the correct integer is entered;

Zero Marks : 0 In all other cases.

8. The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product **X** in 75% yield. The weight (in g) of **X** obtained is ____.

[Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

Ans. (222)

Sol.
$$4(CH_3)_2SiCl_2 + 4H_2O \xrightarrow{75\%} (CH_3)_8Si_4O_4 + 8HCl_{(X)}$$

$$w = 516g$$

$$n_{\text{(moles)}} = \frac{516}{129}$$

$$% yield = 75$$

The weight of X (in gram) =
$$296 \times \frac{75}{100} = 222 \text{ g}$$

9. A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure **x** atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be **y** dm³ mol⁻¹. The value of **x/y** is ____.

[Use: Gas constant,
$$R = 8 \times 10^{-2} L \text{ atm } K^{-1} \text{ mol}^{-1}$$
]

Ans. (100)

Sol. For gas :
$$Z = 0.5$$
, $V_m = 0.4$ L/mol

$$T = 800 \text{ K}, P = X \text{ atm.}$$

$$\Rightarrow Z = \frac{PV_m}{RT}$$

$$\Rightarrow \frac{X(0.4)}{0.08 \times 800} = 0.5$$

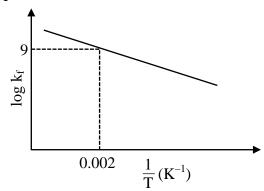
$$\Rightarrow X = 80$$

For ideal gas, $PV_m = RT$

$$\Rightarrow \quad V_m = \frac{RT}{P} = \frac{0.08 \times 800}{80} = 0.8 \; L \; mol^{-1} = y$$

Then,
$$\frac{x}{y} = \frac{80}{0.8} = 100.$$

10. The plot of log k_f versus $\frac{1}{T}$ for a reversible reaction $A(g) \rightleftharpoons P(g)$ is shown.



Pre-exponential factors for the forward and backward reactions are 10^{15} s⁻¹ and 10^{11} s⁻¹, respectively. If the value of log K for the reaction at 500 K is 6, the value of log k_b at 250 K is

[K = equilibrium constant of the reaction

 k_f = rate constant of forward reaction

 k_b = rate constant of backward reaction]

Ans. (5)

Sol. For reaction $A(g) \rightleftharpoons P(g)$

 $\log k_f = \frac{-E_f}{2.303 \, RT} + \log A_f$ [Arrhenius equation for forward reaction]

From plot when,
$$\frac{1}{T} = 0.002$$
, $\log k_f = 9$

$$\Rightarrow 9 = \frac{-E_f}{2.303 \,\text{R}} (0.002) + \log (A_f)$$

Given :
$$A_f = 10^{15} \text{ s}^{-1}$$

$$\Rightarrow 9 = \frac{-E_f}{2.303 R} (0.002) + 15$$

$$\Rightarrow \frac{E_f}{2.303R} = \frac{6}{0.002} = 3000$$

Now,
$$K = \frac{k_f}{k_b} = \frac{A_f}{A_b} e^{-(E_f - E_b)/RT}$$

$$\log K = -\frac{1}{2.303} \frac{(E_f - E_b)}{RT} + \log \left(\frac{10^{15}}{10^{11}} \right)$$

At 500 K

$$\Rightarrow$$
 6 = $\frac{-(E_f - E_b)}{500R (2.303)} + 4$

$$\Rightarrow$$
 (1000 R) (2.303) = E_b – E_f

$$\Rightarrow$$
 (1000 R) (2.303) = E_b - 3000 (2.303 R)

$$\Rightarrow$$
 E_b = 4000 R (2.303)(1)

Now
$$k_b = A_b e^{-E_b/RT}$$

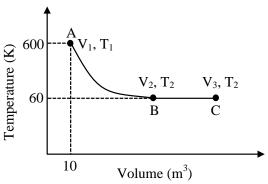
$$\Rightarrow \log k_b = \frac{-E_b}{2.303 RT} + \log A_b$$

At 250 K

$$\Rightarrow \log k_b = -\frac{4000}{250} + \log (10^{11})$$
 [From equation (1)]
= -16 + 11 = -5

$$|\log k_b| = 5$$

11. One mole of an ideal monoatomic gas undergoes two reversible processes $(A \to B \text{ and } B \to C)$ as shown in the given figure :



 $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process $(A \to B \text{ and } B \to C)$ is $RT_2 \ln 10$, the value of $2 \log V_3$ is _____.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2} R$]

Ans. (7)

Sol. For
$$A \rightarrow B$$

$$600 V_1^{\gamma - 1} = 60 V_2^{\gamma - 1} \quad (\gamma = 5/3)$$

(Reversible adiabatic)

$$\Rightarrow$$
 600 $(V_1)^{2/3} = 60 (V_2)^{2/3}$

$$\Rightarrow 10 = \left(\frac{V_2}{V_1}\right)^{2/3}$$

$$\Rightarrow 10 = \left(\frac{V_2}{10}\right)^{2/3}$$

$$\Rightarrow$$
 V₂ = 10(10)^{3/2} = 10^{5/2}

Now, $q_{net} = RT_2 ln 10 = 60 R ln 10 = q_{AB} + q_{BC}$

$$\therefore q_{AB} = 0$$

$$\Rightarrow$$
 q_{BC} = 60 R ln 10 = 60 R ln $\frac{V_3}{V_2}$

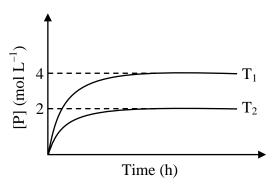
 $[:: B \to C \text{ is reversible isothermal}]$

$$\Rightarrow$$
 60 R ln 10 = 60 R ln $\left(\frac{V_3}{10^{5/2}}\right)$

$$\Rightarrow \log 10 = \log V_3 - \frac{5}{2}$$

$$\Rightarrow \log V_3 = \frac{7}{2} \Rightarrow 2 \log V_3 = 7$$

12. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure:



If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____.

