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[k REAL NUMBERS

1.1 Iniroduction

In Class I3, you began your exploration of the world of real numbers and encountered
irrational numbers. We continue our discussion on real numbers in this chapler. We
begin with two very important properties of positive integers in Sections 1.2 and 1.3,
namely the Euclid’s division algorithm and the Fundamental Theorem of Arithmetic.

Euclid's division algorithm. as the name suggests, has to do with divisibility of
integers. Stated simply, it says any positive integer 1 can be divided by another positive
integer b in such a way that it leaves a rerpainder » that is smaller than b Many of you
probably recognise this as the usual long divizion process. Although this result is quite
easy to state and understand, it hag many applications related 1o the divisibility properties
of integers. We touch upon a few of them, and use it mainly to compute the HCF of
two positive integers,

The Fundamental Theorem of Arithmetic, on the other hand, has to do something
with multiplication of positive integers. You already know (hat every composite number
can be expressed as a product of prirses in a unique way — this important fact is the
Fundamental Theorem of Avithmetic. Again, while it is a result that is easy to state and
understand, it has some very deep and signilicant applications in the Geld of mathematics,
We use the Fundamental Theorem ol Arithmetic for two main applications. First, we
use it to prove the irrationality of many of the numbers you sindied in Class IX, such as

W2, /3 and 5. Second, we apply this theorem to explore when exactly the decimal
expansion of a rational number, say E(c? #0). is terminating and when it is non-
terminating repeating. We do so by looking at the prire factorisation of the denominator

g of 7 You will see that the prime factorization of g will completely reveal the nature
of the deciral expansion of 2.

1 x E':r =
So let us begin our exploration.
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1.2 Euclid’s Division Lemma
Consider the following folk puzzle®,

A trader was moving along a road selling eggs. An idler who didnt have
much work to do, started to get the trader into a wordy duel. This grew into a
Jight, he pulled the basket with eggs and dashed it on the floor. The eggs broke.
The trader requested the Panchavat to ask the idler to pay for the braken eggs.
The Panchayat asked the trader how many eggs were broken. He gave the
following response:

If counted in pairs, one will remain;

If counted i threes, two will remain;

If counted in fours, three will remain;

If counted in fives, four will remain;

If counted in sixes, five will remain;

If counted in sevens, nothing will remain,

My basket cannot accomodate more than 150 eggs.

So, how many eggs were there? Let us try and solve the puzzle. Let the number
of eggs be a. Then working backwards, we see that a is less than or equal to 150;

It counted in sevens, nothing will remain, which translates to a = 7p + 0. for
some natural number p, If counted in sixes, g = 6g+ 5, for gome natural number g,

I counted in Oves, four will remain. 1L translates (o a = 5w + 4, for some natural
number w.

I counted in fours, three will remain. Tt iranslates (o @ =45 + 3. [or some natural
number 1,

If counted in threes, two will remain. It translates (o a = 31 + 2, for some naiwral
number .

If counted in pairs, one will reraain. Tt translates to a =2y + 1, for some natural
number .

That is, in each case, we have a and a positive integer & (in our example,
b takes values 7. 6, 5,4, 3 and 2, respectively) which divides # and leaves a remainder
r {in our case, ris 0, 5, 4. 3, 2 and 1. respectively), that is smaller than b. The

* This is modified form of a puzzle given in ‘“Numeracy Counts]” by A. Rampal, and others,

=
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moment we write down such equations we are using Buclid’s division lemma,
which is given in Theorewm 1.1.

Getting back to our puzzle, do you have any idea how vou will solve it? Yes! You
must look for the multiples of 7 which satisfy all the conditions, By trial and error
{(using the concept of LCM), you will find he had 119 eggs.