[ΔG_1^{Θ} and ΔG_2^{Θ} are standard Gibb's free energy change for the reaction at temperatures T_1 and T_2 , respectively.]

Ans. (8)

Sol. At
$$T_1$$
 K: $A(g) \rightleftharpoons P(g)$

$$t = 0$$

$$t = \infty$$
 $6 - x$ $x = 4$ (from plot)

$$\Rightarrow$$
 At T₁ K: K_{P₁} = $\frac{4}{2}$ = 2

$$At \ T_2 \ K: \qquad \qquad A(g) \ \ \ \ \, P(g)$$

$$t = 0$$

$$t = \infty$$
 $6 - y$ $y = 2$ (from plot)

$$\Rightarrow$$
 At T₂ K : K_{P₂} = $\frac{2}{4} = \frac{1}{2}$

Now,
$$\Delta G_2^o = -RT_2 \ln K_{P_2} = -RT_2 \ln \frac{1}{2}$$

$$\Rightarrow \Delta G_2^0 = RT_2 \ln 2$$

$$\Delta G_1^o = - \,RT_1 \, ln \, K_{P_1} = - \,RT_1 \, ln \, 2 = - \, 2RT_2 \, ln \, 2$$

Given :
$$\Delta G_2^o - \Delta G_1^o = RT_2 \ln 2 + 2RT_2 \ln 2 = 3RT_2 \ln 2 = RT_2 \ln x$$

$$\Rightarrow x = 2^3 = 8$$

13. The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is _____.

NC
$$\leftarrow$$
 CN \leftarrow (i) LiAlH₄ (excess), then H₂O \rightarrow P (ii) Acetophenone (excess)

Ans. (28)

Sol.

$$N \equiv C$$

$$N \equiv C$$

$$C \equiv N$$

$$N \equiv C$$

$$C \equiv N$$

$$H_2N - CH_2$$

$$CH_2 - NH_2$$

$$CH_2 - NH_2$$

$$CH_3 - C - Ph$$

$$CH_3 - C -$$

Total number of sp^2 hybridised C-atom in P = 28

SECTION-4: (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- **List-I** has **Four** entries (P), (Q), (R) and (S) and **List-II** has **Five** entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY **ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 **ONLY** if the option corresponding to the correct combination is chosen;

: 0 If none of the options is chosen (i.e. the question is unanswered); Zero Marks

Negative Marks : -1 In all other cases.

14. Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

- (P) $P_2O_3 + 3H_2O \rightarrow$
- (Q) $P_4 + 3NaOH + 3H_2O \rightarrow$
- (R) $PCl_5 + CH_3COOH \rightarrow$
- (S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$
- (A) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$ (C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$

List-II

- (1) P(O)(OCH₃)Cl₂
- (2) H_3PO_3
- (3) PH₃
- (4) POCl₃
- (5) H_3PO_4
- (B) $P \rightarrow 3$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$
- (D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$

Ans. (D)

Sol. (P) $P_2O_3 + 3H_2O \rightarrow 2H_3PO_3$

- (Q) $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$
- (R) $PCl_5 + CH_3COOH \rightarrow CH_3COCl + POCl_3 + HCl$
- (S) $H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow 4Ag + 4HNO_3 + H_3PO_4$
- **15.** Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I

- (P)
- (Q) $t_{2g}^3 e_g^2$
- (R) $e^2t_2^3$
- (S) $t_{2g}^4 e_g^2$

- List-II
 - $[Fe(H_2O)_6]^{2+}$ (1)
 - (2) $[Mn(H_2O)_6]^{2+}$
 - (3) $[Co(NH_3)_6]^{3+}$
 - (4) [FeCl₄]
 - (5) $[CoCl_4]^{2-}$
- (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$ (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$
- (C) $P \rightarrow 3$: $O \rightarrow 2$: $R \rightarrow 5$: $S \rightarrow 1$ (D) $P \rightarrow 3$: $O \rightarrow 2$: $R \rightarrow 4$: $S \rightarrow 1$

Ans. (D)

Sol. 1.
$$[Fe(H_2O)_6]^{+2}$$
 WFL

WFL configuration
$$3d^{\frac{6}{2g}}e_{g}$$

$$t_{2g}^{\frac{4}{2g}}e_{g}^{\frac{2}{2}}(S)$$

2.
$$[Mn(H_2O)_6]^{+2}$$

WFL

configuration
$$3d^{\frac{5}{2}}$$
 $\underbrace{\begin{array}{c} \textcircled{\textcircled{1}}\textcircled{\textcircled{1}}e_{g} \\ \textcircled{\textcircled{1}}\textcircled{\textcircled{1}}t_{2g} \end{array}}_{t_{2g}^{2}}e_{g}^{2}(Q)$

configuration
$$3d^{\frac{6}{2g}}e_{g}$$

$$t_{2g}^{\frac{6}{2g}}e_{g}^{\frac{6}{2g}}(P)$$

$$\begin{array}{cc} & \text{III} \\ 4. & [\text{Fe Cl}_4]^{\Theta} \\ & \text{WFL} \end{array}$$