In order to get a feel for what Euclid®s division lemma is, consider the following
pairs of integers:

17, 6; 5.12; 20,4

Like we did in the example, we can write the following relations for each such
pair:

17=6x 2+ 5(6 goes into 17 twice and leaves a remainder 5)
5= 12 x 0 + 5 (This relation holds gince 12 is larger than 5)
20=4 x5+ 0 (Here 4 goes into 20 five-times and lgaves no remainder)

That is, for each pair of positive integers a and b, we have found whole numbers
g and ¢, satisfying the relation:

a=bg+r,0=r<h
Note that ¢ or r can also be zero,

Why don’{ you now try finding integers ¢ and r for the following pairs of pogitive
integers a and b7
(iy 10,3, (i) 4,19; (1) 81,3
Did you notice that g and r are unique? These are the only integers satisfying the
conditions & = kg + r, where 0 < 7 < b. You may have also realised that this is nothing
but a restatement of the long division process you have been doing all these years, and
that the integers ¢ and r are called the guorient and remainder, respectively.

A formal statement of this result is as follows

Theorem 1.1 (Euclid’s Division Lemma) : Given positive integers a and b,
there exist unigue integers g and r salisfying a=bg + rn 0 =r < b
This resull was perhaps known Tor a long time, but was first recorded in Book VI
of Buclid's Elements. Euclid’s division algorithm is based on this lemma.
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An algorithm is a series of well defined steps
which gives a procedure for solving a type of
problem.

The word algorithm comes from the name
of the 9th century Persian mathematician
al-Khwarizmi. In fact. even the word *algebra’
is derived from a book, he wrote, called Hisab
al-jgbr w'al-mugabala.

‘A lemyma iz a proven statement used for Mk i MG ab Rivvaricnl
proving another statement. (CF. T80 — 850)

Euclid’s division algorithia is a technigque to compute the Highest Common Factor
(HCF) of two given positive iniegers. Recall that the HCF of two positive inlegers a
and & is the largest positive integer d that divides both 4 and &,

Let us see how the algorithm works, through an example first. Suppose we need
to find the HCF of the iniegers 455 and 42, We start with the larger integer, that is,
455, Then we use Euclid’s lemma to get

455=42 % 10+35

Now consider the divisor 42 and the remainder 353, and apply the division lemma
o get
42=35x1+7
Now consider the divisor 35 and the remainder 7. and apply the division lemma
o get
35=7%x5+0
Notice that the remainder has become zero, and we cannot proceed any further.
We claim that the HCF of 455 and 42 is the divisor at this stage, i.e., 7. You can easily
verify this by listing all the factors of 455 and 42. Why does this method work? It
works because of the following result
So. let us stae Eunclid’s division algorithm clearly.

To obtain the HCF of rwo positive integers, say ¢ and d, with ¢ > d, follow
the steps below:
Step 1 : Apply Buclid’s division lemma, to ¢ and 4. So, we ind whole numbers, g and
reuchthatc=dg+r, 0= r<d
Step 2 : If r=0,d 1s the HCF of ¢ and d. If r # 0. apply the divizion lemma to 4 and r.

Step 3 : Continue the process till the remainder is zero. The divisor at this stage will
be the required HCF.



REsL MumBERS 3

This algorithm works becanse HCF (¢, d) = HCF (d, r) where the symbol
HCF (¢, d) demotes the HCF of ¢ and 4, elc,

Example 1 : Use Buclid’s algorithm to find the HCF of 4052 and 12576.
Solution :
Step 1 : Since 12576 > 4052, we apply the division lemma to 12576 and 4052, w get
12576 = 4052 x 3 +420
Step 2 : Since the remainder 4202 (), we apply the divigion lemma to 4032 and 420, to
get
4052 = 420 9 + 272
Step 3 : We consider the new divisor 420 and the new remainder 272, and apply the
division lerma lo gel
420= 272 %1+ 148
We consider the new divisor 272 and the new remainder 148, and apply the division
lemma to get
272= 148 x 1+ 124
We conzider the new divisor 148 and the new remainder 124, and apply the division
lemma to get
148= 124 =1+ 24
We consider the new divisor 124 and the new remainder 24, and apply the division
lemma 1o get
124= 24 x5+4
We consider the new divisor 24 and the new remainder 4. and apply the division
lemima o get
24=4x6+0
The remainder has now begome zero, 50 cur procedure stops. Since the divisor at this
stage is 4, the HCF of 12576 and 4052 is 4.
Notice that 4 = HCF (24, 4) = HCF (124, 24) = HCF (148, 124) =
HCF (272, 148) = HCF (420, 272) = HCF (4052, 420) = HCF (12576, 4052).
Euclid’s division algorithm is not only useful for calculating the HCF of very
large numbers, but also becanse it is one of the earliest examples of an algorithm that
a computer had been programmed to carry out,