configuration
$$3d^{\frac{5}{2}}$$

$$e^{2}t_{2}^{3}(R)$$

configuration
$$3d^{7}$$

$$e^{4}t_{2}^{3} \text{ (None)}$$

16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

List-II

- $\begin{array}{ccc} \text{(P)} & \text{(-)-1-Bromo-2-ethylpentane} & \underline{\text{aq. NaOH}} \\ & \text{(single enantiomer)} & \overline{S_{N}2 \text{ reaction}} \end{array}$
- (1) Inversion of configuration
- (Q) (-)-2-Bromopentane aq. NaOH (single enantiomer) $\overline{S_N2}$ reaction
- (2) Retention of configuration
- (R) (-)-3-Bromo-3-methylhexane aq. NaOH (single enantiomer) $\frac{\text{aq. NaOH}}{\text{S}_{\text{N}}1 \text{ reaction}}$
- (3) Mixture of enantiomers
- (S) $Me^{H}Me^{Br}$ aq. NaOH(Single enantiomer) S_N1 reaction
- (4) Mixture of structural isomers

(5) Mixture of diastereomers

- (A) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$
- (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$
- (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$
- (D) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$

Ans. (B)

Sol. $P \rightarrow 2$, $Q \rightarrow 1$, $R \rightarrow 3$, $S \rightarrow 5$

Retention of configuration

(Q)
$$\xrightarrow{\text{Aq. NaoH}} \xrightarrow{\text{OH}}$$

Inversion of configuration

Diastereomeric mixture

ŎН

Ĥ

Me

(S)

17. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

(2)

(3)

List-I

(P) Etard reaction List-II

- (1) Zn-Hg, HCl Acetophenone –
- Gattermann reaction
- (i) KMnO₄,KOH, Δ Toluene -(ii) SOCl₂
- Gattermann-Koch reaction
- CH₃Cl Benzene anhyd. AlCl₃
- **(S)** Rosenmund reduction
- (4)
- (5) Phenol-

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$

(B)
$$P \rightarrow 1$$
; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$

(C)
$$P \rightarrow 3$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$

(D)
$$P \rightarrow 3$$
; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$

Ans. (D)

Sol.
$$P \rightarrow 3$$
, $Q \rightarrow 4$, $R \rightarrow 5$, $S \rightarrow 2$

(i) $Ph - C - CH_3 \xrightarrow{Zn - Hg/HCl} Ph - CH_2 - CH_3$
Acetophenone

(ii)
$$CH_3$$
 CH_3 $C - Cl$ CHO CHO

(iii)
$$CH_3 - CI$$
 CrO_2Cl_2 Etard reaction (P)

(iv)
$$NH_2$$
 $NaNO_2/HC1$ Cu/HCl Cu/HCl OH CHO CHO

$$(v) \xrightarrow{Zn/\Delta} \bigcirc \xrightarrow{CO/HCl} \xrightarrow{AlCl_3} Gattermann Koch reaction$$
(R)

MATHEMATICS

SECTION-1: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 marks;

choosing ONLY (B) will get +1 marks;

choosing ONLY (D) will get +1 marks;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

1. Let $S = (0, 1) \cup (1, 2) \cup (3, 4)$ and $T = \{0, 1, 2, 3\}$. Then which of the following statements is(are) true?

(A) There are infinitely many functions from S to T

(B) There are infinitely many strictly increasing functions from S to T

(C) The number of continuous functions from S to T is at most 120

(D) Every continuous function from S to T is differentiable

Ans. (ACD)

Sol.
$$S = (0, 1) \cup (1, 2) \cup (3, 4)$$

$$T = \{0, 1, 2, 3\}$$

Number of functions:

Each element of S have 4 choice

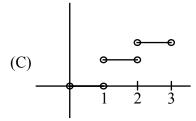
Let n be the number of element in set S.

Number of function = 4^n

Here $n \to \infty$

 \Rightarrow Option (A) is correct.

Option (B) is incorrect (obvious)



For continuous function

Each interval will have 4 choices.

⇒ Number of continuous functions

 $= 4 \times 4 \times 4 = 64$

 \Rightarrow Option (C) is correct.

(D) Every continuous function is piecewise constant functions

⇒ Differentiable.

Option (D) is correct.

2. Let T_1 and T_2 be two distinct common tangents to the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$ and the parabola

 $P: y^2 = 12x$. Suppose that the tangent T_1 touches P and E at the point A_1 and A_2 , respectively and the tangent T_2 touches P and E at the points A_4 and A_3 , respectively. Then which of the following statements is(are) true?