Remarks :
1. Euclid's division lemma and algorithm are so closely interlinked that people often
call former as the division algorithm alzso,

2. Although Euclid’s Division Alzorithm iz stated for only positive integers. it can be
extended for all integers except zero, i.e., b # 0. However, we shall not discuss this
aspect here.
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Euclid’s division lemma/algoerithm has several applications related o finding
properties of numbers. We give some examples of these applications below:

Example 2 : Show that every positive even integer is of the form 24, and that every
positive odd integer is of the form 2¢ + 1, where g 13 some inleger.

Solution : Let @ be any positive integer and & = 2. Then, by Euclid’s algorithm,
a = 2q + r, for some integer ¢ = 0, and r =0 or r = 1, becanse 0 < r < 2. So,
a=2gorlg+l.

If g is of the form 24, then & is an even infeger. Also, a positive integer can be
either even or odd. Therefore, any positive odd integer 15 of the form 2g + 1.

Example 3 : Show that any pogitive odd integer is of the form 44 + 1 or 4g + 3, where
g is some intgger,

Solution : Let us start with taking a, where g is a positive odd integer. We apply the
division algorithm with g and b= 4.

Since 0 < r < 4, the possible remainders are (0, 1, 2 and 3.

That is, a can be 4q, or 4g + 1, or 4g + 2, or 4g + 3, where g is the quotient.
However, since a is odd, a cannot be 4g or 44 + 2 (since they are both divisible by 2).

Therelore, any odd integer is ol the form 4g + | or 4g + 3.

Example 4 : A gweetseller has 420 kaju barfis and 130 badam barfis. She wants to
stack them in such a way that each stack has the same number, and they take up the
least area of the tray. What is the number of that can be placed in each stack tor this
purpose?

Solution : This can be done by trial and error. But to do it systematically, we find
HCF (420, 130). Then this number will give the maximum number of barfis in each
stack and the number of stacks will then be the lzazi. The area of the tray that is used
up will be the least.

Now, let us use Enclid’s algorithm to find their HCF, We have :
420= 130x3 + 30
130= 30 x4+ 10
3= 10x3+0
8o, the HCF of 420 and 130 is T0.

Therefore, the sweetseller can make stacks of 10 for both kinds of barfi.

=
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EXERCISE 1.1
1. UseFuclidz division algorithm to find the HCF of |
() 135and 235 (i) 196 and 38220 {iti} 867 and 253
2. Show (hat any positive odd integer is ol (he form 6g + L. or 6 + 3, or &g + 5, where g is
some mnteger.
3. Anarmy contingent of & 16 members is to march behind an army band of 32 members in

4 parade. The two groups are to march in the same number of columns, What is the
maximum mamber of columms in which they can march?

4. 1Fse Buaclid’s division levama to show that the square of any positive integer is either of
the form 3m or 3m + | for some integer i,
[Hini : Let x be any positive integer then itis of the form 3g, 3g + 1 or 3g + 2. Now square
each of these and show that they can be rewritten in the form 3m or 3m+ 1.]

5. Use Euelid's divizsion lemma to show that the cube of any pogitive integer is of the form
Y, S+ 1 or9m + 3.

1.3 The Fundamental Theorem of Arithmetic

In your earlier classes, you have seen that anv natural nuraber can be written as a
product of it prime factors, For instance, 2=2,4=2x 2,253 =11 x 23, and s0 on.
Now, let us try and look at natural numbers from the other direction. Thal i3, can any
matural number be obtained by multiplying prime numbers? Let us see.