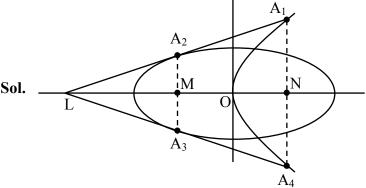
(A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units

(B) The area of the quadrilateral $A_1A_2A_3A_4$ is 36 square units

(C) The tangents T_1 and T_2 meet the x-axis at the point (-3,0)

(D) The tangents T_1 and T_2 meet the x-axis at the point (-6, 0)

Ans. (AC)



$$y = mx + \frac{3}{m}$$

$$C^{2} = a^{2}m^{2} + b^{2}$$

$$\frac{9}{m^{2}} = 6m^{2} + 3 \qquad \Rightarrow m^{2} = 1$$

$$T_{1} \& T_{2}$$

$$y = x + 3, y = -x - 3$$

$$Cuts x-axis at (-3, 0)$$

$$A_{1}(3, 6) \qquad A_{4}(3, -6)$$

$$A_{2}(-2, 1) \qquad A_{3}(-2, -1)$$

$$A_{1}A_{4} = 12, \quad A_{2}A_{3} = 2, \quad MN = 5$$

$$Area = \frac{1}{2}(12+2) \times 5 = 35 \text{ sq.unit}$$

$$Ans. (A, C)$$

- 3. Let $f:[0, 1] \to [0, 1]$ be the function defined by $f(x) = \frac{x^3}{3} x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0, 1] \times [0, 1]$. Let $G = \{(x, y) \in S : y > f(x)\}$ be called the green region and $R = \{(x, y) \in S : y < f(x)\}$ be called the red region. Let $L_h = \{(x, h) \in S : x \in [0, 1]\}$ be the horizontal line drawn at a height $h \in [0, 1]$. Then which of the following statements is(are) ture?
 - (A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h
 - (B) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h
 - (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h
 - (D) There exists an $h \in \left\lfloor \frac{1}{4}, \frac{2}{3} \right\rfloor$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h

Ans. (BCD)

Sol.
$$f(x) = \frac{x^3}{3} - x^2 + \frac{5x}{9} + \frac{17}{36}$$

$$f'(x) = x^2 - 2x + \frac{5}{9}$$

$$f'(x) = 0$$
 at $x = \frac{1}{3}$ in [0, 1]

$$A_R$$
 = Area of Red region

$$A_R$$
 = Area of Red region
 A_G = Area of Green region

$$A_{R} = \int_{0}^{1} f(x) dx = \frac{1}{2}$$

Total area
$$= 1$$

$$\Rightarrow$$
 A_G = $\frac{1}{2}$

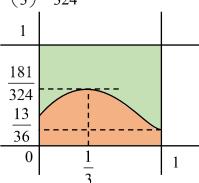
$$\int_0^1 f(x) dx = \frac{1}{2}$$

$$A_G = A_R$$

$$f(0) = \frac{17}{36}$$

$$f(1) = \frac{13}{36} \approx 0.36$$

$$f\left(\frac{1}{3}\right) = \frac{181}{324} \approx 0.558$$



(A) Correct when
$$h = \frac{3}{4}$$
 but $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$

- \Rightarrow (A) is incorrect
- (B) Correct when $h = \frac{1}{4}$
- \Rightarrow (B) is correct

(C) When
$$h = \frac{181}{324}$$
, $A_R = \frac{1}{2}$, $A_G < \frac{1}{2}$
 $h = \frac{13}{36}$, $A_R < \frac{1}{2}$, $A_G = \frac{1}{2}$

$$\Rightarrow$$
 A_R = A_G for some h $\in \left(\frac{13}{36}, \frac{181}{324}\right)$

- \Rightarrow (C) is correct
- (D) Option (D) is remaining coloured part of option (C), hence option (D) is also correct.

SECTION-2: (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

4. Let $f:(0, 1) \to \mathbb{R}$ be the functions defined as $f(x) = \sqrt{n}$ if $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ where $n \in \mathbb{N}$. Let

 $g:(0,1) \to \mathbb{R}$ be a function such that $\int_{x^2}^x \sqrt{\frac{1-t}{t}} dt < g(x) < 2\sqrt{x}$ for all $x \in (0,1)$. Then $\lim_{x \to 0} f(x)g(x)$

(A) does NOT exist

(B) is equal to 1

(C) is equal to 2

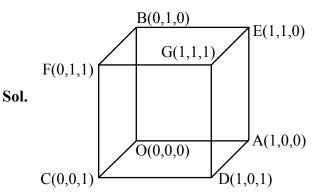
(D) is equal to 3

Ans. (C)

$$\begin{aligned} & \textbf{Sol.} \quad \int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} dt. \sqrt{n} \leq f(x) g(x) \leq 2 \sqrt{x} \sqrt{n} \\ & \because \int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} dt = \sin^{-1} \sqrt{x} + \sqrt{x} \sqrt{1-x} - \sin^{-1} x - x \sqrt{1-x^2} \\ & \Rightarrow \lim_{x \to 0} \left(\frac{\sin^{-1} \sqrt{x} + \sqrt{x} \sqrt{1-x} - \sin^{-1} x - x \sqrt{1-x^2}}{\sqrt{x}} \leq f(x) g(x) \leq \frac{2 \sqrt{x}}{\sqrt{x}} \right) \\ & \Rightarrow 2 \leq \lim_{x \to 0} f(x) g(x) \leq 2 \\ & \Rightarrow \lim_{x \to 0} f(x) g(x) = 2 \end{aligned}$$

- 5. Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \{0,1\}\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0, 0, 0) and (1, 1, 1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1, \ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1, \ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is
 - $(A) \ \frac{1}{\sqrt{6}}$
- (B) $\frac{1}{\sqrt{8}}$
- (C) $\frac{1}{\sqrt{3}}$
- (D) $\frac{1}{\sqrt{12}}$

Ans. (A)



DR'S of OG = 1, 1, 1

DR'S of AF = -1, 1, 1

DR'S of CE = 1, 1, -1

DR'S of BD = 1, -1, 1

Equation of OG
$$\Rightarrow \frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$