Take any collection of prime numbers, say 2, 3, 7, 11 and 23, If we multiply
some or all of these numbers, allowing them to repeat as many times as we wish,
we can produce a large collection of positive integers (In fac(, infinitely many).
Let us list a lew :

Tx11%23=1771 IxT=11x23=5313
2x3xTx 1l x23 = 10626 P x3xT=R132
PxIxTxllx23=21252

and so on,

Now, let us suppose your collection of primes includes all the possible primes.
What is your guess aboul the size of this collection? Does it contain only a finite
number of integers, or infinitely many? Infact, there are infinitely many primes. So, if
we combine all these primes in all possible ways, we will get an infinite collection of
numbers, all the primes and all possible products of primes. The question is — can we
produce all the composite numbers this way? What do you think? Do vou think that
there may be a composite number which is not the product of powers of primes?
Before we answer this. let us factorise positive integers, that is, do the opposite of
whal we have done zo far,
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We are going to use the factor tree with which you are all familiar. Let us take
some large number, say, 32760, and factorise it as shown :

32760

S

) RN

o

4140

=

41493

3 | 363

3 455

So we have factorised 32760 as 2 x 2% 2 x 3 x 3 x 5 x 7 x 13 as a product of
primes, i.e., 32760 = 2* % 3% % 5 % 7 x 13 as a product of powers of primes. Let us try
another number, say, 123456789, This can be written as 3% x 3803 x 3607, Of course,
you have to check that 3803 and 3607 are primes! (Try it out for several other natural
numbers yourself.) This leads us to a conjecture that every composite number can be
written as the product of powers of primes. In fact, this statemaent is true, and is called
the Fundamental Theorem of Arithmetic because of its basic crucial importance
to the stady of integers. Let us now formally state this theorem.

Theorem 1.2 (Fundamental Theorem of Arithmetic) : Every composite number
can be expressed {factorised) as a product of primes, and this factorisation is
unigue, apart from the order in which the prime factory occur.
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An equivalent version of Theorem 1.2 was probably first
recorded as Proposition 14 of Book TX in Euclid's
Elements, before it came to be known as the Fundamental
Theorem of Arithmetic. However, the first correct proof
was given by Carl Friedrich Gaunss in his Disquisitiones
Arithmeticae,

Carl Friedrich Gauss is often referred to as the “Prince of
Mathematicians™ and 15 considered one of the three
greatest mathematicians of all time, along with Archimedes
and Newton, He has made [undamental contributions 10 a1 Friedrich Gauss
both mathematics and science. (1777 - 1855)

The Fundamental Theorem of Arithmetic says that everv composite number
can be factorized as a product of primes. Actually it says more. It says that given
any composite number it can be factorised as a product of prime numbers in a
‘unique’ way, except for the order in which the primes occur, That is, given any
composite number there is one and only one way to write it as a product of primes,
as long az we are not particular about the order in which the primes occur. So, for
cxample, we regard 2 x 3 x 5 x 7 as the same as 3 x 5 x 7 x 2, or any other
possible order in which these primes are written. This fact is also stated in the
following form:

The prime factorisation of a natural number is unigue, except for the order
of its factors,

In general, given a composite number x, we [actorise it as x=p,p, ... p,, where
Py Pyeens P, are primes and written in ascending order, ie., p, = p,
<...=p, fwe combine the same primes, we will get powers of primes. For example,

32760 =2x2x2x3x3x3xTx13=x3"%5x7x13

Once we have decided that the order will be ascending, then the way the number
is faclorised, is unique.

The Fundamental Theorem of Arithmetic has many applications, both within
mathematics and in other fields. Let us look at some examples.

Example 5 : Consider the numbers 4%, where n is a natural number. Check whether
there is any value of n for which 4 ends with the digit zero.

Solution : If the number 4%, Tor any », were 10 end with the digit zero, then it wonld be
divisible by 5. That is, the prime factorization of 4* would contain the prime 5. Thig is
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not possible because 4" = (2)*"; so the only prime in the factorisation of 4" is 2. So, the
uniquencss of the Fundamental Theorem of Arithmetic guaraniees that there are no
other primes in the factorisation of 4. So, there is no natural number »n for which 47
ends with the digit zero.

You have already learnt how to find the HCF and LCM of two positive integers
using the Fundamental Theorem of Arithmetic in earlier classes, without realising it!
This method is also called the prime factorisation method. Let us recall this method
through an example.

Example 6 : Find the LCM and HCF of 6 and 20 by the prime factorization method.
Solution : We have : G=2l% 3 and W=2x2%x5=2x5.,

You can find HCF(6, 20) = 2 and LCMI(6, 20) =2 % 2 % 3 ¥ 5 = 60, as done in your
earlier classes.

Note that HCF(6, 20) = 2' = Product of the smallest power of each common
prime factor in the numbers.

LCM (6, 20) = 22 x 3! % 5! = Product of the greatest power of each prime factor,
involved in the numbers.

From the example above, you might have noticed that HCF(6, 20) x LOM(6, 20)
= 6 x 20. In fact, we can verify thal for any two positive integers o and b,
HCF {a, b) x LCM (a. b) = a x b. We can use this result to find the LCM of two
positive integers, if we have already found the HCF of the two positve iniegers.

Example 7 : Find the HCF of 96 and 404 by the prime factorisation method. Hence,
find their LCM.
Solution : The prime factorisation of 96 and 404 gives
06 =27x 3, 404 =22x 101
Therefore, the HCF of these two integers is 22 =4,

O6x 404 96 44

s = 9696
HCE(90. 404) 4

Also, LCM (96, 404} =

FExample 8§ : Find the HCF and LCM ol 6, 72 and 120, uging the prime {actorisation
method.

Solution : We have :
G=2%3 2=22xF 120=2%3I x5

Here, 2' and 3' are the smallest powers of the common factors 2 and 3, respectively.
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So, HCF (6,72,120)= 2'x3'=2x3=6

2%, 3* and 5" are the greatesi powers of the prime factors 2, 3 and 5 respectively
involved in the three numbers.

So, LCM (6,72, 120) = 2*x 3% 5' =360

Remark : Notice, 6 x 72 % 120 2 HCF (6, 72, 120) x LCM (6, 72. 120}. So, the
product of three numbers is not equal to the product of their HCF and LCM.

EXERCISE 1.2
1. Express each number as a product of its prime lactors:
140 (i) 156 (iii) 3823 (iv) 5005 (V) 429

2. Find the LCM and HCF of the following pairs of integers and venify that LCM x HCF =
product of the two numbers.

i) 26and 91 (fi} 510 and 92 (i) 336 and 54
Find the LCM and HCF of the following integers by applying the prime factorization
method,

i 12.15and21 (i) 17.23 and 29 (iii} 8. 9and 25
Given that HCF (306, 657) =9, find LCM (306, 6573,
Check whether 6" can end with the digit 0 for any natural number n,

ik
-

Exiplainwhy 7= 1l x 13+ 13and Tx 6 x5 x4 =% 3 x 2 x | + 5 are composite numbers,

e om s

There is a circular path around a sports field. Sonin takes 18 minotes to drive one round
of the feld, while Ravi takes 12 minutes for the same. Suppose they both start at the
same point and at the same time, and go n the same divection. After how many minutes
will they meet again at the startmg point?

1.4 Revisiting Irrational Nuinbers

In Class IX, vou were introduced to irrational numbers and many of their properties.
You studied about their existence and how the rationals and the irrationals together
made up the real numbers. You even studied how w locate irrationals on the number
line. However, we did not prove that they were irrationals. In this section. we will
prove that +/2, /3, +/5 and, in general, \[p isirational, where p is a prime. One of
the theorers, we use in our proof, is the Fundamental Theorem of Arithmetic,
Recall, a number *s* is called firational if 1t cannot be written in the form £,

where p and g are integers and g # 0. Some examples of irrational numbers, with
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which you are already familiar, are :

J2, 3,15, x, -%,n.lmmumuuu.... o

Before we prove that /3 is irrational, we need the following theorem, whose
proof is based on the Fundamental Theorem of Arithmetic.