Equation of AB
$$\Rightarrow \frac{x-1}{1} = \frac{y}{-1} = \frac{z}{0}$$

Normal to both the line's

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = \hat{i} + \hat{j} - 2\hat{k}$$

$$\overrightarrow{OA} = \hat{i}$$

S.D. =
$$\frac{\left|\hat{i}.(\hat{i}+\hat{j}-2\hat{k})\right|}{\left|\hat{i}+\hat{j}-2\hat{k}\right|} = \frac{1}{\sqrt{6}}$$

Ans. (A)

- 6. Let $X = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x \right\}$. Three distinct points P, Q and R are randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is
 - (A) $\frac{71}{220}$
- (B) $\frac{73}{220}$
- (C) $\frac{79}{220}$
- (D) $\frac{83}{220}$

Ans. (B)

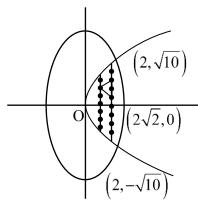
Sol.
$$\frac{x^2}{8} + \frac{y^2}{20} < 1 \& y^2 < 5x$$

Solving corresponding equations

$$\frac{x^2}{8} + \frac{y^2}{20} = 1 \& y^2 = 5x$$

$$\Rightarrow \begin{cases} x = 2 \\ y = \pm \sqrt{10} \end{cases}$$

$$X = \{(1,1), (1,0), (1,-1), (1,2), (1,-2), (2,3), (2,2), (2,1), (2,0), (2,-1), (2,-2), (2,-3)\}$$



Let S be the sample space & E be the event $n(S) = {}^{12}C_3$

For E

Selecting 3 points in which 2 points are either or x = 1 & x = 2 but distance b/w then is even

Triangles with base 2:

$$= 3 \times 7 + 5 \times 5 = 46$$

Triangles with base 4:

$$= 1 \times 7 + 3 \times 5 = 22$$

Triangles with base 6:

$$= 1 \times 5 = 5$$

$$P(E) = \frac{46 + 22 + 5}{{}^{12}C_3} = \frac{73}{220}$$

Ans. (B)

- 7. Let P be a point on the parabola $y^2 = 4ax$, where a > 0. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a,m) is
 - (A)(2,3)
- (B)(1,3)
- (C)(2,4)
- (D)(3,4)

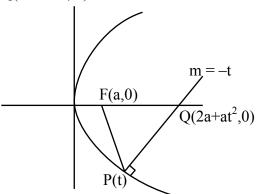
Ans. (A)

Sol. Let point P (at², 2at)

normal at P is $y = -tx + 2at + at^3$

$$y = 0, x = 2a + at^2$$

$$Q(2a + at^2, 0)$$



Area of
$$\triangle PFQ = \left| \frac{1}{2} (a + at^2)(2at) \right| = 120$$

$$: m = -t$$

$$a^2 [1 + m^2] m = 120$$

$$(a, m) = (2, 3)$$
 will satisfy

SECTION-3: (Maximum Marks: 24)

- This section contains **SIX** (**06**) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY If the correct integer is entered;

Zero Marks : 0 In all other cases.

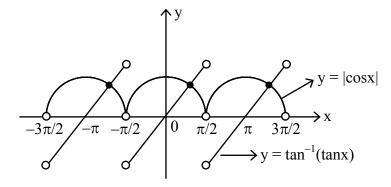
8. Let $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation

$$\sqrt{1+\cos(2x)} = \sqrt{2}\tan^{-1}(\tan x) \text{ in the set } \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \text{ is equal to}$$

Ans. (3)

Sol.
$$\sqrt{2} |\cos x| = \sqrt{2} \cdot \tan^{-1} (\tan x)$$

 $|\cos x| = \tan^{-1} \tan x$



No. of solutions = 3

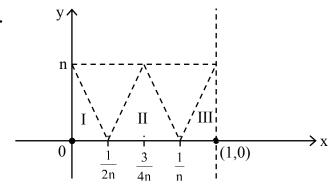
9. Let $n \ge 2$ be a natural number and $f: [0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

If n is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function f is

Ans. (8)

Sol.



Area = Area of
$$(I + II + III) = 4$$

$$= \frac{1}{2} \times \frac{1}{2n} \times n + \frac{1}{2} \times \frac{1}{2n} \times n + \frac{1}{2} \left(1 - \frac{1}{n}\right) \times n$$

$$=\frac{1}{4}+\frac{1}{4}+\frac{n-1}{2}=4$$

$$n = 8$$

$$\therefore$$
 maximum value of $f(x) = 8$

10. Let 75...57 denote the (r + 2) digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum S = 77 + 757 + 7557 + ... + 75...57. If $S = \frac{75...57 + m}{n}$, where m and n are natural numbers less than 3000, then the value of m + n is

Ans. (1219)

Sol.
$$S = 77 + 757 + 7557 + ... + 75.....57$$

 $10S = 770 + 7570 + ... + 75 ... 570 + 755570$

$$9S = -77 + \underbrace{13 + 13 + \dots + 13}_{98 \text{ times}} + 75 \dots 570$$
$$= -77 + 13 \times 98 + 75 \dots 57 + 13$$

$$S = \frac{75.....57 + 1210}{9}$$

$$m = 1210$$

$$n = 9$$

$$m + n = 1219$$

11. Let
$$A = \left\{ \frac{1967 + 1686i \sin \theta}{7 - 3i \cos \theta} : \theta \in \mathbb{R} \right\}$$
. If A contains exactly one positive integer n, then the value of n is