Theorem 1.3 : Let p be a prime number, If p divides o, then p divides a. where
a {5 -a positive integer
*Proof : Let the prime factorisation of a be as follows :

a=pp,-..p, where DyPy o P, ATE primes, not necessarily distinct,
Therefore. o = (p,p, . . .p)ppy - - - Py =pipt .. ph
Now, we are given that p divides a*. Therefore, from the Fundamental Theorem of
Arithmetic, it follows that p is one of the prime factors of 4*. However, using the

uniqueness part of the Fundamental Theorem of Arithmetic, we realise that the only
prime factors of a* arep . p,. .. . p.Sopizoneofp,p,.....p.

Now, since a=p, p, . . . p,. p divides a. ]
We are now ready to give a proofl that f7 is irrational,

The proof is based on a technique called “proof by contradiction’. (This technigue is

discussed in some detail in Appendix 1),

Theorem 14 : 7 is irrational.

Proof : Let us assume, to the contrary, that \f7 is rational,

7
So, we can find integers r and s { 0) such that f3 = 5
Suppose ¥ and & have a common factor other than 1. Then, we divide by the common

factor to get 2 = 4 where a and b are coprime,
b

So, bifn =a

Sguaring on both sides and rearranging, we get 250 = g, Thercfore, 2 divides o,
Now, by Theorem 1.3, it follows that 2 divides a.

S0, we can wrile a = 2¢ for some integer c.

* Nol from the examination point of view,
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Substituting for a, we get 28 = 4¢%, that is, b* = 202

This means that 2 divides &7, and so 2 divides b (again using Theorem 1.3 withp=2).
Therefore, g and b have at least 2 as a common factor,

But this contradicts the fact that & and b have no cornmen Tactors other than 1,

This contradiction has arisen because of our incorrect assuraption that \f7 is rational,

So, we conclude that .f3 is irrational. ]

Example 9 : Prove that (3 is irrational.
Solution : Let us assume, 1o the contrary, that Jj.' is rational.
il

Suppose g and b haye a common factor other than 1, then we can divide by the
common factor, and assume that @ and b are coprime,

SDr b'\@- =4d-
Squaring on both sides, and rearranging, we get 30 = g%,

Therefore, a? is divisible by 3, and by Theorem 1.3, it follows that a is also divisible
by 3.

S0, we can wrile ¢ = 3¢ for some mileger c.
Substituting {or a, we get 3b% = 9¢2, that is, b = 3¢,

This means that b? is divisible by 3, and so b is alzo divigible by 3 (using Theorem 1.3
with p = 3).

Therefore, a and b have at least 3 as a commaon factor,
But this conlradicts the fact that a and & are coprime.

That is, we can find integers a and b ( 0) such that 3 =

This contradiction has arisen because of our incorrect assumption that f3 is rational.
So, we conclude that +f3 is irrational.

In Class TX, we mentioned that :
® the sum or difference of a rational and an irrational nurmber is irrational and

e the product and guotient of a non-zero rational and irrational number is
irrational.

We prove some particular cases here.
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Example 10 : Show that 5 — +f3 is irrational,

Solution : Let us assurie, to the contrary, that 5 — f3 is rational,

That is, we can find coprime a and b (6 # () such that 5— \.@ = %,
Therefore, 5 — L_" = Jﬁ

Rearranging this equation, we get f3 = 5 - §= 55; Lf

Since a and b are integers, we get § — 9 is rational, and =0 ﬁ is raticnal.,

But this contradicts the fact that /3 is irrational.

This contradiction has arisen because of our incorrect assumption that 5 - /3 is
rational.

S0, we conclude that 5 — J’E is irrational.

Example 11 ; Show that 3+/2 is irrational.
Solution : Let us assume, to the contrary, that 3-\&. is rational,

That iz, we can find coprime a and b (b = ) such thai 3J_ = %-

Rearranging, we get /2 = %

T
Since 3, @ and b are integers, 3_1? 15 rational, and so ﬁ i rational,

But this contradicts the fact that f2 is irrational,
So, we conclude that 3.f7 is irrational.