Ans. (281)

Sol.
$$A = \frac{1967 + 1686i\sin\theta}{7 - 3i\cos\theta}$$
$$= \frac{281(7 + 6i\sin\theta)}{7 - 3i\cos\theta} \times \frac{7 + 3i\cos\theta}{7 + 3i\cos\theta}$$
$$= \frac{281(49 - 18\sin\theta\cos\theta + i(21\cos\theta + 42\sin\theta))}{49 + 9\cos^2\theta}$$

for positive integer

$$Im(A) = 0$$

$$21\cos\theta + 42\sin\theta = 0$$

$$\tan \theta = \frac{-1}{2}$$
; $\sin 2\theta = \frac{-4}{5}$, $\cos^2 \theta = \frac{4}{5}$

$$Re(A) = \frac{281(49 - 9\sin 2\theta)}{49 + 9\cos^2 \theta}$$

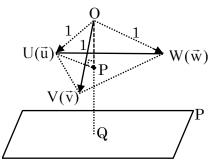
$$= \frac{281\left(49 - 9 \times \frac{-4}{5}\right)}{49 + 9 \times \frac{4}{5}} = 281 \text{ (+ve integer)}$$

12. Let P be the plane $\sqrt{3}x + 2y + 3z = 16$ and let

$$S = \left\{ \alpha \hat{\mathbf{i}} + \beta \hat{\mathbf{j}} + \gamma \hat{\mathbf{k}} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the distance of } (\alpha, \beta, \gamma) \text{ from the plane P is } \frac{7}{2} \right\}.$$

Let \vec{u} , \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u} , \vec{v} and \vec{w} . Then the value of $\frac{80}{\sqrt{3}}$ V is

Ans. (45) Sol.



Given
$$|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$$

 $\Rightarrow \Delta UVW$ is an equilateral Δ

Now distances of U, V, W from $P = \frac{7}{2}$

$$\Rightarrow$$
 PQ = $\frac{7}{2}$

Also, Distance of plane P from origin

$$\Rightarrow$$
 OQ = 4

$$\therefore$$
 OP = OQ - PQ \Rightarrow OP = $\frac{1}{2}$

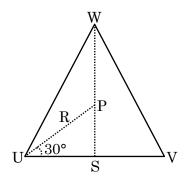
Hence,
$$PU = \sqrt{OU^2 - OP^2} \implies PU = \frac{\sqrt{3}}{2} = R$$

Also, for ΔUVW, P is circumcenter

$$\therefore$$
 for $\triangle UVW$: US = Rcos30°

$$\Rightarrow$$
 UV = 2Rcos30°

$$\Rightarrow$$
 UV = $\frac{3}{2}$



$$\therefore Ar(\Delta UVW) = \frac{\sqrt{3}}{4} \left(\frac{3}{2}\right)^2 = \frac{9\sqrt{3}}{16}$$

 \therefore Volume of tetrahedron with coterminous edges $\vec{u}, \vec{v}, \vec{w}$

=
$$\frac{1}{3}$$
(Ar. Δ UVW) \times OP = $\frac{1}{3} \times \frac{9\sqrt{3}}{16} \times \frac{1}{2} = \frac{3\sqrt{3}}{32}$

 \therefore parallelopiped with coterminous edges

$$\vec{u}, \vec{v}, \vec{w} = 6 \times \frac{3\sqrt{3}}{32} = \frac{9\sqrt{3}}{16} = V$$

$$\therefore \frac{80}{\sqrt{3}} V = 45$$

13. Let a and b be two nonzero real numbers. If the coefficient of x^5 in the expansion of $\left(ax^2 + \frac{70}{27bx}\right)^4$ is equal to the coefficient of $\left(ax - \frac{1}{bx^2}\right)^7$, then the value of 2b is

Ans. (3)

Sol.
$$T_{r+1} = {}^{4}C_{r} (a.x^{2})^{4-r} . \left(\frac{70}{27bx}\right)^{r}$$

= ${}^{4}C_{r} . a^{4-r} . \frac{70^{r}}{(27b)^{r}} . x^{8-3r}$

here
$$8 - 3r = 5$$

$$8 - 5 = 3r \Rightarrow r = 1$$

$$\therefore \text{ coeff.} = 4.a^3. \frac{70}{27b}$$

$$T_{r+1} = {}^{7}C_{r}(ax)^{7-r} \left(\frac{-1}{bx^{2}}\right)^{r}$$

$$= {}^{7}C_{r}.a^{7-r} \left(\frac{-1}{b}\right)^{r}.x^{7-3r}$$

$$7 - 3r = -5 \Rightarrow 12 = 3r \Rightarrow r = 4$$

coeff.:
$${}^{7}C_{4}.a^{3}.\left(\frac{-1}{b}\right)^{4} = \frac{35a^{3}}{b^{4}}$$

now
$$\frac{35a^3}{b^4} = \frac{280a^3}{27b}$$

$$b^3 = \frac{35 \times 27}{280} = b = \frac{3}{2} \implies 2b = 3$$

SECTION-4: (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-II and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : –1 In all other cases.

14. Let α , β and γ be real numbers. consider the following system of linear equations

$$x + 2y + z = 7$$

$$x + \alpha z = 11$$

$$2x - 3y + \beta z = \gamma$$

Match each entry in **List - I** to the correct entries in **List-II**

List-II List-II

(P) If
$$\beta = \frac{1}{2}(7\alpha - 3)$$
 and $\gamma = 28$, then the system has

(1) a unique solution

(Q) If
$$\beta = \frac{1}{2}(7\alpha - 3)$$
 and $\gamma \neq 28$, then the system has

(2) no solution

(R) If
$$\beta \neq \frac{1}{2}$$
 (7 α –3) where $\alpha = 1$ and $\gamma \neq 28$,

(3) infinitely many solutions

then the system has

(S) If
$$\beta \neq \frac{1}{2}$$
 (7 α – 3) where α = 1 and γ = 28,

(4) x = 11, y = -2 and z = 0 as a solution

then the system has

(5) x = -15, y = 4 and z = 0 as a solution

The correct option is:

$$(A) (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (1) (S) \rightarrow (4)$$

(B) (P)
$$\rightarrow$$
 (3) (Q) \rightarrow (2) (R) \rightarrow (5) (S) \rightarrow (4)

$$(C)(P) \to (2)(Q) \to (1)(R) \to (4)(S) \to (5)$$

(D) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (1) (R) \rightarrow (1) (S) \rightarrow (3)

Ans. (A)

Sol. Given
$$x + 2y + z = 7$$
 (1)

$$x + \alpha z = 11$$
 (2

$$x + \alpha z = 11$$
 (2)
 $2x - 3y + \beta z = \gamma$ (3)

Now,
$$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta \end{vmatrix} = 7\alpha - 2\beta - 3$$

$$\therefore \text{ if } \beta = \frac{1}{2}(7\alpha - 3)$$

$$\Rightarrow \Delta = 0$$

$$\Rightarrow \boxed{\Delta = 0}$$

$$\Rightarrow \boxed{\Delta = 0}$$
Now, $\Delta_x = \begin{vmatrix} 7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta \end{vmatrix}$

$$= 21\alpha - 22\beta + 2\alpha\gamma - 33$$

$$=21\alpha-22\beta+2\alpha\gamma-33$$

$$\therefore$$
 if $\gamma = 28$

$$\Rightarrow \Delta_{x} = 0$$

$$\Delta_y = \begin{vmatrix} 1 & 7 & 1 \\ 1 & 11 & \alpha \\ 2 & \gamma & \beta \end{vmatrix}$$

$$\Delta_{\rm v} = 4\beta + 14\alpha - \alpha\gamma + \gamma - 22$$

$$\therefore$$
 if $\gamma = 28$

$$\Rightarrow \Delta_{\rm y} = 0$$

Now,
$$\Delta_z = \begin{vmatrix} 1 & 2 & 7 \\ 1 & 0 & 11 \\ 2 & -3 & \gamma \end{vmatrix} = 56 - 2\gamma$$

If
$$\gamma = 28$$

$$\Rightarrow \boxed{\Delta_z = 0}$$

$$\therefore \text{ if } \gamma = 28 \text{ and } \beta = \frac{1}{2}(7\alpha - 3)$$

⇒ system has infinite solution

and if
$$\gamma \neq 28$$

$$\Rightarrow$$
 system has no solution

$$\Rightarrow$$
 P \rightarrow (3); Q \rightarrow (2)

Now if
$$\beta \neq \frac{1}{2}(7\alpha - 3)$$

$$\Rightarrow \Delta \neq 0$$

and for
$$\alpha = 1$$
 clearly

y = -2 is always be the solution

$$\therefore$$
 if $\gamma \neq 28$

System has a unique solution

if
$$\gamma = 28$$

$$\Rightarrow$$
 x = 11, y = -2 and z = 0 will be one of the solution

$$\therefore R \to 1; S \to 4$$

15. Consider the given data with frequency distribution

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

(P) The mean of the above data is

(1) 2.5

(Q) The median of the above data is

- (2)5
- (R) The mean deviation about the mean of the above data is
- (3)6
- (S) The mean deviation about the median of the above data is
- (4) 2.7
- (5) 2.4

The correct option is:

$$(A) (P) \rightarrow (3) (Q) \rightarrow (2) (R) \rightarrow (4) (S) \rightarrow (5)$$

(B) (P)
$$\rightarrow$$
 (3) (Q) \rightarrow (2) (R) \rightarrow (1) (S) \rightarrow (5)

$$(C)(P) \rightarrow (2)(Q) \rightarrow (3)(R) \rightarrow (4)(S) \rightarrow (1)$$

(D) (P)
$$\rightarrow$$
 (3) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (5)

Ans. (A)

Sol. x_i

3 4 5 8 10 11

 $f_i \hspace{0.4cm} 5 \hspace{0.4cm} 4 \hspace{0.4cm} 4 \hspace{0.4cm} 2 \hspace{0.4cm} 2 \hspace{0.4cm} 3$

- (P) Mean
- (Q) Median
- (R) Mean deviation about mean
- (S) Mean deviation about median

Xi	f_i	$x_i f_i$	C.F.	$ x_i - Mean $	$f_i x_i - Mean $	$ x_i - Median $	$f_i x_i - Median $
3	5	15	5	3	15	2	10
4	4	16	9	2	8	1	4
5	4	20	13	1	4	0	0
8	2	16	15	2	4	3	6
10	2	20	17	4	8	5	10
11	3	33	20	5	15	6	18
	$\Sigma f_i = 20$	$\Sigma x_i f_i = 120$			$\Sigma f_i x_i - Mean = 54$		$\Sigma f_i x_i - Median = 48$