EXERCISE 1.3
1. Prove that f5 isimatonal.

2. Provethal 3 + 24/5 isirrational.

3. Prove that the following are urationals ;

(i) % i} 743 (i) 6+ 2
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1.5 Revisiting Rational Numbers and Their Decimal Expansions

In Class TX, vou studied that rational numbers have either a terminating decimal
Expansion or a non-terminating repeating decimal expansion. In this section. we are

guing o consider a rational munber, say g{q # 0}, and explore exactly when the
decimal expansion of 5 i5 terminating and when il 18 non-lerminaling repeating
{or recurring). We do so by considering several examples.

Let us consider the following rational numbers :
(1)0.375 (1) 0. 104 (iii) 0.0875 {iv) 23.3408.

Now @ 0375=-0> =31 ) 0,104 104 _ 104
1000 10 1000 10
Gi) 0.0875=—~1> 57 ) 23,3408 - 233408 _ 233408
10000 10 10000 10*

As one would expect, they can all be expressed as rational numbers whose
denonnnators are powers of 10. Let us try and cancel the common factors between
the numerator and denominator and see whal we gel ;

: 575 Ix¥ 3 14 1320 13
(B3 e ) M s =2
0 22x3 2 100 22%x5 5

&
100 2*xs o 5

Do you see any paitern? It appears that, we have converled a real number

whoge decimal expansion ternminates into a rational number of the form P, where P
q

and g are coprime, and the prime factorisation of the denominator (that is, ¢) has only

powers of 2, or powers of 5, or both. We should expect the denominator to look like
this, since pewers of 10 can only have powers of 2 and 5 as [actors.

Even though. we have worked only with a few exaraples, you can see that any
real number which has a decimal expansion that terminates can be expressed as a
rational number whose denominator is a power of 10, Also the only prime factors of 10
are 2 and 3. So, cancelling out the conunon factors between the nwmnerator and the

denominator, we find that this real nurmber 15 a raticnal number of the form gp where
the pritne factorizsation of g s of the form 2757, and », m are some non-negative integers.

Let ug write our result formally:
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Theovem 1.5 : Let x be a rational number whose decimal expansion terminates.

Then x can be expressed in the form f; where p and g are coprime, and the

prime factorisation of q is of the form 273" where 1, m are non-negative inregers.

You are probably wondering what happens the other way round in Theorem 1.5,

That is, if we have a rational number of the form g. and the prime [actorisation of g

iz of the form 2*5%, where &, m are non negative integers, then does r have a
S - : g
terminating decimal expansion?

Let us see il there is some uhvi{rus reason why this is true. You will surely agree
that any rational nuraber of the fnrrn 5 where bis apower of 10, will have a terminating
decirmal expansion. So it seems to make sense to convert a rational number of the

a
form £ . where g is of the form 2"5”, to an equivalent rational mamber of the form %

q
where & iz a power of 10. Let ug go back to our examples above and work backwards,

0 3 3 3x5 375
1) == i
B 2 x5 10
L1313 13x2* 104

1) i = =0,104
o 125 § x5 100
7 7 ?xi _ 875

=0.375

i) — = — —-ﬁDETS

(@) 80 x5 2x5

o 14588 2% 7521 28w 7x521 233408

i - o = = 233408
) 623 54 24 54 10*

So, these examples show us how we can convert a ratonal oumber of the form
i
F  where g is of the form 25", to an equivalent rational number of the form Es

where b is a power of 10, Therefore, the decimal expansion of such a rauonal number
terminates. Let us write down our result formally.

Theorem 1.6 : Let x = £ be a vational number, such that the prime factorisation
af q is af the form 2".‘5’5 where n, m are non-negative integers, Then x has a

decimal expansion which terminates.

=
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We are now ready to move on to the rational numbers
whose decimal expansions are non-lerminating and recurring.
Once again, let us look at an example to see what is going on.
We refer to Example 5, Chapter 1, from your Class X

1
textbook, namely, 7 Here, remainders are 3,2, 6, 4,3, 1, 3,

2.6,4.5,1,. .. and divisor is 7.