(P) Mean =
$$\frac{\sum x_i f_i}{\sum f_i} = \frac{120}{20} = 6$$

(Q) Median =
$$\left(\frac{20}{2}\right)^{th}$$
 observation = 10^{th} observation = 5

(R) Mean deviation about mean =
$$\frac{\Sigma f_i |x_i - Mean|}{\Sigma f_i} = \frac{54}{20} = 2.70$$

(S) mean deviation about median =
$$\frac{\sum f_i |x_i - \text{Median}|}{\sum f_i} = \frac{48}{20} = 2.40$$

16. Let ℓ_1 and ℓ_2 be the lines $\vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r}_2 = (\hat{j} - \hat{k}) + \mu(\hat{i} + \hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_1 . For a plane H, let d(H) denote the smallest possible distance between the points of ℓ_2 and H. Let H_0 be plane in X for which $d(H_0)$ is the maximum value of d(H) as H varies over all planes in X.

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

(P) The value of $d(H_0)$ is

(1) $\sqrt{3}$

(Q) The distance of the point (0,1,2) from H_0 is

(2) $\frac{1}{\sqrt{3}}$

(R) The distance of origin from H_0 is

(3) 0

(S) The distance of origin from the point of intersection

(4) $\sqrt{2}$

of planes y = z, x = 1 and H_0 is

 $(5) \frac{1}{\sqrt{2}}$

The correct option is:

$$(A) (P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1)$$

(B) (P)
$$\rightarrow$$
 (5) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (1)

$$(C)(P) \rightarrow (2)(Q) \rightarrow (1)(R) \rightarrow (3)(S) \rightarrow (2)$$

(D) (P)
$$\rightarrow$$
 (5) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (2)

Ans. (B)

Ans. ()

Sol.
$$L_1: \vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$$

$$L_2 : \vec{r}_2 = \hat{j} - \hat{k} + \mu(\hat{i} + \hat{k})$$

Let system of planes are

$$ax + by + cz = 0$$

....(1)

:: It contain L₁

$$\therefore a + b + c = 0$$

.... (2)

For largest possible distance between plane (1) and L₂ the line L₂ must be parallel to plane (1)

$$\therefore a + c = 0$$

.... (3)

$$\Rightarrow \boxed{b=0}$$

$$\therefore$$
 Plane $H_0: [x-z=0]$

Now $d(H_0) = \bot$ distance from point (0, 1, -1) on L_2 to plane.

$$\Rightarrow d(H_0) = \left| \frac{0+1}{\sqrt{2}} \right| = \frac{1}{\sqrt{2}}$$

$$\therefore P \rightarrow 5$$

for 'Q' distance =
$$\left| \frac{2}{\sqrt{2}} \right| = \sqrt{2}$$

$$\therefore Q \rightarrow 4$$

$$\therefore$$
 (0, 0, 0) lies on plane

$$\therefore R \rightarrow 3$$

for 'S'
$$x = z$$
; $y = z$; $x = 1$

 \therefore point of intersection p(1, 1, 1).

$$\therefore OP = \sqrt{1+1+1} = \sqrt{3}$$

$$\therefore S \rightarrow 2$$

∴ option [B] is correct

17. Let z be complex number satisfying $|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$, where \overline{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero.

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

(P) $|z|^2$ is equal to

(1) 12

(Q) $|z-\overline{z}|^2$ is equal to

- (2) 4
- (R) $|z|^2 + |z + \overline{z}|^2$ is equal to
- (3) 8

(S) $|z+1|^2$ is equal to

- (4) 10
- (5)7

The correct option is:

$$(A) (P) \rightarrow (1) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (4)$$

(B) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (1) (R) \rightarrow (3) (S) \rightarrow (5)

(C) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1)

(D) (P)
$$\rightarrow$$
 (2) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (4)

Ans. (B)

Sol. :
$$|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$$
 (1)

Take conjugate both sides

$$\Rightarrow |z|^3 + 2\overline{z}^2 + 4z - 8 = 0 \qquad \dots (2)$$

By
$$(1) - (2)$$

$$\Rightarrow 2(z^2 - \overline{z}^2) + 4(\overline{z} - z) = 0$$

$$\Rightarrow \overline{z + \overline{z} = 2} \qquad \dots (3)$$

$$\Rightarrow |z + \overline{z}| = 2$$
 (4)

Let
$$z = x + iy$$

$$\therefore x = 1 \qquad \qquad \therefore z = 1 + iy$$

Put in (1)

$$\Rightarrow$$
 $(1 + y^2)^{3/2} + 2(1 - y^2 + 2iy) + 4(1 - iy) - 8 = 0$

$$\Rightarrow (1 + y^2)^{3/2} = 2(1 + y^2)$$

$$\Rightarrow \sqrt{1+y^2} = 2 = |z|$$

Also
$$y = \pm \sqrt{3}$$

$$\therefore z = 1 \pm i\sqrt{3}$$

$$\Rightarrow$$
 z - \overline{z} = $\pm 2i\sqrt{3}$

$$\Rightarrow |z - \overline{z}| = 2\sqrt{3}$$

$$\Rightarrow |z - \overline{z}|^2 = 12$$

Now
$$z + 1 = 2 + i\sqrt{3}$$

$$|z+1|^2 = 4+3=7$$

$$\therefore P \rightarrow 2; Q \rightarrow 1; R \rightarrow 3; S \rightarrow 5$$

∴ Option [B] is correct.