MNotice that the denominator here, i.e., 7 is clearly not of
the form 2757 Therefore, from Theorems 1.5 and 1.6, we

1
know that 7 will not have a terminating decimal expansion,

Hence, 0 will not show up as a remainder (Why"?), and the
remainders will start repeating alter a certain stage. So, we
will have a block of digits, namely, 142857, repeating in the

I
guotient of 7

0.1428571

’J'JI[I

e -
@0
28

an
14
G
56
@n
15
@0
44
@
7
an

I
What we have geen, in the case of = ,is true for any rational number not covered

7
by Theorems 1.5 and 1.6. For such numbers we have :

Theorem 1.7 : Let x = g where p and § are coprimes, be a rational number, such

that the prime factorisation af g is not of the form 2°5°, where n, m are non-negafive
inzegers. Then, x has a decimal expansion which i3 ron-termingting repeqiing
(recurring).

From the discussion above, we can conclude that the decimal expansion of
every rational number is either terminating or non-terminating repeating.

EXERCISE 1.4

1. Withoot actually performing the long division. state whether the following rational
nurmbers will have a terminating decimal expansion or A non-terminating repeating decimal

Expansion:
. o AL i oy 4D -
W 3125 W 3 ) 53 W) {600
29 e 129 6
iv} 343 v} 23.52, ':""]1:’ 1257.?5 iviii} 15
35 77
[:IX:I' ..... tﬁ:} ALY

50 210
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2. Write down the decimal expansions of those rational numbers in Question 1 above
which have rerminating decimal £xpansions,

3. The following real numbers have decimal expansions as given below. In cach case.

decide whether they ars rational or not, Tf they are rarional, and of the form £, what can
you say about the prime factors of g7 2

(1) 43123456789 (i) QL12012007 20001 20000. ... (i) 43123456784

1.6 Summary
In this chapter, you have smdied the following poinzs:
1. Euoclids divizsion lamma :

Given positive integers a and b. there exist whole numbers ¢ and rsaustying o = bg +r,
0<r<h,

2. Euclid's divizsion algorithm : This i= based on Euclid's division lamma. According to this,
the HCF of any two positive integers 4 and b, with o > b, iz obtained as follows;
Step L : Apply the division lerama o find g and r where a=bg+ 7. 0= r<b.
Step 2:TE =0, the HCF 15 5. If # # (), apply Euclid’s lemma to b and r,

Step 3 : Continue the process tll the remainder is zero. The divisor at this stage will be
HCF (g, b). Also, HCF(a, b) =HCF{b, r}.

3. The Fundamental Theoremn of Arithraetic

Every composite number can be expressed (factorized) as a product of primes, and this
factorisation is unique, apart from the order in which the prime factors ocour,

4, Ifpis aprime and p divides #°, then p divides @, where @ 15 a positivs integer.

5. Toprove thal -JE, 3 are irationals.

6. Letx be a rational number whose decimal expansion terminates. Then we can express x
in the form E . Where p and g are coprime, and the prime factorisation of g is of the form

275", where a1, # are non-negative integers,
7. Letx= f; be a rational nuniber, such that the prime factorisation of g is of the form 257,

where n, i are non-negative integers. Then x has a decimal expansion which terminates.

8. Letx= IEJ be a rational number, such that the prime factorisation of g is not of the form

28 & where i, m we non-negative integers. Then x has a decimal expansion which is
Non-erminating repeating (recurring),

=
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A Note 10 THE READER

You have seen that :

HCF ( p, g, r) x LCM (p, g, ) # p x g »r, where p, ¢, r are positive integers
(see Example §). However, the following results hold good for three numbers

p.gqand r:

_ pgrHCFp.q.7)
LCM (p, g. 1) = HCF( p, g) - HCF(g,r) - HCF( p,r)

pgr-LCM(p, g, r)
LCM{ p. q) LCM(g, r) - LCM(p, r}

HCF (p, q,.7) =




